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Abstract— This paper addresses a practical intelligent multi-
agent system for asset management for the petroleum industry,
which is crucial for profitable oil and gas facilities operations
and maintenance. A research project was initiated to study the
feasibility of an intelligent asset management system. Having
proposed a conceptual model, architecture, and implementation
plan for such a system in previous work [1], [2], [3] and
defined its autonomy, communications, and artificial intelligence
(AI) requirements [4], [5], we are proceeding to build a
system prototype and simulate it in real time to validate its
logical behavior in normal and abnormal process situations.
We also conducted a thorough system performance analysis to
detect any computational bottlenecks. Although the preliminary
system prototype design has limitations, simulation results
have demonstrated an effective system logical behavior and
performance.

I. INTRODUCTION

Asset management and control of modern process plants

involves many tasks of different time-scales and complexity

including data reconciliation and fusion, fault detection,

isolation, and accommodation (FDIA), process model iden-

tification and optimization, and supervisory control. The

automation of these complementary tasks within an infor-

mation and control infrastructure will reduce maintenance

expenses, improve utilization and output of manufacturing

equipment, enhance safety, and improve product quality.

Many research studies proposed different combinations of

systems theoretic and artificial intelligence techniques to

tackle the asset management problem, and delineated the

requirements of such system [6], [7], [8].

Several research programs addressed the automation of

asset management in large complex systems, namely the

Pilots Associate (PA) program sponsored by the Defense

Advanced Research Projects Agency (DARPA) [9], [10],

the Rotorcraft Pilots Associate (RPA) program funded by

the US army [11], MAGIC (Multi-Agent-Based Diagnostic

Data Acquisition and Management in Complex Systems)

developed by a joint venture of several European universities

and companies [12], ISHM (Integrated System Health Man-

agement) project developed by NASA for space applications

[13], AEGIS (Abnormal Event Guidance and Information

System) developed by the Honeywell led Abnormal Situa-

tion Management (ASM) Consortium in the United States

[14], and CHEM-CSS (Advanced Decision Support Sys-

tem for Chemical/Petrochemical Manufacturing Processes)
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developed by the European Community (EC) Intelligent

Manufacturing Systems (IMS) consortium [15].

Among all projects, AEGIS is the most relevant. It pro-

poses a comprehensive asset management framework from

an industrial view point. AEGIS built on the experience

of military aviation research projects, especially the Pilots

Associate (PA) and the Rotorcraft Pilots Associate (RPA)

[16]. Although the 12 year old research program has achieved

several goals and developed a well established abnormal situ-

ation management awareness and culture, it did not address

the automation of massive process data interpretation and

process fault diagnosis and accommodation, which would be

aimed to minimize the workload on process operators [17].

A new asset management research project, PAWS

(Petroleum Applications of Wireless Systems), was initiated

by a joint venture of Atlantic Canadian universities and the

National Research Council of Canada (NRC) for oil and

gas applications [1], [18], [2], [19], [20], [3], [21], [22],

[23], [24], [4], [25], [5], [26]. The PAWS project scope is

to develop a control and information management system

which consists of two subsystems. The first subsystem is a

wireless sensor network which will alleviate the need for data

cables in offshore oil rigs and onshore refineries, and improve

flexibility for adding and reconfiguring sensors. Wireless

sensors will be used where permitted by safety. The second

subsystem intelligently manages the massive data flow from

oil rigs and interprets it so as to help operators take more

appropriate decisions during abnormal events and, through

intelligent control, improve process economics. This effort

is building now on the AEGIS project experiences.

As part of the PAWS project, our team is developing

an intelligent control and asset management system (ICAM

system) in which several milestones have been achieved.

The conceptual model of an automated asset management

system, its architecture, and its behavioral model have been

defined [1], [2]. An implementation plan for such system

has been prepared, and the appropriate development plat-

forms have been chosen [3]. Furthermore, a general ICAM

system agent-based structure and its communication and the

artificial intelligence requirements were defined [4], [5]. This

paper builds on the previous requirements analysis work and

describes a real-time ICAM system prototype. Furthermore,

a real time simulation experiment is conducted to verify the

system design and validate its performance.

