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Abstract— Observer based tracking control for switched
linear systems with time-delay is investigated in this paper.
Sufficient condition for the solvability of the tracking control
problem is given for the case that the state of system is not
available. The design of a switching control law based on
measured output instead of the state information is considered.
Lyapunov-Krasovskii functional method is utilized to the stabil-
ity analysis and controller design for the switched linear time-
delay systems. The Variation-of-constants formula and linear
operator theory are used to conquer the difficulties caused by
the estimation error and exotic disturbance. By using linear
matrix inequalities techniques, the controller design problem
can be solved efficiently. The numerical example shows the
effectiveness of the switching control laws.

I. INTRODUCTION

As an important class of systems, time-delay systems are

ubiquitous in chemical process, aerodynamics, and commu-

nication network (see, e.g.,[3], [5], [8]). It is well known

that time-delay is great source of instability and poor per-

formance. Therefore, how to deal with time-delay has been

a hot topic in the control area [4], [6], [10].

On the other hand, switching control provides a new

technique to the stability analysis and control synthesis for

complex control systems (e.g., nonlinear systems, uncertain

or parameter varying systems). Due to their significance both

in theory development and practical applications, switched

systems have been attracting considerable attention during

the last decade [7], [9], [12], [16]. Two key problems in the

study of switched systems are the stability analysis and con-

trol synthesis, it has been shown that Lyapunov functions as

useful tools, can deal with the stability problems for switched

systems, although certain switching laws incorporated with

compatible information sometimes should be designed [1],

[7]. Since switched systems with time-delay have strong

engineering background, special attention has been attracted,

and several useful results have been reported in the literature

such as the issues on stability analysis [12], [15], optimal

control [14], and so on. The importance of the study of

tracking control for switched systems with time-delay arises

from the extensive applications in robot tracking control [17],
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guided missile tracking control, etc. However, to the authors’

best knowledge, up to now, the issue of tracking control,

which has been well addressed for non-switched systems

without delay [11], has been rarely investigated for switched

systems with time-delay.

In this paper, we investigate the problem of observer based

tracking control for switched linear systems with time-delay.

Sufficient condition for the solvability of the tracking control

problem is given for the case that the state of a system

is unmeasurable. The design of a switching control law

based on measured output instead of the state information is

considered. We use multiple Lyapunov function technique to

design tracking controllers and a switching law such that the

observer based H∞ model reference tracking performance is

satisfied. The methods in [13] are extended to the design of

the observer based switched tracking control laws, and some

results of functional differential equations (see in [5]) such

as the Variation-of-constants formula and linear operator

theories are utilized to conquer the difficulties caused by

the estimation error and exotic disturbance. The feasibility

of the problem can be realized by convex optimization tech-

niques and linear matrix inequalities. Finally, the simulation

example show the validity of the proposed design method.

II. PROBLEM FORMULATION AND PRELIMINARIES

In this paper, we use P > 0 (≥, <,≤ 0) to denote

a positive definite (semi-definite, negative definite, semi-

negative definite) matrix P . The superscript “T” stands for

matrix transpose; and the symmetric terms in a matrix are

denoted by ∗, R
n denotes the n dimensional Euclidean space;

L2[0,∞) is the space of square integrable functions on

[0,∞), L loc
1 ([̺,∞), Rn) is the space of locally Lebesgue

integrable vector valued functions on [̺,∞). For given τ >

0, let R+ = [0,+∞] and Cn = C([−τ, 0], Rn) be the

Banach Space of continuous mapping from ([−τ, 0], Rn) to

R
n with topology of uniform convergence. Let xt ∈ Cn be

defined by xt(θ) = x(t + θ), θ ∈ [−τ, 0]. ‖ · ‖ denotes the

usual 2-norm and ‖xt‖cl = sup−τ≤t≤0 ‖x(t + θ)‖.

Consider the switched linear system with time-delay






ẋ(t) = Aσx(t) + Dσx(t − τ) + Bσu(t) + ω(t),
φσ(θ) = x(t + θ), θ ∈ [tj − τ, tj ], x(0) = 0,

y(t) = Cσx(t), t ∈ [0,∞), j = 0, 1, · · · .

