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Abstract— Repetitive systems can be characterized by two
time variables, namely, the finite time within each repeating
cycle and the cycle index, each embodying a distinct connotation
of time. Conventional optimal control theory does not explicitly
account for this two dimensional (2D) description of repetitive
systems. We propose a new formulation for control of repetitive
systems using Model Predictive Control (MPC) that explicitly
incorporates a 2D representation of the system. The proposed
formulation uses a 2D Lyapunov function and the stability
requirements are established along each time dimension of the
system. The resulting controller synthesis problem is expressed
in convex form using Linear Matrix Inequalities (LMIs). The
approach allows explicit incorporation of input/output con-
straints in the controller design. Two examples illustrate the
applicability of the proposed approach.

I. INTRODUCTION

Repetitive processes occupy a significant place in nature,

technology and economics. In essence, a repetitive system is

characterized by repeating dynamics over a fixed cycle period

in response to repetitive operational tasks and disturbances

[1]. Repetitive processes have also been variously referred

to as cyclic or periodic systems [2]. The motion of a

spacecraft and satellite, the change of seasons of the year,

the corresponding cycles of farm work, biological rhythms,

etc. provide examples of systems in this category. Repetitive

processes also occur in a variety of manufacturing systems,

e.g., Pressure Swing Adsorption (PSA), Simulated Moving

Bed (SMB) chromatography [3], batch processes [4] and

long-wall coal cutting and metal rolling operations [5].

Typically, a repetitive system can be described in terms of

two distinct time scales, namely, the finite time scale within

each repeating cycle and the cycle index. As a result, repeti-

tive systems are also sometimes referred to as 2-dimensional

(2D) systems [6]. Conventional control formulations do not

explicitly incorporate and/or exploit this 2D representation of

cyclic systems. Additionally, conventional one-dimensional

(just one time dimension) control formulations have been

shown to have limited success in controlling repetitive sys-

tems [1].

Existing techniques to control repetitive systems fall under

the following broad categories, with considerable overlap

amongst these categories:

• Repetitive control

• Iterative learning control
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• Model-based predictive control

Repetitive control (RC) is a technique designed to make

run-to-run improvement for a process that must track a

periodic trajectory or reject periodic disturbances. The theo-

retical basis for the development of RC is the internal model

principle (IMP) proposed in [7]. The basic theory for the

continuous time RC was developed in [8] where sufficient

conditions for stability of repetitive systems were developed

using the small gain theorem and the stability theorem for

time-lag systems.

Iterative Learning Control (ILC) is based on an approach

similar to the one in RC, namely, run-to-run improvement,

but differs in that ILC deals with systems whose states are

reset at the start of each run or cycle. Many processes in

the chemical and pharmaceutical industries are of a batch

nature and fit in the framework of ILC. ILC was applied to

an isothermal extruder to improve the operation of a cyclic

extrusion process [9]. An extensive catalog of publications

in the area of ILC is beyond the scope of our paper and can

be found in the comprehensive survey [1].

Until recently, classical ILC and RC methods were lim-

ited in their capabilities due to their inability to handle

constrained multivariable and non-square systems and also

due to their inability to incorporate practically meaningful

optimization objectives in the controller design.

On the other hand, Model Predictive Control (MPC) [10] is

a technique that provides the flexibility to handle constrained

multivariable and non-square systems with time delays and

periodic disturbances while permitting the use of a range of

model forms. A significant advantage of MPC is its ability

to include economically relevant optimization objectives.

Recognizing these strengths, recently, a number of new

formulations and extensions of ILC based on MPC have

been proposed that have greatly expanded its applicability.

Along these lines, [11] proposed a linear quadratic (LQ)

criterion based formulation for discrete-time ILC systems.

Lee et. al. [12] later presented a more complete formulation

that guaranteed attainment of the minimum achievable error

using MPC coupled with iterative learning. A combination

of repetitive control and MPC was applied to a simulated

moving bed (SMB) chromatography system in [2], [3].

