
Modular Supervisory Control with Equivalence-Based Conflict Resolution

R. C. Hill, D. M. Tilbury and S. Lafortune

Abstract— This paper proposes a set of requirements on
coordinating filters that will resolve conflict among modular
supervisors. Our specific approach is unique in that it employs
a conflict-equivalent abstraction, which offers the potential for
greater reduction than those abstractions employed in existing
works on conflict resolution. The resulting control implemented
by the modular supervisors in conjunction with coordinating
filters meeting the proposed requirements is shown to be safe
and nonblocking. Approaches for constructing these filters
are discussed and it is proposed that a static state-feedback
approach to control be employed that implements deterministic
coordinating filter control laws by nondeterministic automata.

I. INTRODUCTION

A framework for the control of discrete-event systems
(DES) referred to as supervisory control [1] has been de-
veloped and remains an active area of research. This con-
trol paradigm is well-suited to manufacturing and computer
systems, as well as to high-level coordination of complex
systems. The application of this theory to complex industrial
systems has been limited by the computational difficulties
that arise. One methodology for addressing the complexity
problem is a modular approach to control [2] [3]. In mod-
ular supervisory control a series of smaller supervisors are
designed to meet various specifications individually, rather
than constructing a single monolithic supervisor to meet all
specifications simultaneously. This approach offers signifi-
cant savings in computation, but may result in individual
supervisors interfering with one another. It is possible to
check a priori that the modular supervisors will not conflict,
but this verification is often computationally expensive.

Abstraction has been employed to reduce the complexity
associated with verifying nonconflict [4] [5], or combined
with modular approaches to control that achieve nonconflict
by construction [6] [7] [8], or used to add coordinators on
top of the modular supervisors to resolve conflict [9] [10].
Most of these works employ for their abstraction a language
projection with the observer property of [11]. The work
of [9] does not presume language projection is used, but
does require of their mappings the observer property. The
observer property guarantees that the abstraction maintains a
type of observation equivalence. The works of [4] and [8] are
different in that they use the notion of conflict equivalence
introduced in [12]. As demonstrated in [13], a conflict-
equivalent abstraction has the potential for greater reduction
in model size than can be achieved by language projection
with the observer property. In this paper we leverage this

This work was supported in part by NSF grants CMS-05-28287
and EECS-0624821. All authors are with the University of Michi-
gan, Ann Arbor, MI 48109-2125, USA (rchill@umich.edu;
tilbury@umich.edu; stephane@umich.edu).

potential to achieve a greater reduction in model size than is
achieved by existing techniques for conflict resolution. The
work of [8] also employs conflict-equivalent abstraction to
incrementally build modular supervisors in a manner similar
to [7], though [8] does not explicitly specify how to construct
supervisors based on the abstracted models.

We build on the approach of [4] where conflict-equivalent
abstractions were employed in conflict detection. This paper
advances the current state of the art by providing a novel set
of requirements for coordinating filters that resolve conflict
among modular supervisors. A difficulty that arises, how-
ever, is that a conflict-equivalent abstraction can introduce
nondeterminism. To address this difficulty, we propose that
a static state-feedback approach be employed for the filters.

The outline of this paper is as follows. Section II intro-
duces notation. Section III provides a procedure for resolving
conflict assuming that filters exist, while Section IV pro-
vides sufficient conditions on the filters and discusses some
approaches for their construction. Section V then applies
these results to a manufacturing example, and Section VI
summarizes the contributions of this paper.

II. NOTATION AND PRELIMINARIES

A DES is modeled by a possibly nondeterministic au-
tomaton G = (Q, Στ , δ, q0, Qm), where Q is the set of
states, Στ = Σ ∪ {τ} is the set of events including the
silent event τ , δ : Q × Στ → 2Q is the state transition
function, q0 ∈ Q is the initial state, and Qm ⊆ Q is the set
of marked states representing completion of a task. The silent
event τ can be thought of as a generic unobservable event.
Let Σ∗τ be the set of all finite strings of elements of Στ ,
including the empty string ε. Let the function δ be extended
to δ : Q × Σ∗τ → 2Q. The notation δ(q, s)! for any q ∈ Q
and any s ∈ Σ∗τ represents that δ(q, s) is nonempty.

Let Pτ : Σ∗τ → Σ∗ be the natural projection that erases
the silent event τ from strings s ∈ Σ∗τ . Also, let L(G)
and Lm(G) be the generated and marked languages of G
respectively, defined L(G) = {Pτ (s) ∈ Σ∗ | δ(q0, s)!} and
Lm(G) = {Pτ (s) ∈ Σ∗ | δ(q0, s) ∩ Qm 6= ∅}. The prefix-
closure of a language K is the set of all prefixes of strings
in K and is denoted by K. An automaton is nonblocking
when all of its reachable states can reach a marked state.
For languages, this is defined as Lm(G) = L(G).

A. Supervisory control

Traditionally, the theory of supervisory control [1] has
been developed for application to deterministic automata
models that do not include the silent event τ and are charac-
terized by the fact that any string can take the automaton to

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

WeA14.5

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 491

only a single state. Nondeterministic automata can arise due
to abstraction where events are hidden by replacing them by
the silent (uncontrollable) event τ . Let Σh ⊆ Σ represent the
set of events that have been hidden. We assume all automata
have the same event set Στ . When two automata operate
concurrently they will synchronize on all events except τ , as
defined below by the synchronous composition operator, ‖.