(1)

where x(t) ∈ R
n is the state, u(t) ∈ R

p is the con-

trol input, ω(t) ∈ R
n is bounded exogenous disturbance

which belong to L2[0,∞) and L loc
1 ([̺,∞), Rn), respec-

tively; y(t) ∈ R
q is the output, φσ(t) is the continuous

vector valued function specifying the initial state of each
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subsystem, τ > 0 is the constant, the right continuous

function σ(t) : [0,∞) → N , {1, 2, · · · , N} is the

switching signal which can be characterized by the switching

sequence Σ = {x0; (i0, t0), (i1, t1), · · · , (ij , tj), · · · |ij ∈
N, j = 0, 1, · · · }. Moreover, σ(t) = i implies that the i-th

subsystem (Ai, Di, Bi, Ci) is active, where Ai, Di, Bi and

Ci are constant matrices of appropriate dimensions, i ∈ N .

For simplicity, we denote σ := σ(t).
Definition 1. The system (1) is said to be exponentially

stabilizable under control law u = u(t) and switching signal

σ = σ(t), if the solution x(t) of switched system (1) through

(t0, φ) ∈ R+ × Cn satisfies

‖x(t)‖ ≤ κ‖xt0‖cle
−λ(t−t0), ∀t ≥ t0

for some constants κ ≥ 0 and λ > 0.

Suppose that the state observer is with the form

˙̂x(t) =Aσx̂(t) + Dσx̂(t − τ) + Bσu(t)

+ Lσ(y(t) − ŷ(t)) (2a)

ŷ(t) =Cσx̂(t) (2b)

in which y(t) and σ(t) are the measurable output and

switching signal of system (1), respectively. The matrices

L1, L2, · · · , LN ∈ R
n×q are to be determined later.

Given a reference model and performance index as

ẋr(t) = Arxr(t) + r(t), xr(0) = 0, (3)
∫ ∞

0
eT
r (t)er(t)dt < γ2

∫ ∞

0
̟T (t)̟(t)dt, (4)

where xr(t) ∈ R
n is reference state, Ar is a Hurwitz

matrix, r(t) is reference input which belong to L2[0,∞) and

L loc
1 ([̺,∞), Rn), respectively; er(t) = x(t)−xr(t) denotes

the error between the state of system (1) and the reference

state; ̟(t) = (ωT (t), rT (t))T , γ > 0 is disturbance

attenuation level.

Define the difference between the real state and the

observer state, the observer state and the reference state as

e(t) = x(t) − x̂(t),

êr(t) = x̂(t) − xr(t).

Design the error feedback control law

u(t) = Kσ(t)
êr(t). (5)

Subtracting (2a) from (1) gives the error switched system

ė(t) = (Aσ − LσCσ)e(t) + Dσe(t − τ) + ω(t). (6)

Now, combining (2a), (3) with (5) and (6), we have the

augmented switching linear time-delay system as follows:

ė(t) = (Aσ − LσCσ)e(t) + Dσe(t − τ) + ω(t), (7a)






˙̂x(t) =Aσx̂(t) + Dσx̂(t − τ) + BσKσ êr(t)
+LσCσe(t),

ẋr(t)=Arxr(t) + r(t).
(7b)

Let

x̄(t) =

[

x̂(t)
xr(t)

]

, D̄ =

[

Dσ 0
0 0

]

, fσ(t) =

[

LσCσe(t)
r(t)

]

,

Āσ =

[

Aσ + BσKσ−BσKσ

0 Ar

]

, Q̄ =

[

I −I

−I I

]

,

Then, (7b) can be rewritten as

˙̄x(t) = Āσx̄(t) + D̄σx̄(t − τ) + fσ(t), (7b’)

and the corresponding nominal system of (7b’) is

˙̄x(t) = Āσx̄(t) + D̄σx̄(t − τ). (8)

Remark 1. When fσ(t) ∈ L loc
1 ([̺,∞), Rn), by the stepping

method in finite interval [tj , tj+1) for each subsystem of (7)

and well-defined switching law, the existence and uniqueness

of the solution with initial condition for switched linear time-

delay system (7) can be obtained.

Definition 2. For system (1), if there exist control input

u = u(t) and switching signal σ = σ(t) such that (7) is

asymptotically stable when ̟ ≡ 0 and (4) is satisfied when

̟ 6= 0 under the initial conditions stated in (1) and (3), then

the switched system (1) is said to have observer based H∞

model reference tracking performance.