The previously reported MPC-based ILC techniques used

the well-known “lifted-system” representation [2], [3], [12]

which involves defining augmented variables consisting of

all the samples of a variable within a period. The resulting

“lifted-system” representation then relates the cycle-to-cycle

dynamics of the repetitive system, effectively as a one-

dimensional system. One drawback of this formulation is
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that instantaneous disturbances occurring within a cycle are

not appropriately handled and various “unlifting” techniques

have to be used to resolve this weakness [3].

Recently, Lyapunov-based stability analysis of 2D linear

repetitive processes was reported in [13], using results on

stability theory of 2D repetitive systems from [6]. A combi-

nation of feedback from the current cycle and feedforward

from the past cycle was used to design a stabilizing control

law for the repetitive system using a diagonally augmented

Lypunov function [13]. The stabilizing control law was

shown to be computable in convex form using Linear Matrix

Inequalities (LMIs). This idea was later extended in [14] to

design a stabilizing PI controller.

In this paper, we propose to use the basic approach pro-

posed in these previous efforts [13], [15] to develop a novel

MPC formulation for repetitive processes, using tools from

LMI-based MPC [16]. Our proposed approach explicitly

incorporates the two time scales of repetitive systems, as

well as input and output constraints. Thus, the proposed

formulation overcomes the shortcomings of previous MPC

formulations that employ lifting techniques and at the same

time, extends the basic formulation of [13] to a constrained

predictive control setting. The resulting optimization problem

is recast as a convex problem involving LMIs.

NOTATION ℜ is the set of real numbers. For matrix A, AT

denotes its transpose, A−1 its inverse (if it exists), σmax(A)
its maximum singular value. The matrix inequality A > (≥)B
means that A, B are square Hermitian and A-B is positive

(semi-)definite. For a set of scalars {ai} (or matrices {Ai}), ai

(or Ai) denotes the ith scalar (or matrix). I denotes the identity

matrix. For vector x, ‖x‖P, P > 0, denotes its weighted vector

2-norm, xi its ith component. x(k) or x(k|k) denotes the state

measured at real time k; x(k + i|k), (i ≥ 1) the predicted

value of the state at time k+ i predicted using measurements

at real time k.

II. PROBLEM FORMULATION

As discussed in the previous section, a repetitive system is

a two dimensional (2D) system with time within a cycle and

the cycle index forming the two dimensions of the system.

The performance of such a system at any time is dependent

on the information propagating along the two dimensions i.e.,

system dynamics are functions of measurements along the

cycle and from cycle to cycle. Following [6], a 2D repetitive

system can be defined using the following discrete time state

space model equations:

xk+1(p + 1) = Axk+1(p) + Buk+1(p) + B0yk(p)
yk+1(p) = Cxk+1(p) + Duk+1(p) + D0yk(p)

(1)

where, k≥ 0 is the cycle (or pass) index, 0≤ p≤α is discrete

time within the cycle, α ≥ 0 is cycle length. xk(p) ∈ ℜn,

yk(p) ∈ ℜm and uk(p) ∈ ℜl are the plant state vector, the

plant output and input vectors respectively at discrete time

p within cycle k. A, B, B0, C, D, D0 are the state space

matrices. The matrices B0 and D0 characterize the effect of

the previous cycle on the state evolution in the current cycle.

To consider the general case, we define the initial conditions

as xk+1(0) = dk+1, k ≥ 0 and y0(p) = f (p) where dk+1 ∈ ℜn

is a vector of constants and f (p) ∈ ℜm is a vector whose

elements are functions of {p : 0 ≤ p ≤ α}.

For repetitive systems, stability analysis must be carried

out along both the dimensions i.e. stability within the cycle

and stability from cycle to cycle. The stability theory for

linear repetitive processes proposed in [6] refers to these two

distinct stability requirements as stability along the cycle and

asymptotic stability respectively. This theory requires that a

bounded sequence of inputs gives rise to a bounded output

profile along each cycle.