Definition 1: The synchronous composition of two au-
tomata G1 and G2, where G1 = (Q1,Στ , δ1, q01, Qm1) and
G2 = (Q2, Στ , δ2, q02, Qm2) is the automaton

G1‖G2 = (Q1 ×Q2,Στ , δ, (q01, q02), Qm1 ×Qm2)

where the transition function δ : (Q1×Q2)×Στ → 2(Q1×Q2)

is defined for q1 ∈ Q1, q2 ∈ Q2, and σ ∈ Στ as:
for σ = τ , δ((q1, q2), σ) =

δ1(q1, τ)× {q2}, if δ1(q1, τ)! and ¬δ2(q2, τ)!
{q1} × δ2(q2, τ), if ¬δ1(q1, τ)! and δ2(q2, τ)!
(δ1(q1, τ)× {q2}) ∪ ({q1} × δ2(q2, τ)),

if δ1(q1, τ)! and δ2(q2, τ)!

for σ ∈ Σ, δ((q1, q2), σ) = δ1(q1, σ)× δ2(q2, σ)
if δ1(q1, σ)! and δ2(q2, σ)!

else δ((q1, q2), σ) is empty. ¦
In terms of their generated languages, L(G1)‖L(G2) =

L(G1) ∩ L(G2).
The plant G and specification E are modeled by determin-

istic finite state automata given in a component-wise manner:

G = G1‖ · · · ‖Gn and E = E1‖ · · · ‖Ep

Modular supervisors will be built in the sense of [3].
Let Hi be an automaton realization of the closed-loop
subsystem Si/G′i consisting of a plant G′i under the control
of the supervisor Si. The notation sup C(K,L) represents the
supremal controllable sublanguage of K with respect to the
prefix-closed language L. The notation Σrel(G) will represent
the set of relevant events in G. Relevant events are defined
here to be those events that are not τ and are not self-looped
at every state in the automaton.

G′i = ‖j∈Ji Gj , where:
Ji = {j ∈ {1, . . . , n} | Σrel(Gj) ∩ Σrel(Ei) 6= ∅}

Lm(Hi) = sup C(L(Ei) ∩ Lm(G′i),L(G′i)) (1)

The conjunction of modular supervisors succeeds in sat-
isfying all of the component specifications, but does not
guarantee nonblocking. In order to accomplish this goal, we
need that the closed-loop subsystems Hi be nonconflicting.
A set of automata H1,H2, . . . , Hp is nonconflicting if the
synchronous composition H1‖H2‖ . . . ‖Hp is nonblocking.
A set of automata being nonconflicting implies its corre-
sponding set of marked languages K1,K2, . . . , Kp is also
nonconflicting. Nonconflict of a set of languages is defined
as K1 ∩K2 ∩ . . . ∩Kp = K1 ∩K2 ∩ . . . ∩Kp.

Unfortunately, a priori verification of nonconflict is gen-
erally quite expensive computationally. With this in mind,
we will incrementally apply abstraction to our modular
supervisors as was done in [4].

B. Equivalence reductions

Many types of equivalence relations can be employed for
reducing the complexity of a model. We are specifically
interested in generating reduced models that preserve conflict
properties, a notion introduced in [12].

Definition 2: [12] Two automata H1 and H2 are said to
be conflict equivalent if for any third automaton T , H1 and T
are nonconflicting if and only if H2 and T are nonconflicting.
If the automata H1 and H2 are conflict equivalent we write,
H1 'conf H2. ¦

Note that conflict equivalence respects the property of
blocking. Also, two languages can be defined as conflict
equivalent in a similar manner to Definition 2. Using the
fact that nonconflict of two automata implies their marked
languages are nonconflicting means that H1 'conf H2 implies
Lm(H1) 'conf Lm(H2). The converse however does not
hold since the automaton representation of a given language
is not unique. Specifically, two automata can generate the
same language and not be conflict equivalent [12], as demon-
strated by the example presented in Fig. 1. In the figure,
automata G1 and G2 generate the same language, but G1

conflicts with G3 while G2 does not. Initial states are denoted
by an arrow and marked states by double circles.

 a

 G : 2

 b c

 a

 G : 3

 b

 a a

 G : 1

 b c

 1

 3

 0

 2

 4

 0

 1

 2 3

 0

 1

 2

Fig. 1. Illustrative example of nondeterminism

More generally, when nondeterministic automata models
are considered, language equivalence is insufficient for cap-
turing certain system properties. A very strong equivalence
relation is bisimulation equivalence [14]. In the following,
we will use the notation q

s→ q′ to represent that state q′ is
reached from state q by the string s ∈ Σ∗τ .

Definition 3: Let there be two automata G1 =
(Q1,Στ , δ1, q01, Qm1) and G2 = (Q2, Στ , δ2, q02, Qm2). An
equivalence relation ∼ on the states of these automata is said
to be a bisimulation equivalence if for any q1 ∈ Q1 and
q2 ∈ Q2, q1 ∼ q2 implies that for any s ∈ Σ∗τ :

if q1
s→ q′1 then ∃q′2 such that q2

s→ q′2 and q′1 ∼ q′2;
if q2

s→ q′2 then ∃q′1 such that q1
s→ q′1 and q′1 ∼ q′2;

q1 ∈ Qm1 if and only if q2 ∈ Qm2. ¦
Two automata are said to be bisimulation equivalent if

their initial states are bisimulation equivalent: q01 ∼ q02. If
two automata are bisimulation equivalent, most properties of
interest are consistent between the two, including blocking.

Another equivalence relation called weak bisimulation or
observation equivalence [14] has also been defined where
states are considered equivalent if they have the same “ob-
served” futures. That is, their futures must be the same
when the silent event τ is projected away. This concept

492

of observation equivalence is similar to the notion of the
observer property employed in [5] [7] [9] [10].

Conflict-equivalent abstraction in general provides a
greater reduction in the state size of a model than either
an observation-equivalent abstraction or a projection with
the observer property [13]. A conflict-equivalent abstraction,
however, is not as straightforward to implement; it is imple-
mented via heuristics and a select set of rules [4]. Also, a
unique minimal reduction does not exist in general.