To conclude this section, we recall the following lemma.

Lemma 1 [2]. Let M, N be real matrices of appropriate

dimensions. Then, for any matrix Q > 0 of appropriate

dimension and any scalar γ > 0, it holds that

MN + NT MT ≤ γ−1MQ−1MT + γNT QN.

III. PERFORMANCE ANALYSIS AND CONTROLLER DESIGN

In this section, we will give our main result.

Assumption 1. There exist positive definite matrices X, G

and matrices Yi, such that

Θi :=AT
i X + XAi − CT

i Y T
i − YiCi + G

+ XDiG
−1DT

i X < 0. (9)

Remark 2. The above assumption asserts the existence of a

common Lyapunov-Krasovskii functional candidate V (e(t))
for the switched linear time-delay system

ė(t) = (Aσ − LσCσ)e(t) + Dσe(t − τ). (10)

In fact, let Li = X−1Yi, and choose

V (e(t)) = eT (t)Xe(t) +

∫ t

t−τ

eT (s)Ge(s)ds

as a Lyapunov-Krasovskii functional candidate. It is easy to

show that there exist scalars α1 > 0, α2 > 0, such that

α1‖e(t)‖
2 ≤ V (e(t)) ≤ α2‖et‖

2
cl. Moreover,

‖e(t)‖ ≤

√

α2

α1
e
− λ

2α1
(t−t0)‖et0‖cl

holds with λ being the smallest eigenvalue of the matrices

Θi. This implies that the system (10) is exponentially stable

under arbitrary switching.

Before developing conditions for the solvability of ob-

server based tracking control for switched time-delay sys-

tems, a preliminary result is presented. The following state

constitutes a generalization of Hale’s results (see in [5]).

Consider the linear time-delay system (7b’) without

switching and its homogeneous system

ẋ(t) =Ax(t) + Dx(t − τ) + f(t); (11)

ẋ(t) =Ax(t) + Dx(t − τ). (12)
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We rewrite them with operator form

ẋt = L(t, xt) + f(t), t ≥ ̺ (13)

ẋt = L(t, xt), x̺ = φ. t ≥ ̺ (14)

where the operator L(t, φ) is linear in φ, and has the form

L(t, φ) = Aφ(0) + Dφ(−τ), in which φ(θ) = x(t + θ), θ ∈
(−τ, 0). Suppose there is an m ∈ L loc

1 ([̺,∞), R) such that

|L(t, φ)| ≤ m(t)|φ| (15)

for all t ∈ (−∞,∞), φ ∈ Cn.

Lemma 2 (Variation-of-constants [5]). If L satisfies the

hypotheses of condition (15), x(̺, φ, f) denotes the solution

of system (11) or (13), and x(̺, φ, 0) is the solution of the

corresponding homogeneous system (12) or (14), then

x(̺, φ, f)(t)=x(̺, φ, 0)(t) +

∫ t

̺

U(t, s)f(s)ds,

x̺ =φ, t ≥ ̺, (16)

where U(t, s) is the solution of the equation

U(t, s) =

{
∫ t

s
L(u,Uu(·, s))du + I a.e. in s, t ≥ s

0. s − r ≤ t < s

in which Ut(·, s)(θ) = U(t + θ, s),−τ ≤ θ ≤ 0.

For the convenience of using the variation-of-constants

formula, some notations are introduced to rewrite the for-

mula.

Denote x(̺, φ, 0)(t+θ) as xt(̺, φ, 0), and if x(̺, φ, 0) ,

T (t, ̺)φ, then the T (t, ̺) is a continuous linear operator.

Therefore

Ut(·, s) =T (t, s)X0, X0(θ) =

{

0, −τ ≤ θ < 0,

I, θ = 0.

With the above notations, the variation-of-constants formula

becomes

xt(t, ̺, φ, f) = T (t, ̺)φ +

∫ t

̺

T (t, s)X0f(s)ds, t ≥ ̺.