The paper is organized as follows: First, we describe the

structure of the ICAM system prototype and discuss its

supervisory agent design in section 2. Then, we describe

a real-time simulation-based implementation of the ICAM

system prototype, discuss the simulations results, and analyze

system performance in sections 3. We discuss the ICAM
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system limitations and design challenges in section 4. Finally,

we summarize our research findings in section 5.

II. THE ICAM SYSTEM PROTOTYPE

In order to have the ICAM system requirements deployed

in a real-world system, a prototype has to be developed.

Figure 1 illustrates the simplified ICAM system prototype.

Data from an external plant (a pilot plant at the College

of North Atlantic) or a simulation model is received by the

statistical data monitoring agent, which preprocesses the data

by removing undesired discrepancies such as outliers and

missing data. Processed data is stored in a real-time database

for logging and other purposes, and is then sent to the model

ID and FDI agents for further processing. When the data

statistical preprocessor detects a change in the operating

point or an abnormal change in data, it alerts the model

ID and FDI agents to further identify the nature of the data

change. If a significant change in the process operating point

occurs, the system supervisory agent asks the model ID agent

to update the process model parameters. If the change is a

process fault (i.e., a sensor or actuator failure), the FDI agent

detects the nature of the fault and notifies the ICAM system

supervisor for further processing. For every event that occurs,

the supervisor is notified, which in turn monitors, directs, and

assesses the logical behavior of the system. Processed data

at every agent is sent to an operator interface, which allows

operators make the appropriate decision depending on the

plant situation.
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Fig. 1. ICAM system prototype

The FDI agent exploits the generalized parity space (GPS)

to generate a set of directional residuals, from which process

faults can be determined [27], [18], [22], [25], [28], [26].

The statistical preprocessor agent removes missing data and

outliers by exploiting the median absolute deviation algo-

rithm [29]. The model ID agent estimates the multivariable

plant model by using the subspace method, which uses the

canonical variable algorithm (CVA) in its singular value

decomposition stage [30], [31], [32]. The supervisory agent

is a G2 real time expert system [33], which codifies the

ICAM system internal and external behavior in its knowledge

base. The external plant model represents an oil production

facility, which separates oil well fluids into crude oil, sales

gas, and water.

The simulation model basically consists of two processes,

as illustrated in figure 2. The first is a two-phase separator

in which hydrocarbon fluids from oil wells are separated

into two phases to remove as much light hydrocarbon gases

as possible. The produced liquid is then pumped to the

three-phase separator (i.e., the second process), where water

and solids are separated from oil. The produced oil is then

pumped out and sold to refineries and petrochemical plants if

it meets the required specifications. Gas is processed further

and sent as sales gas.
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Fig. 2. Oil production facility P&ID

The two separation processes of the simulation model are

controlled to maintain the operating point at its nominal

value, and to minimize the effect of disturbances on the

produced oil quality. As shown in figure 2, the first separation

process is controlled by two PI controller loops. In the first

loop, the liquid level is maintained by manipulating the liquid

outflow valve. The second loop controls the pressure inside

the two-phase separator by manipulating the amount of the

gas discharge. The second separation process has three PI

controller loops: An interface level PI controller maintains

the height of the oil/water interface by manipulating the

water dump valve, the oil level is controlled by a second

PI controller through the oil discharge valve, and the vessel

pressure is maintained constant by a third PI loop [34].

A. The supervisory agent rule-base design

Since the supervisory agent of the ICAM system coordi-

nates its internal and external behavior, it is crucial to care-

fully design the rule-base of the supervisory agent to achieve

robust system performance. The rule-base codifies the de-

sired system behavior in response to external environment

dynamic changes and to process operator interactions. Figure

3 illustrates the ICAM system prototype event sequence dia-

gram, which is embedded in the supervisory agent rule-base.