Example 1 demonstrates a conflict-equivalent abstraction.
The notation Ga represents an abstraction of the automaton
G generated by replacing the events in Σh by the τ event
to generate an intermediate automaton G′, then applying the
conflict equivalence preserving rules of [4] to arrive at Ga.

Remark 1: By construction, the intermediate automaton
G′ and the abstraction Ga are conflict equivalent per Defini-
tion 2. However, the original automaton G and Ga are only
guaranteed to be conflict equivalent with respect to automata
that do not have any relevant events that were hidden in the
process of generating G′. In a slight abuse of notation, we
will still write that G 'conf Ga. Note also that G and Ga are
consistent with respect to the property of blocking.

Example 1: Consider automaton G in Fig. 2 where event
f is not relevant to any other automata. Since f is “local”
to G, we can hide it by replacing all occurrences of f by
the silent event τ . In the resulting G′, states 1 and 2 are
not observation equivalent because state 1 has the observed
continuation bc while state 2 does not. States 1 and 2 of
G′, however, can be merged by the active events rule of [4]
leading to the conflict equivalent automaton Ga. We will
consider the abstraction Ga to have the same alphabet as G,
namely Στ , but will not picture an event (except τ) if it is not
relevant to the automaton. Therefore, one can imagine that
Ga has the event f self-looped at every state. A consequence
of this abstraction is that Ga is nondeterministic. ¦

 b

 G :

 1

 3

 5

 0

 b

 2

 4

 c
 d

 a

 b

 G :

 3

 5

 0

 b

 4

 c
 d

 a f

 a

 1.2

 f
t

Fig. 2. Illustrative example of a conflict-equivalent abstraction

In order to make the conflict-equivalent abstraction useful,
we need to show that it is preserved under the synchronous
composition operation ‖. This result follows from Proposi-
tion 1 that is a reformulation of a result from [12].

Proposition 1: Let G, Ga, and H be automata. Also
assume that any events hidden in the process of generating
Ga are not relevant to H , that is, Σrel(H) ∩ Σh = ∅. If
G 'conf Ga then G‖H 'conf Ga‖H . See Remark 1.

The above proposition can be used to show that if no
relevant events shared between G1 and G2 are hidden, then
G1‖G2 'conf G1,a‖G2,a.

III. CONFLICT RESOLUTION PROCEDURE

In this section we describe a procedure by which conflict
is detected and resolved among modular supervisors without
specifying how the conflict-resolving filters are constructed.
This will be discussed in Section IV.
Step 1: Build modular supervisors according to (1) which
results in a deterministic closed-loop automaton Hi for
each specification Ei. Note that the supervisors may be
constructed in other ways.
Step 2: For each supervised subsystem Hi, generate a
conflict-equivalent abstraction Hi,a employing the rules
of [4]. The set of hidden events in this step corresponds
to those events relevant to only a single Hi, that is, Σh =
Σ−⋃

i 6=j(Σrel(Hi) ∩ Σrel(Hj)).
Step 3: Choose an abstracted subsystem H1,a with which to
begin the procedure. Let H ′

i,a = H1,a where i = 1 is the
index for the individual closed-loop modules. Also initialize
the index for filters, j = 1.
Step 4: Choose one of the remaining abstracted subsystems,
Hi+1,a, to compose with H ′

i,a. This operation is performed
via synchronous composition, H ′

i,a‖Hi+1,a.
Step 5: If the composition H ′

i,a‖Hi+1,a is nonblocking, skip
to Step 7, otherwise proceed to Step 6.
Step 6: At this point a coordinating filter law Hfilt,j :
L(H ′

i,a‖Hi+1,a) −→ 2Σ must be generated to resolve the
detected conflict in the preceding blocking composition.
Otherwise stated, Hfilt,j is built so that the controlled system
Hfilt,j/(H ′

i,a‖Hi+1,a) is nonblocking. Specific requirements
for this filter and an approach for its construction will
be discussed in Section IV. After the filter is constructed,
increment the index j.
Step 7: If all controlled subsystems have been addressed,
then the procedure is finished. Otherwise, more abstraction
is performed and this overall procedure is repeated beginning
at Step 4. The abstraction is performed in order to take
advantage of the fact that some events are no longer relevant
to any remaining abstracted subsystems and hence can now
be hidden. More precisely, the set of hidden events becomes

Σh ← Σh ∪ (Σ−
⋃

k>i+1

Σrel(Hk,a)) (2)

and H ′
i+1 = H ′

i,a‖Hi+1,a is abstracted to generate H ′
i+1,a.

The index i is incremented before returning to Step 4. ¦
The process in Step 4 to Step 7 of abstracting and com-

posing subsystems and adding filters as necessary to prevent
blocking is repeated until there are no more subsystems
remaining. The work of [4] offers a sizable survey of heuris-
tics for determining the ordering with which subsystems are
addressed. The end result of this procedure is a set of filters
that act in conjunction with the set of modular supervisors.
If the controlled subsystems are nonconflicting on their own,
no filters are needed. If a filter is generated that is the
empty automaton, it is possible that a nonempty filter can
be found by abstracting away fewer details of the controlled
subsystems, that is, by making Σh smaller. A nonempty
solution could also be found by addressing the supervisors
in a different order.

493

IV. COORDINATING FILTERS

In the preceding section a Conflict Resolution Procedure
(CRP) was presented for incrementally resolving conflict
among a set of modular supervisors. This approach to
conflict resolution is the first to employ conflict-equivalent
abstraction in the construction of the coordinating filter laws.
In this section, we will provide a set of conditions on these
coordinating filter laws and will discuss some approaches for
their construction.