Theorem 1: [6] A discrete linear repetitive process de-

scribed by (1) is asymptotically stable if and only if,

r(D0) < 1

where r(.) denotes the spectral radius.

If this property holds, then a control input sequence {uk(p)}k

that converges to u∞(p) as k → ∞ will lead to an output pass

profile sequence {yk(p)}k that converges to y∞(p) as k → ∞.

This pass profile y∞(p) is called the limiting pass profile and

can be represented over 0 ≤ p ≤ α for D = 0 as:

x∞(p + 1) = (A + B0(Im −D0)
−1C)x∞(p) + Bu∞(p)

y∞(p) = (Im −D0)
−1Cx∞(p)

However, this does not guarantee that the limiting profile

is stable in the normal sense. Asymptotic stability requires

boundedness of the resulting profile over a finite pass length

only. However stability along the pass requires boundedness

to be guaranteed independent of pass length making it a

stronger requirement.

Theorem 2: [6] A discrete linear repetitive process de-

scribed by (1) is stable along the pass if and only if the

2D characteristic polynomial

C(z1,z2) := det

[

I− z1A −z1B0

−z2C I− z2D0

]

6= 0, ∀(z1,z2)∈ Ū2

(2)

where Ū2 = {(z1,z2) : |z1| ≤ 1, |z2| ≤ 1}.

Stability along the pass clearly forces the limiting profile

to be stable. Also, as a necessary condition, (2) implies

r(D0) < 1, thus ensuring asymptotic stability by Theorem 1.

To address the controller synthesis problem, the authors

in [15] express (2) as sufficient LMI conditions and then

synthesize a stabilizing feedforward-feedback control law of

the form

uk+1(p) = K1xk+1(p)+ K2yk(p) (3)

from these LMI conditions through a linearizing change of

variables.

Building on these developments, our goal is to synthesize a

control law that guarantees stability within a pass (and hence

asymptotic stability by necessity) while satisfying constraints

and minimizing a meaningful objective function in a receding

horizon fashion.
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III. MPC FOR REPETITIVE SYSTEMS USING LMIS

In [16], the authors developed an LMI-based robust MPC

approach for one dimensional systems. In this section, we

will extend the basic formulation in [16] to propose a

predictive control framework that can be applied to 2D

systems that provides not only 2D stability but also performs

optimally while incorporating input and output constraints.

A. Control Objective

Typical batch or repetitive systems are required to closely

follow a particular output profile repeatedly over each cy-

cle while maintaining process constraints. This leads to a

cyclic/repeating steady state over each pass of the system. We

require that the proposed control scheme tracks a repeating

reference trajectory while satisfying all the constraints by

specifically exploiting the 2D nature of the system. Math-

ematically such a control objective at any discrete time p

within a cycle k + 1 can be defined as:

Jp = min
uk+1(p+ i|p)

i = 0, . . . ,α − p

α−p

∑
i=0

‖yk+1(p + i|p)− yr
k+1(p + i)‖2

(4)

where the control and prediction horizon (α − p) is equal

to the remaining time in the current cycle. yk+1(p + i|p) is

the predicted value of yk+1(p+ i) at time p+i in the (k+1)th

cycle, based on information at the current discrete time p

in cycle k + 1 using the process model (1). yr
k+1(p) refers

to the output reference trajectory at discrete time p within

the cycle with index k +1. Note that the objective for MPC

is to minimize the output error over the remaining part of

the current cycle. The prediction horizon and the control

horizon are assumed equal. It is important to note that the

control/prediction horizon is finite and is shrinking as we

move forward within a cycle. Most approaches based on

MPC consider either an infinite horizon or a fixed/constant

finite horizon.