The rule-base design process is in its preliminary stage; and it

will be further developed to address more complex situations

in future work. The ICAM system supervisory agent starts up

the other reactive agents, which are implemented as MATLAB

functions and scripts for ease of development and debugging

[5].

4351



Supervisory
Agent

FDIA
Agent

Model ID
Agent

Stat Agent
Pilot Plant

Agent

Time

Agents

Start  agent Start  agent Start  agent Start  agent

No model No model

Model  sentModel sent

Apply PRBS signal

End of PRBS

New model identified

Check steady state

steady state reached

Design FDI filter

Design done

Fault diagnosis

Fault detected Asynchronous

message

Agent

activation

Agent

lifeline

Fig. 3. ICAM system prototype event sequence

If the FDI agent or the statistical pre-processing agents do

not have any process model, they report their status to the

supervisory agent, which, in turn, commands the statistical

pre-processor to check if the external plant is in steady state.

If the external plant is in a steady state, the supervisory agent

asks the low level control system to apply a small pseudo

random binary signal (PRBS) for a specified period of time

∆t = 300sec. The model ID agent collects process data

during the application of the PRBS signal. Once the low

level control flags back the end of PRBS signal application

to the supervisory agent, the supervisor flags to the model ID

agent to estimate a new process model. The estimated model

is then sent to the appropriate agents. The supervisor then

requests from the FDI agent to design the FDI filter based on

the received process model. The FDI agent starts monitoring

the external process for sensor and actuator faults. If the FDI

agent detects a fault in the plant, the fault location, type, time,

size and other information are reported back to the supervisor

for further processing. In the case of a sensor fault, the FDI

agent will also recommend the appropriate accommodation

(correction) [26].

III. ICAM SYSTEM PROTOTYPE SIMULATION SCENARIO

To analyze the performance of the ICAM system prototype

in terms of its logical behavior and its response to the exter-

nal environment dynamics, a real-time simulation experiment

was conducted for a time span of 30.92 minutes, and a

sampling period of 150 milli-second. The pilot plant sim-

ulation model consists of 10 states, 5 manipulated variables,

5 controlled variables, and 17 auxiliary measured inputs and

outputs (e.g., disturbances, product quality variables, etc...).

The time-stamped raw data is sent to the statistical prepro-

cessor for removing any discrepancies. The processed data

is then sent to the model ID agent to identify new process

models, and to the FDI agent for process fault diagnosis.

After the systems starts up and updates its knowledge about

the pilot plant state, a bias fault is applied to the liquid level

sensor in the two-phase separator (refer to control loop LCL1

in figure 2). The size of the fault is +15% of the liquid

level nominal value. The system behavior during startup and

fault occurrence is discussed in the next sections, where we

discuss the results of two process variables namely, the liquid

level of the two-phase separator and the oil phase level in

the three-phase separator. .

A. Simulation results

After the ICAM system supervisory agent starts executing

its rule-base, other reactive agents are started and initialized.

The pilot plant agent starts its simulation around a nominal

value of V = 146ft3, P = 625psi for the two-phase separa-

tion sub-process and Vwat = 77.5ft3, Voil = 46.5ft3, P =

200psi for the three-phase separation sub-process. Since the

ICAM system has no knowledge about the pilot plant agent

(i.e., no dynamic model), it sends a message to the statistical

pre-processor to check if the pilot plant is in steady state.

Once it is in steady state, the supervisor then commands

the control system of the pilot plant to apply a sufficiently

exciting PRBS signal with an amplitude of 2% about the

nominal operating point. This allows the model ID agent to

collect enough data to identify the pilot plant model, which is

then used by the FDI agent to design its parity vector filter.