A. Language-based requirements

In the CRP, each filter law Hfilt,j is built with respect
to a blocking composition of abstracted automata that have
preceded it. Here we will denote the associated blocking
composition Bj,a. In the proofs that follow, we will assume
the control required by each filter law Hfilt,j is deterministic,
realized by a (possibly nondeterministic) nonblocking au-
tomaton Hfilt,j , and applied via synchronous composition,
that is, Hfilt,j/Bj,a = Hfilt,j‖Bj,a. Therefore,

Bj,a = (Hfilt,j−1‖ . . . (Hfilt,1‖H1,a‖H2,a)a . . .)a‖Hij ,a

We will also prove that filter automata meeting the fol-
lowing requirements will provide safe, nonblocking control
when acting in conjunction with the modular supervisors:
R1) Hfilt,j‖Bj,a is nonblocking
R2) L(Hfilt,j) is language controllable w.r.t L(Bj,a)
R3) Σrel(Hfilt,j) ∩ Σh = ∅

In the above, the property of language controllability is
defined as in [1]. Also, requirement R3 is meant to prevent
a given filter law from trying to affect the occurrence of
events that have been hidden. Since the set Σh changes over
time, it is implicit in R3 that Σh be the set taken at the
time the filter automaton Hfilt,j is constructed. We will now
demonstrate global nonblocking. In the following we will
assume sequential ordering of the automata without loss of
generality.

Theorem 2: Let Hi be the automaton representing the be-
havior of the ith controlled subsystem where i ∈ {1, . . . , p}.
Also let there be filter automata Hfilt,j , j ∈ {1, . . . , k}, con-
structed according to the CRP and satisfying requirements
R1 and R3. Then the conjunction of supervised subplants
and filters Hfilt,1‖ . . . ‖Hfilt,k‖H1‖ . . . ‖Hp is nonblocking.

Proof:
• By the procedure of Section III, automata are incrementally
composed and abstracted. Assume the first two abstracted au-
tomata do not conflict. Therefore, H1,a‖H2,a is nonblocking.
Since Σrel(H1) ∩ Σrel(H2) ⊆ (Σ − Σh), H1,a‖H2,a 'conf
H1‖H2 by Proposition 1. Therefore, H1‖H2 is also non-
blocking since conflict equivalence preserves blocking prop-
erties.
• Assume the addition of a third automaton also does not
cause conflict, then (H1,a‖H2,a)a‖H3,a is nonblocking. Not-
ing again that conflict equivalence holds across synchronous
composition, (H1,a‖H2,a)a‖H3,a is conflict equivalent to
H1,a‖H2,a‖H3. Since those events made silent in the genera-
tion of H1,a and H2,a are not relevant to any of the remaining
subsystems, Proposition 1 provides that H1,a‖H2,a‖H3 'conf

H1‖H2‖H3. Furthermore, since equivalence relations are
transitive, (H1,a‖H2,a)a‖H3,a 'conf H1‖H2‖H3. Therefore,
H1‖H2‖H3 is also nonblocking.
• Assume for the first i1 automata addressed, where 1 ≤
i1 ≤ p, no conflict is detected. Therefore the resulting nested
composition given below is nonblocking.

((. . . ((H1,a‖H2,a)a‖H3,a)a‖ . . .)a‖Hi1−1,a)a‖Hi1,a (3)

Following the logic above, the expression in (3) is conflict
equivalent to H ′

i1
= H1‖H2‖ . . . ‖Hi1 . Therefore, H ′

i1
is

nonblocking since the expression in (3) is.
• If i1 = p, then there are no filters and we are done.
Otherwise, the filter Hfilt,1 is needed to resolve the conflict
in H ′

i1,a‖Hi1+1,a, where H ′
i1,a is the further abstraction

of the expression in (3). By R1, Hfilt,1 is nonconflicting
with H ′

i1,a‖Hi1+1,a. Therefore, Hfilt,1‖H ′
i1,a‖Hi1+1,a is non-

blocking. This result means that Hfilt,1‖H ′
i1
‖Hi1+1 will also

be nonblocking by Proposition 1 since H ′
i1,a‖Hi1+1,a and

H ′
i1
‖Hi1+1 are conflict equivalent and since no events in

Σh are relevant to Hfilt,1 by R3.
• Repeating this process, supervisors and filters are added
to the composition until they have all been addressed.
The resulting composition Hfilt,1‖ . . . ‖Hfilt,k‖H1‖ . . . ‖Hp is,
therefore, shown to be nonblocking.

We now need to demonstrate that the control required
of these filters is realizable. For a deterministic control
law, this corresponds to demonstrating language control-
lability. In this process we need that the original and
reduced automata generate the same projected languages
Ph(L(H)) = Ph(L(Ha)), where Ph : Σ∗ → (Σ − Σh)∗

is the natural projection which erases those events that have
been hidden. Specifically, this property can be demonstrated
for each of the rules of [4] that are applicable to the
generation of a reduction from a nonblocking automaton.
This is the situation that we have in this paper. The prop-
erty Ph(L(H)) = Ph(L(Ha)) is also claimed by [15] for
observation-equivalent abstractions in particular.

Now recall that a reduced automaton Ha has replaced all
hidden events with the τ event then added self-loops at every
state for each hidden event, therefore, none of the events that
have been made silent are relevant to Ha. This in turn means
that P−1

h (Ph(L(Ha))) = L(Ha). Here P−1
h is an inverse

projection that expands the alphabet from (Σ−Σh) to Σ. In
terms of automata, P−1

h adds self-loops at every state for all
events in Σh. Therefore:

P−1
h (Ph(L(H))) = P−1

h (Ph(L(Ha))) = L(Ha) ⊇ L(H)

Defining the languages marked by these automata as K =
Lm(H) and Ka = Lm(Ha) and assuming the automata are
nonblocking, we then have that:

Ka ⊇ K (4)

Repeated application of (4) can be used to show the follow-
ing expression where each Ki is either the marked language
of a modular supervisor or a coordinating filter.