Theorem 1. For system (7), suppose that Assumption 1

holds. If there exist positive definite matrices Pi, S, Hi,

matrices Ki, and scalars αij > 0, η > 0, (i, j ∈ N), such

that the following matrices inequalities




Ξi PiD̄i Pi

∗ −e−ητS 0
∗ ∗ −ρ2I



 < 0 (17)

hold, where

Ξi := ĀT
i Pi + PiĀi + ηPi + S + Q̄ +

∑

j 6=i,j∈N

αij(Pj −Pi),

then the feedback controller u(t) = Kσ êr(t) for the system

(7), such that the observer based H∞ model reference

tracking performance in (1) is guaranteed, the corresponding

switching law is given as

σ(t) = arg min
i∈N

{x̄T (t)Pix̄(t)}. (18)

Proof. By Schur complement lemma, the condition (17) is

equivalent to the following inequalities
[

Ξi + ρ−2PiPi PiD̄i

∗ −e−ητS

]

< 0. (19)

Design Lyapunov-Krasovskii functional candidate as

V (x̄(t)) = x̄T (t)Pσ(t)x̄(t) +

∫ t

t−τ

x̄T (s)e−η(t−s)Sx̄(s)ds.

(20)

Obviously, the Lyapunov-Krasovskii functional candidate

is positive definite.

First, we prove asymptotic stability of system (7b’) with

̟(t) ≡ 0 (noticing that fσ(t) 6= 0 in (7b’)).

Consider the switched linear time-delay system (7b’). For

any t > 0, the jth switching instant is denoted by tj (j ≥
0). During any time interval [tj , tj+1), suppose that the ith

subsystem is active. Let ξ(t) =
[

x̄T (t) x̄T (t − τ)
]T

. The

time derivative of V (x̄(t)) along the trajectory of (8) is

V̇ (x̄(t)) + ηV (x̄(t))

= ξT (t)

[

ĀT
i Pi + PiĀi + ηPi + S PiD̄i

∗ −e−ητS

]

ξ(t).
(21)

According to the condition (19), we have
[

ĀT
i Pi + PiĀi + ηPi + S PiD̄i

∗ −e−ητS

]

<

[

Πi 0
0 0

]

, (22)

where

Πi := −ρ−2PiPi − Q̄ −
∑

j 6=i,j∈N

αi,j(Pj − Pi).

By virtue of the designed switching law (18), it follows

x̄T (t)(
∑

j 6=i,j∈N

αij(Pj − Pi))x̄(t) ≥ 0,∀t ∈ R2n.

Also we note that Q̄ ≥ 0. During [tj , tj+1), when ξ(t) 6=
0, we easily get

V̇ (x̄(t)) + ηV (x̄(t)) < ξT (t)

[

Πi 0
0 0

]

ξ(t) ≤ 0.

Thus, there holds

V̇ (x̄(t)) ≤ −ηV (x̄(t)), (23)

During any [tj , tj+1), (23) gives rise that

V (x̄(t)) ≤ e−η(t−tj)V (x̄(tj)). (24)

In addition, by the switching law (18), at the switching

instant tj , we have

x̄T (tj)Pσ(tj)x̄(tj) ≤ lim
t→t

−

j

x̄T (t)Pσ(t)x̄(t),

which implies V (x̄T (tj)) ≤ limt→t
−

j
V (x̄T (t)), by induction

on t0, t1, · · · , tj , from (24) we get

V (x̄(t)) ≤ e−η(t−t0)V (x̄(t0)).

Then we have

‖x̄(t)‖2 ≤
λM (Pi) + τλM (S)

λm(Pi)
e−η(t−t0)‖x̄(t0)‖

2
cl,
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where λm(·)(λM (·)) denotes the minimum (maximum)

eigenvalue of a symmetric matrix, which implies exponential

stability of the nominal systems of (7b’), i.e., the system (8).

By the variation-of-constants formula, since fσ(t) ∈
L loc

1 ([̺,∞), R2n), the solution through (t0, ϕ0) of (7b’) can

be expressed as follows

x̄t(t, t0, ϕ0, fσ) =T (t, t0)ϕ0

+

∫ t

t0

T (t, s)X0(θ)fσ(s)ds, t ≥ t0.

Recalling that we have obtained that the nominal system of

(7b’) is exponentially stable under the conditions of theorem

1, that is, there are constants α > 0, 0 < κ ≤ 1 such that,

for all ̺ ∈ R,

‖T (t, ̺)‖ ≤ κe−α(t−̺), ‖T (t, ̺)X0‖ ≤ κe−α(t−̺), t > ̺.