Having gained new knowledge about the current dynamic

state of the pilot plant, the ICAM system now can start

monitoring the pilot plant for any failures. Figure 4 illustrates

the liquid volume and the associated outflow in the two-

phase separator during this simulation experiment. Outliers
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and missing data were applied to the two-phase separator

measurements to simulate real-world data. The oil volume of

the three-phase separator and the associated outflow is also

shown in figure 5, where the PRBS signal is also applied

soon after the beginning of the simulation experiment. The

effect of the faulty volume sensor at tfault = 13:36:42 on

the oil volume in the three-phase separator is also shown.
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Fig. 5. Three-phase oil volume logged at the pilot plant agent

Raw data is received by the statistical pre-processing

agent, which removes any outliers and corrects missing data

by replacing it with the previous data value, as demonstrated

by the clean liquid volume data record in figure 6 (compare

with the top traces in figure 4). The statistical agent first

checks if the pilot plant is in steady state to prevent applying

the PRBS signal is a transient state. Apparently the pilot plant

takes a time period of t = 54.73sec to reach it steady state

due to the plant small initial conditions, as shown in figure 6.

Processed data is sent to the model ID agent during the PRBS

signal application, after which a new process model can be

estimated. Figures 7,8 show the two-phase liquid volume

and the three-phase oil volume process variables collected

during the PRBS signal application. Each process variable

data record has a length of 300 seconds, which is the pre-

specified PRBS signal application time.
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Fig. 6. Two-phase separator liquid volume logged at the statistical pre-
processing agent
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Fig. 7. Two-phase separator liquid volume logged at the model ID agent

Once the new process model is received by the FDI agent,

then it can design its FDI filter and deploy it to diagnose plant

faults. Figures 9,10 show the two-phase liquid volume and

the three-phase oil volume process variables collected after

the FDI filter is deployed. When a fault occurs, its effect

can be noticed not only in the local control loop, but also

downstream, which is seen as a disturbance in the three-

phase oil volume control loop, as shown in figure 10. The

FDI agent generates a generalized parity vector whose abnor-

mal magnitude detects faults, and whose angle with respect

to certain reference directions isolates them. When there is

a fault, then the smallest angle indicates the approximate

alignment of the parity vector with the reference direction

of the particular fault. Hence the fault can be isolated based

on the smallest angle after the fault detection. It is clear

from the top plot in figure 11 that the general parity vector

(GPV) magnitude increased significantly, which indicates

that a fault occurred. Furthermore, the smallest angle after

the fault detection instant is the one that corresponds to liquid

volume sensor in the two-phase separator, as indicated by the

dotted trace in the middle plot of figure 11(i.e., fault F1). The

other GPV angles are larger than the faulty volume sensor
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GPV angle, as indicated by the other traces in the middle

and bottom plots of figure 11.
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The parity vector-based FDI technique is highly sensitive

to process variable changes when there is no fault. This is

because of the small size of the GPV vector in no-fault

situations, so it can change its angle widely even in case

of very small process variable changes, as indicated by the

large variation of the GPV angles before fault occurrence in

figure 11. The local decision-making logic of the FDI agent

isolates the fault after its occurrence is signaled by the large

GPV magnitude, as demonstrated by figure 12. It interesting

to notice a fault # of -1 is indicated at the beginning of

fault isolation task; -1 denotes an unknown fault. The FDI

agent isolates faults when the process variables have reached

an acceptable steady state level, so it is ineffective during

the transient part of the fault dynamics. The FDI decision-

making mechanism fails to isolate the faulty instrumentation

between the times t1 = 13:37:55 and t2 = 13:40:48 due to

the very small GPV magnitude as discussed earlier.