((. . . (K1,a ∩K2,a)a ∩ . . .)a ∩Kk−1,a)a ∩Kk,a

⊇ K1 ∩K2 ∩ . . . ∩Kk−1 ∩Kk (5)

494

Equation (5) and the following well-known propositions
will help to demonstrate that our filters acting in conjunction
with the modular supervisors will be language controllable
with respect to the global uncontrolled plant language L.

Proposition 2: Let K, L ⊆ L′ ⊆ Σ∗ be languages. If K is
language controllable with respect to L′, then K is language
controllable with respect to L.

Proposition 3: Let K1, K2, and L ⊆ Σ∗ be languages
and let K = K1 ∩K2. If K1 and K2 are nonconflicting and
K1 and K2 are language controllable with respect to L, then
K is language controllable with respect to L.

The following lemma will be instrumental in showing
the ultimate desired result. We will denote the languages
marked and generated by the filter automata Hfilt,j as Kfilt,j =
Lm(Hfilt,j) and Kfilt,j = L(Hfilt,j).

Lemma 1: Let Kfilt, K1, K2, . . ., Kk, and L ⊆ Σ∗

be languages and L be prefix-closed. Let the subscript a
represent an abstraction satisfying Ka ⊇ K. Also let Kfilt,
K1, K2, . . ., Kk be a nonconflicting set. Let Σu ⊆ Σ be the
set of uncontrollable events. If Kfilt is language controllable
with respect to L′a = (. . . (K1,a ∩K2,a)a ∩ . . .)a ∩Kk,a and
K1, K2, . . ., Kk are each language controllable with respect
to L, then Kfilt∩K1∩ . . .∩Kk is language controllable with
respect to L.

Proof:
• It is given that Kfilt is language controllable w.r.t. L′a:

KfiltΣu ∩ L′a ⊆ Kfilt

• Noting (5), intersection of both sides of the above with
L′ = K1 ∩K2 ∩ . . . ∩Kk gives us that:

KfiltΣu ∩ L′ ⊆ Kfilt ∩ L′ (6)

• It is further given that K1, K2, . . ., Kk are each language
controllable w.r.t. L. Hence, L′Σu ∩ L ⊆ L′. This fact
combined with (6) gives us that:

KfiltΣu ∩ (L′Σu ∩ L) ⊆ KfiltΣu ∩ L′ ⊆ Kfilt ∩ L′

and substituting the expression for L′ we get

(Kfilt ∩K1 ∩ . . . ∩Kk)Σu ∩ L ⊆ Kfilt ∩K1 ∩ . . . ∩Kk

• Also recalling that it is given that the set Kfilt, K1, K2,
. . ., Kk is nonconflicting, we have our desired result:

(Kfilt ∩K1 ∩ . . . ∩Kk)Σu ∩ L ⊆ Kfilt ∩K1 ∩ . . . ∩Kk

The following theorem provides the ultimate language
controllability result we require.

Theorem 3: Let Ki = Lm(Hi) be the language rep-
resenting the behavior of the ith subplant L′i = L(G′i)
under the supervision of the ith modular supervisor where
i ∈ {1, . . . , p}. Let there also be filter languages Kfilt,j , j ∈
{1, . . . , k}, constructed according to the CRP and satisfying
requirements R1 and R2. The conjunction of supervised
languages and filters Kfilt,1∩. . .∩Kfilt,k∩K1∩. . .∩Kp is then
language controllable with respect to the global uncontrolled
plant L = L(G) = L′1 ∩ . . . ∩ L′p.

Proof:
• Each supervised language Ki is language controllable with
respect to its associated subplant L′i by construction. Since
L ⊆ L′i for each local subplant, each supervised language is
also language controllable with respect to the global plant L
by Proposition 2.
• Let the set K1, . . . ,Ki1 be nonconflicting where 1 ≤ i1 ≤
p. Since each Ki is language controllable with respect to L,
K ′

i1
= K1 ∩ . . . ∩ Ki1 is also language controllable with

respect to L by Proposition 3.
• If i1 = p, then there are no filters and we are done.
Otherwise, the filter Kfilt,1 is needed to resolve the conflict
in the composition K ′

i1
∩ Ki1+1. By R1, Kfilt,1, K ′

i1,a,
and Ki1+1,a are nonconflicting. Also by R2, Kfilt,1 is lan-
guage controllable with respect to K ′

i1,a ∩ Ki1+1,a, where
K ′

i1,a = (. . . (K1,a ∩ K2,a)a ∩ . . .)a ∩ Ki1,a. Therefore,
Kfilt,1∩K ′

i1
∩Ki1+1 is language controllable with respect to

L by Lemma 1.
• Repeating this logic, supervisors and filters are added to the
composition until they have all been addressed. The resulting
composition Kfilt,1 ∩ . . .∩Kfilt,k ∩K1 ∩ . . .∩Kp is therefore
shown to be language controllable with respect to L.

Theorem 2 and Theorem 3 therefore provide the desired
result that deterministic filter laws built to satisfy require-
ments R1, R2, and R3 provide safe, nonblocking control
when acting in conjunction with the modular supervisors.

B. Filter construction discussion

In this section we will first discuss some existing strategies
for the construction of the filters required by the CRP. We
are specifically interested in constructing deterministic filter
laws that satisfy the conditions R1, R2, and R3 given
in Section IV-A. After demonstrating that existing work
does not provide a construction algorithm with less than
exponential complexity that applies to our specific situation,
we will propose a state-based approach to control.

A difficulty that arises in the filter construction process
is that each blocking composition Bj,a is possibly nondeter-
ministic because of the abstraction employed. Determiniza-
tion is not feasible because it can make a blocking automaton
nonblocking and can lead the state space of the model to
grow exponentially. A way to think about our problem is
that each blocking composition Bj,a is like our uncontrolled
plant and we are trying to build a supervisor (the filter law
Hfilt,j) to achieve a specification in a nonblocking manner.