Now, we consider the following stepping iterative process

from t0 = 0 to tj :

• when t ∈ [t0, t1), suppose that the i0th subsystem is

active, noticing ϕi0 = 0 there has

‖x̄t(t, t0, ϕi0 , fi0)‖

≤ ‖T (t, t0)‖ · ‖ϕi0‖ +

∫ t

t0

‖T (t, s)X0‖ · ‖fi0(s)‖ds

≤

∫ t1

t0

κe−α(t−s)‖fi0(s)‖ds;

• when t ∈ [t1, t2), suppose that the i1th subsystem is

active,

‖x̄t(t, t1, ϕi1 , fi1)‖

≤ ‖T (t, t1)‖ · ‖ϕi1‖ +

∫ t

t1

‖T (t, s)X0‖ · ‖fi1(s)‖ds

≤ κe−α(t−t1) ·

∫ t1

t0

κe−α(t−s)‖fi0(s)‖ds

+

∫ t2

t1

κe−α(t−s)‖fi1(s)‖ds;

• · · · · · · · · · · · · · · ·
• when t ∈ [tj , tj+1), suppose that the ith subsystem is

active,

‖x̄t(t, tj , ϕi, fi)‖

≤ ‖T (t, tj)‖ · ‖ϕi‖ +

∫ t

tj

κe−α(t−s)fi(s)ds

≤ κje−α(t−tj)−···−α(t−t1)

∫ t1

t0

κe−α(t−s)‖fi0(s)‖ds

+κj−1e−α(t−tj)−···−α(t−t2)

∫ t2

t1

κe−α(t−s)‖fi1(s)‖ds

+ · · · + κe−α(t−tj)

∫ tj

tj−1

κe−α(t−s)‖fij−1
(s)‖ds

+

∫ t

tj

κe−α(t−s)‖fi(s)‖ds. (25)

Note that κj−n exp
{

∑j−1−n
m=0 −α(t − tj−m)

}

≤ 1, n =

0, · · · , j − 1, (25) gives

‖x̄t(t, tj , ϕi, fi)‖ ≤

∫ t

t0

κe−α(t−s)‖fσ(t)(s)‖ds. (26)

When ̟(t) = 0, note that fi(t) =

[

LiCie(t)
0

]

, with

ω(t) = 0 Assumption 1 guarantees e(t) → 0 (t → ∞),
which in turn gives fi(t) → 0 (t → ∞), that is, ∀ǫ >

0, ∃T1 > 0, when t > T1, there holds ‖fi(t)‖ < ǫ. The

boundedness of fi(t) follows consequently, i. e., ‖fi(t)‖ ≤
B0 (i ∈ N) follows. When t ∈ [tj , tj+1) ⊂ [T1,∞), (26)

gives that
∫ t

t0

κe−α(t−s)‖fσ(t)(s)‖ds

≤B0

∫ T1

t0

κe−α(t−s)ds +

∫ t

T1

κe−α(t−s)ds · ǫ

≤
κB0

α
e−α(t−T1) +

κ

α
ǫ. (27)

For ∀ε > 0, choose T = T1 + ln ε−1

α
and ǫ = ε. When

t ∈ [tj , tj+1) ⊂ [T,∞), it follows from (26) and (27) that

‖x̄t(t, tj , ϕi, fi)‖ ≤ (
κB0

α
+

κ

α
)ε.

The above inequality and the continuity of the state

trajectory x̄(t) imply that x̄(t) → 0 as t → ∞, this in turn

gives rise to that the switched linear time-delay system (7)

is asymptotically stable with ̟(t) = 0.

Secondly, we prove under zero initial condition with

̟(t) 6= 0 that
∫ ∞

0
eT
r (t)Qer(t)dt < γ2

∫ ∞

0
̟T (t)̟(t)dt.

Again, assume σ(t) = i, t ∈ [tj , tj+1). Differentiating the

Lyapunov-Krasovskii functional candidate V (x̄(t)) along the

trajectory of the system (7b’) with ̟(t) 6= 0, we have

V̇ (x̄(t)) =ξT (t)

[

ĀT
i Pi + PiĀi + S PiD̄i

∗ −e−ητS

]

ξ(t) (28)

+2x̄T (t)Pifi(t) − η

∫ t

t−τ

x̄T (s)e−η(t−s)Sx̄(s)ds.