The FDI agent also estimates the fault size and sign

and reports the fault information back to the supervisor
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Fig. 10. Three-phase oil volume logged at the FDI agent
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Fig. 11. FDI agent diagnostic signals

for further processing and actions. The corresponding fault

information and recommended actions by the supervisor

are shown by the attributes table of the FDI object in the

G2 supervisory expert system in table I. The model status

and the FDI design status attributes indicate that the FDI

agent has received the process model and has deployed the

designed FDI filter. The accommodation status attribute is the

system recommendation, which is in this case to repair the

faulty sensor. Since the fault type is bias and not of a ramp

type, then recursive fault size estimation is not required as

indicated by the last attribute of the table. Work is proceeding

to accommodate sensor faults in the FDI agent [26]. Some

of the attributes are related to the internal operation of the

ICAM system, which will not be discussed.
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SUPERVISOR FDI FRAME

B. Performance analysis

Having verified and validated the ICAM system pro-

totype functionality during the simulation scenario, it is

crucial to analyze its real-time performance to pinpoint

any computational bottlenecks and to verify the computa-

tion/communication coordination in each agent. We embed-

ded a time-delay function of 100 milli-seconds in the pilot

plant ordinary differential equation (ODE) solver to emulate

a real-time clock functionality. The time-delay is less than

the sampling period because the pilot plant ODE model eval-

uation takes about 50 milli-seconds every sampling period.

Table II illustrates the profile of the oil separation plant

agent which was simulated in real time. It is evident that

the real-time clock functionality took the biggest execution

time slot (i.e., about 61.36%). The evaluation of the oil

separation ODE model took 29.19% of the total execution

time, due to the nonlinear problem being solved every sam-

pling period [34]. Communicating data to other agents and

messages to the supervisory agent did not have a significant

effect of the agent’s performance, which indicates efficient

communication/computation coordination. The approximate

one execution cycle for this agent is around 150msec. This

validates our real-time simulation design decision to take

the computational cost of the ODE model evaluation into

account.
While computational functionalities dominated the sepa-

ration plant agent, data communications with other agents

in the statistical processing agent took the largest execution

time slot, as shown in table III. This is due to synchronization

with other agents during data reception. However, this is

less significant on the agent performance when sending data

to other agents (i.e., about 4.8% of the execution time), as

was specified by the system design requirements [4], [3].

It is evident that there is a performance bottleneck in this

agent due to data storage (around 12%). This can be rectified

by adding a database agent to the system which stores the

different data types across the ICAM system. Again the

communication part with the supervisor had a minimum

effect on performance.

Functionality name Calls Total Time % Time

Real time simulation clock 11453 1253.053 s 61.26% 

Separator ODE model evaluation 11453 597.10 s 29.19% 

Raw data sending 11453 4.28 s 0.2% 

Communication with supervisor 11453 1.3s 0.06% 

Other functionalities   188.404 s 9.21% 

Totals 2045.137 s 100%

TABLE II

THE PILOT PLANT AGENT PERFORMANCE PROFILE

Functionality name Calls Total Time % Time 

Raw data reception from pilot plant 11453 1476.829 s 72.3%

Processed data storage 11453 152.843 s 7.5%

Processed data sending 10802 98.559 s 4.8%

Raw data storage 11453 99.88 s 4.89%

Communication with supervisor 11453 6.33 s 0.3%

Other functionalities 216.322 s 10.59%

Totals 2041.763 s 100%

TABLE III

THE STATISTICAL AGENT PERFORMANCE PROFILE

When it comes to the model ID agent, the reception

of processed data from the statistical processing agent had

the biggest effect on performance (i.e., about 86.3% of the

agent’s execution time). While the process model estimation

functionality took 4.8% of the agents’ total execution time,

communications with the supervisory agent had the least

effect on performance, as shown in table IV. The FDI agent
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had a similar profile of the model ID agent, in which data

reception had 77.5% of execution time. We do notice here

that data storage has a fairly undesirable effect of 7.4% on

the FDI agent performance, as illustrated in table V. Table VI

demonstrate the performance of the supervisory agent during

the real-time system simulation. The G2 supervisory agent

was in an idle state for almost 99.0% of the total simulation

time, whereas communications with other agents had almost

no impact of the agent’s performance, as was specified for

in the design requirements. The total performance of the

ICAM system prototype during the real-time simulation was

satisfactory and will be improved in future design stages.