If we consider our specification to be the language Σ∗,
then we have a situation where the “plant” is nondeter-
ministic and the “specification” is deterministic. Of the
existing research on supervisory control in the presence of
nondeterminism, some address the situation where either
only the plant is nondeterministic [16] [17] or only the
specification is nondeterministic [18]. Still other research
allows the supervisors to be nondeterministic but only in
application to partially observed deterministic plants and
deterministic specifications [19] [20]. The works applicable
to our situation [16] [17], demonstrate conditions for super-

495

visor existence, but do not provide a supervisor construction
algorithm.

Another, perhaps more intuitive way to think about our
situation is to consider our specification to be the trim
of Bj,a. Therefore, we have a situation where our “plant”
and “specification” are both nondeterministic. Research that
addresses this situation is presented in [21] [22] and [23].
The work of [21] only addresses deadlock avoidance and its
construction algorithm for building supervisors has exponen-
tial complexity. In the work of [22], conditions are presented
under which a supervisor exists that can achieve behavior that
is bisimilar to the given specification. A limitation of this
work is that supervisor synthesis is not addressed other than
to mention that a search can be performed over the cartesian
product of the plant and specification state spaces. The work
of [23] handles the situation of a nondeterministic plant and
specification by converting the models to partially observed
deterministic ones. At this point, traditional techniques for
control under partial observation can be applied. This ap-
proach could be applied to our situation, but we hope to
avoid the conversion process and the exponential complexity
of the traditional techniques.

C. State-based approach

As existing works do not provide a supervisor construction
algorithm for our particular situation with less than exponen-
tial complexity, we will propose a state-based approach for
constructing deterministic filter laws that meet the require-
ments R1, R2, and R3. We will represent these deterministic
control laws by possibly nondeterministic automata in order
to keep the representation compact and in order to avoid
determinizing the model. One problem that arises is that lan-
guage controllability is insufficient to assess the realizability
of a control law in regards to nondeterministic automata, as
demonstrated by the following example.

Example 2: Consider the automata in Fig. 3 where G is
the plant, H is the specification, and event b is uncontrollable.
Since the string ab is in L(G) as well as in L(H), L(H)
is language controllable with respect to L(G). However, the
automaton H still requires that the uncontrollable event b be
disabled at state 2. ¦

 b a

 H :

 c

 0

 1 2

 3

 a

 b a

 G :

 c b

 0

 1 2

 3 4

 a

Fig. 3. State controllability example

One solution is to require a state controllability property
similar to what was done in [18] and [22]. Language con-
trollability requires that following an observed string s, if
there is an uncontrollable continuation σ allowed in the plant
automaton, then at least one instance of σ must be allowed
following a string with the same observation s. With the

state controllability property of [18] and [22], it is rather
required that the continuation σ be allowed following every
string with the observation s. In the case of subautomata, we
can apply a slightly weaker notion of state controllability.
Specifically, following a string with an observation s, we
will require that an instance of an uncontrollable event σ
must be allowed only if the event σ is possible in that
particular state of the plant automaton. That is, if there is a
string with an observation s that leads to a state in the plant
automaton where σ is not possible, then σ does not have to
be enabled at that state. Both state controllability properties
imply language controllability. We will now formally define
our state controllability property for a subautomaton.

Definition 4: G1 = (Q1, Στ , δ1, q01, Qm1) is a subau-
tomaton of G2 = (Q2, Στ , δ2, q02, Qm2) denoted G1 v G2

if and only if
Q1 ⊆ Q2, q01 = q02, Qm1 = Qm2 ∩Q1, and

δ1 = δ2 when restricted to Q1. ¦
Now the state controllability definition.
Definition 5: Let Σu ⊆ Στ with τ ∈ Σu. Subautomaton

H of G is state controllable in G if
∀s for which δH(qo, s)! and ∀q ∈ δH(qo, s) and ∀σ ∈

Σu, q′ ∈ δG(q, σ) ⇒ q′ ∈ δH(q, σ) ¦
State controllability as a property, however, is not suf-

ficient to provide that the subautomaton H represents a
deterministic control law with respect to G. If the same
observed string leads to two different states, those two states
could require conflicting control actions. As such, we need
a new observability type requirement.

Definition 6: Let Σc ⊆ Σ. Subautomaton H of G is state
observable in G with respect to the event set Σc if
∀s for which δH(qo, s)! and ∀q ∈ δH(qo, s) and ∀σ ∈

Σc, Pτ (s)σ ∈ L(H) and q′ ∈ δG(q, σ) ⇒ q′ ∈ δH(q, σ) ¦
Taken together, state controllability and state observability

provide that H represents a deterministic control law with
respect to G. This is demonstrated formally by the following
theorem that shows that a deterministic automaton Hobs

that generates and marks the same languages as H will
produce a result that is bisimulation equivalent to H when
it is composed with G. In essence, Hobs can be considered
a supervisor that achieves the specification represented by
the nondeterministic automaton H for the nondeterministic
plant model G. Similar results for generating control for
bisimulation equivalence can be found in [24] and [25],
but none demonstrate the following specific result. Here we
implicitly assume the states of the automata are reachable.

Theorem 4: Let H and G be nonempty (possibly non-
deterministic) automata such that H v G and H is state
controllable and state observable in G. If Hobs is a de-
terministic automaton for which L(Hobs) = L(H) and
Lm(Hobs) = Lm(H), then the synchronous composition
Hobs‖G is bisimulation equivalent to H .