Using Lemma 1 again, we have

2x̄T (t)Pifi(t) ≤ ρ−2x̄T (t)PiPix̄(t) + ρ2fT
i (t)fi(t). (29)

Substituting (29) into (28) and taking into account the

condition (19), the switching law (18), and the structure of

Q̄ yields

V̇ (x̄(t))<ξT (t)

[

−Q̄ 0
0 0

]

ξ(t) + ρ2fT
i (t)fi(t)

≤−êT
r (t)êr(t) + ρ2fT

i (t)fi(t). (30)

Note that êr(t) = er(t)− e(t), using Lemma 1 with Q =
diag{ 1

2 , · · · , 1
2} ∈ R

n×n gives

−êT
r (t)êr(t)=−eT

r (t)er(t) − eT (t)e(t) + 2eT
r (t)e(t)

≤−eT
r (t)er(t) − eT (t)e(t)

+eT
r (t)Qer(t) + eT (t)Q−1e(t)

=−
1

2
eT
r (t)er(t) + ‖e(t)‖2. (31)
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Similar to the disposal in above proving, let et(t, tj , ψi, ω)
denote the solution of error switched system (6) or (7a)

with initial condition (tj , ψi). By the variation-of-constants

formula, there has

et(t, tj , ψi, ω) = T1(t, tj)ψi +

∫ t

tj

T1(t, s)X0ω(s)ds,

where T1 is a proper continuous linear operator. Noticing

that Assumption 1 guarantees that the error switched system

(6) or (7a) is exponentially stable when ω(t) = 0, that is,

there are constants β > 0, 0 < k ≤ 1 such that,

‖T1(t, ̺)‖ ≤ ke−β(t−̺), ‖T1(t, ̺)X0‖ ≤ ke−β(t−̺), t > ̺.

Repeating the stepping iterative process such as in (26)

easily gives

‖et(t, tj , ψi, ω)‖ ≤

∫ t

t0

ke−β(t−s)‖ω(s)‖ds. (32)

According to Cauchy-Schwartz Inequality, (32) gives

‖e(t)‖2 ≤

∫ t

t0

k2e−β(t−s)ds ·

∫ t

t0

e−β(t−s)‖ω(s)‖2ds

≤
k2

β

∫ t

t0

e−β(t−s)‖ω(s)‖2ds, (33)

Therefore, when ̟(t) 6= 0, there has

fT
i (t)fi(t) = eT (t)CT

i LT
i LiCie(t) + rT (t)r(t)

< λ2‖e(t)‖2 + rT (t)r(t) (34)

<
λ2k2

β

∫ t

t0

e−β(t−s)‖ω(s)‖2ds + rT (t)r(t).

where λ = maxi∈N{λM (LiCi)},

Substituting (31), (33), (34) into (30), we can obtain

V̇ (x̄(t)) <−
1

2
eT
r (t)er(t) + ρ2rT (t)r(t)

+
(ρ2λ2 + 1)k2

β

∫ t

t0

e−β(t−s)‖ω(s)‖2ds. (35)

Integrating (35) from zero to ∞ , we get
∫ ∞

0

∑

ij∈N

V̇ (x̄(t))dt =

∞
∑

j=0

∑

ij∈N

∫ tij+1

tij

V̇ (x̄(t))dt

< −
1

2

∫ ∞

0

eT
r (t)er(t)dt + ρ2

∫ ∞

0

rT (t)r(t)dt

+
(ρ2λ2 + 1)k2

β

∫ ∞

0

∫ t

0

e−β(t−s)‖ω(s)‖2dsdt

= −
1

2

∫ ∞

0

eT
r (t)er(t)dt + ρ2

∫ ∞

0

rT (t)r(t)dt

+
(ρ2λ2 + 1)k2

β2

∫ ∞

0

‖ω(t)‖2dt. (36)

Let k2

β2−λ2k2 < ρ2. There has
∫ ∞

0

∑

ij∈N

V̇ (x̄(t))dt

<−
1

2

∫ ∞

0

eT
r (t)er(t)dt + ρ2

∫ ∞

0

̟T (t)̟(t)dt. (37)