Functionality name Calls Total Time % Time

Processed data reception 10802 1756.774 s 86.3% 

Process model estimation 1 88.092 s 4.3% 

Communication with supervisor 11317 2.36 s 0.11% 

Other functionalities   190.156s 9.34% 

Totals 2035.021 s 100%

TABLE IV

THE MODEL ID AGENT PERFORMANCE PROFILE

Functionality name Calls Total Time % Time

Processed data reception 10802 1584.122 s 77.5% 

Communication with supervisor 10909 3.06s 0.14% 

FDI variables storage 7410 76.03 s 3.71% 

Processed data storage 10802 75.63 s 3.69% 

Other functionalities   305.785 14.95% 

Totals 2044.627 s 100%

TABLE V

THE FDI AGENT PERFORMANCE PROFILE

IV. SYSTEM DESIGN CHALLENGES AND LIMITATIONS

Designing an intelligent multi-agent system is very

challenging task, as all agents are distributed and semi-

autonomous. Although we proposed the colored petri nets

approach to design the internal logic of the ICAM system

agents in our development plan [3], we did a preliminary

design the agents’ internal logic in an ad hoc manner. We

have faced some difficulties during the design stage of the

ICAM system prototype. For example, the ICAM system

crashed during early simulation runs due to communication

deadlocks, in which two agents were trying to send messages

to each other simultaneously. The problem was solved by

imposing conditions on communicating agents to prevent

such deadlocks.
Computation/communication coordination was another de-

sign problem, in which computation and communication

Functionality name Total Time % Time

Idle time 1899.00 s 99.11% 

Scheduling time 3.637 s 0.19% 

Communication with agents 4.677 s 0.24% 

Other functionalities 8.686 s 0.45% 

Totals 1916.00 s 100%

TABLE VI

THE SUPERVISORY AGENT PERFORMANCE PROFILE

code chunks were not ordered correctly in the agent code.

For example, we combined the process model estimation

(computation task) and sending the estimated model to other

agents (communication task) into one functionality in the

model ID agent, which proved to be a design flaw. Model

estimation took a long time (i.e., over one minute), during

which other agents were locked waiting for the estimated

model due to synchronization failure. The problem was

solved by separating the one functionality into two separate

computation and communication functionalities (i.e., sepa-

rate agent states) and modifying other agents accordingly.

Although some design flaws had to be corrected, the ICAM

system prototype acted as a set of distributed stochastic

colored petri nets during real-time simulation. This implies

that a careful agent design should be done along with a

thorough system logical behavior analysis.

The plant data characteristics also had a major impact

on the ICAM system performance. For example, the ICAM

system prototype is not robust against noisy data due to the

design of the data differentiation-based steady state detection

algorithm. Likewise, the general parity vector (GPV) based

FDI algorithm is not robust to noise, which significantly

affects the fault isolation task in moderate to high noisy

data situation. Detection and isolation of fast dynamics faults

(e.g., faulty gas pressure sensor) is another limitation of the

ICAM system prototype. The outlier removal algorithm in

the statistical processing agent treats fast dynamics faults

as outliers, which changes the nature of processed data

sent to the FDI agent. Data filtering also may change the

data dynamics, which may have an impact of the system

performance.

The multi-threaded stochastic execution nature of the

supervisory agent’s rule-base adds another complexity level

to the ICAM system design process. The ICAM system

prototype design is still at early stages and as the ICAM

system design matures, most of these limitations can be

eliminated or minimized.

V. CONCLUSIONS

We have demonstrated good progress and described

lessons learned in the design and development of the ICAM
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system. A system prototype was built and simulated in real-

time. These results verified the system’s logical behavior

in normal and faulty process situations. A detailed sys-

tem performance analysis was done, which revealed some

computation bottlenecks to be resolved in future design

stages. Although the preliminary ICAM system prototype

design has limitations, the experimental results supported

our requirements analysis done in previous work. Moreover,

our system design approach can be exploited to develop and

rapidly prototype real time distributed multi-agent systems.

We believe that the ICAM system will pave the way to real

intelligent multi-agent systems for many applications.
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