Proof: See proof in [26].
The above theorem also provides a connection to the

results and language-based requirements of Section IV-A.
Therefore, a new set of requirements can be expressed in
terms of a nondeterministic automaton model of our filter:

496

R1′) Hfilt,j is a nonblocking subautomaton of Bj,a

R2′) Hfilt,j is state controllable and state observable in Bj,a

R3′) Σrel(Hfilt,j) ∩ Σh = ∅
These results imply that a determinized version of the

automaton Hfilt,j , which we will denote Hfilt,j,obs, will meet
the previously established requirements R1, R2, and R3.
Specifically, conditions R1′ and R2′ together with Theo-
rem 4 mean that Hfilt,j,obs‖Bj,a is nonblocking since it is
bisimulation equivalent to Hfilt,j . Therefore, requirement R1
is satisfied. Furthermore, since Hfilt,j is state controllable, the
generated language L(Hfilt,j) is language controllable. This
then implies that L(Hfilt,j,obs) is also language controllable,
thereby satisfying requirement R2. Also, R3′ are R3 are
equivalent.

Thus far we have demonstrated that determinized versions
of the filter automata Hfilt,j meeting requirements R1′, R2′,
and R3′ will provide safe, nonblocking control when acting
in conjunction with traditionally built modular supervisors.
However, we would like to avoid the determinization process.
Since the nondeterministic filter automata Hfilt,j possesses all
the information that Hfilt,j,obs does, it turns out that Hfilt,j,obs

never actually has to be constructed. However, the control
required by the automaton Hfilt,j cannot be implemented via
the synchronous composition operation. Rather, following
the observation of a string s, all continuations active at all
states reached by strings with the same observation must be
allowed. In essence, we are using Hfilt,j to generate an online
implementation of Hfilt,j,obs. In order to make this more clear,
consider the automaton Ga in Fig. 2. If we consider Ga to be
a nondeterministic representation of a deterministic control
law, then following an observation of the string ab we do
not know if we are in state 3 or state 4, therefore, we have
to allow both event c and event d to occur.

The bisimulation equivalence result also allows the com-
position Hfilt,j,obs/Bj,a to be replaced by the subautomaton
Hfilt,j in the course of the overall CRP.

Having established that we can employ a filter law rep-
resented by a nondeterministic automaton, the final question
that remains is how to construct Hfilt,j so that requirements
R1′, R2′, and R3′ are satisfied. Since we are ultimately
trying to find a subautomaton, we are in essence trying to
find a static state-feedback law. In other words, the control
we apply depends only on the state we are in, not on the path
we took to get there. It is well-established that a static control
law is more restrictive than a dynamic control law in the
case of partial observation [27], however, we are willing to
make this sacrifice in order to avoid exponential complexity.
Specifically, we can adapt to the nonblocking case existing
state-feedback approaches, for example [28], that partition
the state space into sets of equivalent classes that have
the same observation when viewed through a “mask.” The
details of an adapted approach to state-feedback control are
presented in [26] where it is shown that the approach has
polynomial complexity and is more permissive than existing
static state-feedback methodologies.

V. COMPREHENSIVE EXAMPLE

In this section we will demonstrate our approach for
generating nonblocking modular supervisory control through
a Flexible Manufacturing System (FMS) example modified
from [29] and shown in Fig. 4. The machines Con2, Robot,
Lathe, Con3, PM, and AM can be thought of as components
of the open-loop plant. The buffers B2, B4, B6, B7, and B8
can be thought of as the component specifications for the
system where it is desired that the buffers do not underflow
or overflow. The automata models for these machines and
buffers are given in Fig. 5 and Fig. 6 respectively.

Robot AM

Con3

B8

PM

B4

Lathe

B2Con2

B7

B6

B7

Fig. 4. Flexible manufacturing system (FMS)

 I W

 Con2 :

 I W

 PM :

 Con3 :

 I

F

B

 AM :

 Lathe :

 I

W

W

 1

 2

 Robot :

 I F
 2

 37

 38

F

F

 1

 3

 33

 34

 39

 30

 51

 54

 53

 52

 71

 74

 73

 72

 81

 82

 21

 22

 0 1

2

3

 61

 63

 64

 65

 66

Fig. 5. Automata modeling the components of the open-loop plant

In these automata, odd labels represent controllable events
and even labels represent uncontrollable events. Additionally,
all automata have the same event set Στ , though only relevant
events are pictured.

Following the Conflict Resolution Procedure, the modular
supervisors for this system are H2, H4, H6, H7, and H8,
where the subscript refers to the corresponding buffer spec-
ification. Addressing the supervisors in the order 6 → 7 →
4 → 8 → 2, blocking is not detected until H8,a is added
to the composition. Therefore, the blocking composition
B1,a = ((H6,a‖H7,a)a‖H4,a)a‖H8,a becomes the “plant”
for the filter construction procedure. The automaton B1,a is
nondeterministic and a nonblocking, state controllable, and

497

 B8 :

 E

F

F

 1

 2

 72

 73

 82

 81

 B7 :

 E

F

F

 1

 2

 30

 65

 74

 71

 E F

 B2 :

 22

 33

 B6 :

 E F
 38

 63

 B4 :

 E F
 2

 52

 37

F

F

 1

 3

 34

 51,53

 54

 39

Fig. 6. Automata modeling the component buffer specifications

state observable filter automaton can be constructed by the
procedure of [26].

The resulting filter Hfilt,1 is a subautomaton of
((H6,a‖H7,a)a‖H4,a)a‖H8,a, and the resulting supervised
behavior Hfilt,1,obs‖((H6,a‖H7,a)a‖H4,a)a‖H8,a is bisimula-
tion equivalent to Hfilt,1. Therefore, the composition can be
replaced by Hfilt,1 and Hfilt,1,obs never has to be constructed.
Finally, it turns out that (Hfilt,1)a‖H2,a is nonblocking so no
further filters are needed.