Again, taking the switching law (18) into account, on the

switching instant tj , it holds

V (x̄(tj)) ≤ V (x̄(t−j )). (38)

Substituting (38) into the expansion form of the left side

of (37) with γ2 = 2ρ2 yields

lim
tf→∞

V (x̄(tf )) − V (x̄(t0))

≤ lim
tf→∞

[V (x̄(tf )) − V (x̄(tf−1)) + V (x̄(t−f−1))

− V (x̄(tf−2)) + · · · + V (x̄(t−1 )) − V (x̄(t0))]

=

∫ ∞

0

∑

ij∈N

V̇ (x̄(t))dt =
∞
∑

j=0

∑

ij∈N

∫ tij+1

tij

V̇ (x̄(t))dt

< −
1

2

∫ ∞

0

eT
r (t)er(t)dt +

1

2
γ2

∫ ∞

0

̟T (t)̟(t)dt.

By the zero initial condition and the positive definiteness

of V (x̄(t)), that
∫ ∞

0
eT
r (t)er(t)dt < γ2

∫ ∞

0
̟T (t)̟(t)dt

with ̟(t) 6= 0 holds. This end the proof. ¤

IV. NUMERICAL EXAMPLE

Consider the systems (1) and the reference system (3) with

A1 =

[

−1.5 −1.2
−1.2 1

]

, D1 =

[

−0.5 0.8
−0.1−0.4

]

, B1 =

[

−0.1
−0.3

]

;

A2 =

[

1.5 −1
−1 −2.3

]

, D2 =

[

−0.3 −0.2
0.1 −0.3

]

, B2 =

[

−1.3
−0.1

]

;

Ar =

[

−1.5 −1.2
2 −0.2

]

, C1 =
[

−0.1 0.5
]

, C2 =
[

1.3 −0.7
]

.

First, by Assumption 1, we have the candidate observer

gains via arbitrary switching as

L1 =

[

−39.3909
41.7974

]

, L2 =

[

12.9363
−11.9392

]

.

Consider the closed-loop systems (7). We adopt the pa-

rameters below: γ = 1, τ = 3. Solving the inequality (17)

by using LMIs, we get

P1 =

[

P̃−1
1 0

0 P̃−1
1

]

, P2 =

[

P̃−1
2 0

0 P̃−1
2

]

, in which

P̃1 =

[

0.5426 −0.2007
∗ 0.4784

]

, P̃2 =

[

0.5026 −0.0527
∗ 0.7023

]

;

S =

[

S1 0
0 S1

]

, where S1 =

[

6.5442 −0.0466
∗ 6.4185

]

K1 =
[

4.0344 14.3356
]

,K2 =
[

−4.4402 −1.6902
]

.

According to theorem 1, the switching control law are

given by

σ(t) = arg min
i∈N

{x̃T (t)Pix̃(t)}, u(t) = Kσ(t)êr(t).

When ω(t) = 0, the error switched system (6) is expo-

nentially stability under arbitrary switching (see in Fig.1).

With tf = 40, r(t) = ω(t) = sin t
t

, the simulation results

are given in Fig.2 and Fig.3.
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Fig. 1. Error state e(t) via arbitrary switching.
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Fig. 2. State x1 tracking the reference state xr1.

V. CONCLUSIONS

In this paper, observer based tracking control for switched

linear systems with time-delay is investigated. The possibility

of designing switching control law based on measured output

instead of the state information is considered when the state

is not available. The Variation-of-constants formula and lin-

ear operator theory are used to conquer the difficulties caused

by the estimation error and exotic disturbance, and multiple

Lyapunov function technique is utilized to design switched

tracking controllers such that the observer based H∞ model

reference tracking performance is satisfied. Meanwhile, the

controller design problem can be solved efficiently by using

linear matrix inequalities and convex optimization tech-

niques. The numerical example show the feasibility and

validity of the proposed design methods. However, due to the

difficulties of switched system with time-delay, the cases of

time varying delay and delay depended criteria for switched

linear and nonlinear systems are not investigated yet, this

constitutes our next work in the future.
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Fig. 3. State x2 tracking the reference state xr2.
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