The resulting modular control achieved by the five original
modular supervisors along with the conflict-resolving law
Hfilt,1 satisfies the given specifications in a nonblocking
manner, though the resulting control is more restrictive than
the monolithic solution. The modular solution allows five
pieces to be processed by the FMS at a given time, while
the monolithic solution allows six. This loss of optimality,
however, is often worth the reduction in complexity the
modular approach provides.

An indication of the complexity of the modular solution
in the above example is that the largest automaton that had
to be built was H6,a‖H7,a which had 136 states and 405
transitions. In the monolithic approach, the composition of
all machines and buffers leads to an automaton with 13,248
states and 46,424 transitions. State size of course does not
completely define the complexity of this approach and is
something that must be investigated further.

VI. CONCLUSIONS

This paper has proposed a new approach for resolving
conflict among traditionally-built modular supervisors. Re-
quirements are presented for conflict-resolving filter laws that
guarantee safe, nonblocking control. It is also proposed that
a state-based approach to control be employed for the filter
laws to avoid exponential complexity. The coordinating fil-
ters are constructed based on conflict-equivalent abstractions,
which offer the potential for a greater reduction in state-size
than existing work on conflict resolution. A manufacturing
example is also presented showing the overall potential of
this approach.

REFERENCES

[1] P. Ramadge and W. Wonham, “The control of discrete event systems,”
Proc. of IEEE, 1989.

[2] ——, “Modular supervisory control of discrete event systems,” Math-
ematics of Control, Signal and Systems, 1988.

[3] M. H. de Queiroz and J. E. R. Cury, “Modular supervisory control of
composed systems,” in Proc. ACC, 2000.

[4] H. Flordal and R. Malik, “Modular nonblocking verification using
conflict equivalence,” in Proc. WODES, 2006.

[5] P. Pena, J. Cury, and S. Lafortune, “Testing modularity of local
supervisors: An approach based on abstractions,” in Proc. WODES,
2006.

[6] K. Schmidt, T. Moor, and S. Perk, “A hierarchical architecture for
nonblocking control of discrete event systems,” in Mediterranean
Conf. Control and Automation, 2005.

[7] R. Hill and D. Tilbury, “Modular supervisory control of discrete-event
systems with abstraction and incremental hierarchical construction,”
in Proc. WODES, 2006.

[8] P. Malik, R. Malik, D. Streader, and S. Reeves, “Modular synthesis
of discrete controllers,” in Proc. ICECCS, 2007.

[9] K. Wong and W. Wonham, “Modular control and coordination of
discrete-event systems,” Discrete Event Dynamic Systems: Theory and
Applications, 1998.

[10] L. Feng and W. Wonham, “Computationally efficient supervisor de-
sign: Abstraction and modularity,” in Proc. WODES, 2006.

[11] K. Wong and W. Wonham, “Hierarchical control of discrete-event
systems,” Discrete Event Dynamic Systems: Theory and Applications,
1996.

[12] R. Malik, D. Streader, and S. Reeves, “Conflicts and fair testing,”
International Journal of Foundations of Computer Science, 2006.

[13] R. Malik, H. Flordal, and P. Pena, “Conflicts and projections,” in Proc.
DCDS, 2007.

[14] R. Milner, Communication and Concurrency. London: Prentice-Hall,
Inc, 1989.

[15] R. Su and J. Thistle, “A distributed supervisor synthesis approach
based on weak bisimulation,” in Proc. WODES, 2006.

[16] R. Kumar and M. Shayman, “Non-blocking supervisory control of
nondeterministic discrete-event systems via prioritized synchronozia-
tion,” IEEE Trans. Automat. Contr., 1996.

[17] S. Park and J. Lim, “Nonblocking supervisory control of nondetermin-
istic systems based on multiple deterministic model approach,” IEICE
Trans. Inf. & Syst., 2000.

[18] M. Fabian and B. Lennartson, “On non-deterministic supervisory
control,” in Proc. 35th IEEE Conf. Decision & Control, 1996.

[19] K. Inan, “Supervisory control: Theory and application to the gateway
synthesis problem,” in Belgian-French-Netherlands Summer School on
Discrete Event Systems, Spa, Belgium, 1993.

[20] R. Kumar, S. Jiang, C. Zhou, and W. Qiu, “Polynomial synthesis of
supervisor for partially observed discrete-event systems by allowing
nondeterminism in control,” IEEE Trans. Automat. Contr., 2005.

[21] A. Overkamp, “Supervisory control using failure semantics and partial
specification,” IEEE Trans. Automat. Contr., 1997.

[22] C. Zhou, R. Kumar, and S. Jiang, “Control of nondeterministic
discrete-event systems for bisimulation equivalence,” IEEE Trans.
Automat. Contr., 2006.

[23] M. Heymann and F. Lin, “Nonblocking supervisory control of nonde-
terministic systems,” Technion, Israel Institute of Technology, Haifa,
Israel, Tech. Rep. CIS-9620, Oct. 1996.

[24] P. Madhusudan and P. Thiagarajan, “Branching time controlers for
discrete event systems,” Theoretical Computer Science, 2002.

[25] P. Tabuada, “Open maps, alternating simulations and control synthe-
sis,” in International Conference on Concurrency Theory, 2004.

[26] R. Hill, “Modular verification and supervisory controller design for
discrete-event systems using abstraction and incremental construction,”
Ph.D. dissertation, University of Michigan, Ann Arbor, USA, 2008.

[27] R. Kumar, V. Garg, and S. Marcus, “Predicates and predicate trans-
formers for supervisory control of discrete event dynamical systems,”
IEEE Trans. Automat. Contr., 1993.

[28] S. Takai and S. Kodama, “Characterization of all M-controllable
subpredicates of a given predicate,” Int. J. of Control, 1998.

[29] M. H. de Queiroz, J. E. R. Cury, and W. Wonham, “Multitasking su-
pervisory control of discrete-event systems,” Discrete Event Dynamic
Systems: Theory and Applications, 2005.

498