B. Augmented error model with integral information

As discussed in the previous section, the system is required

to track the output reference trajectory or in other words the

process output/pass profile must converge in the pass-to-pass

direction to a so-called steady state or limit profile yr. Fol-

lowing [14], we integrate the error information propagating

across the cycles. This integral information can be defined

with the help of a new variable:

ek(p) =
k

∑
j=0

(y j(p)− yr
j(p)) (5)

at discrete time p within cycle k. It is clear that ek sums the

error across all the cycles ( j = 0 to k) at the same discrete

time p within each cycle. Next we define an extended output

vector zk(p) = [yT
k eT

k ]T . We now see that:

ek+1(p) = Cxk+1(p) + Duk+1(p)
+ [D0 I]zk(p) − yr

k+1(p)

Thus, the extended output vector can be represented as:

zk+1(p) =

[

C

C

]

xk+1(p) +

[

D

D

]

uk+1(p)

+

[

D0 0

D0 I

]

zk(p) +

[

0

−I

]

yr(p)

Note that yr(p) is replaced with yr
k+1(p) as it is assumed that

the target trajectory for each cycle remains the same.

To define the error model we use the following new

variables:

x̄k+1(p) = xk+1(p)− xr
k+1(p)

ȳk+1(p) = yk+1(p)− yr
k+1(p)

ūk+1(p) = uk+1(p)−ur
k+1(p)

z̄k+1(p) = zk+1(p)− zr
k+1(p)















(6)

Following [14], the error model can then be defined using

these error variables as:

x̄k+1(p + 1) = Ax̄k+1(p) + Būk+1(p) + B̄0z̄k(p)
z̄k+1(p) = C̄x̄k+1(p) + D̄ūk+1(p) + D̄0z̄k(p)

(7)

where,

B̄0 =
[

B0 0
]

,

C̄ =

[

C

C

]

, D̄ =

[

D

D

]

, D̄0 =

[

D0 0

D0 I

]

C. Control Law

It is important that any control law used for a 2D system

provides control action along both time dimensions of the

system. This would require use of information available

along the discrete time within the cycle and across the cycle.

To accomplish this we use a combination of state and output

feedback. As discussed in [14], an appropriate choice for

such a 2D control law is the following:

ūk+1(p) = K1x̄k+1(p) + K2ȳk(p) + K3ēk(p) (8)

If we define a new augmented state vector as,

Xk+1(p) =
[

x̄T
k+1(p) ȳT

k (p) ēT
k (p)

]T
(9)

(8) then can be written as,

ūk+1(p) = [K1 K2 K3]Xk+1(p) (10)

A further substitution of (10) in (7) results in,




x̄k+1(p + 1)
ȳk+1(p)
ēk+1(p)



 =











A B0 0

C D0 0

C D0 I



 +





B

D

D





[

K1 K2 K3

]}

Xk+1(p)

Define,

X+
k+1(p) =





x̄k+1(p + 1)
ȳk+1(p)
ēk+1(p)



 , Φ =





A B0 0

C D0 0

C D0 I





R =





B

D

D



 , K =
[

K1 K2 K3

]
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Finally using these new matrix definitions, the augmented

error model for the 2D cyclic system can be stated as:

X+
k+1(p) = (Φ + RK)Xk+1(p) (11)

The objective function can be rewritten in terms of the

augmented state as:

Jp = min
uk+1(p+ i|p)

i = 0, . . . ,α − p

α−p

∑
i=0

X+
k+1(p + i|p)

T
Q1X+

k+1(p + i|p)

(12)

where, Q1 =

[

0 0

0 Q̄

]

is a weighting matrix of appropriate

dimensions with Q̄ defining weights on the outputs z̄k+1(p).
Note that along with the output tracking, state tracking can

also be incorporated in the proposed framework by simply

replacing the diagonal zero in Q1 with an appropriate state

weighing matrix.

D. Stability condition

Any control strategy designed for a cyclic system must

explicitly account for stability along the pass and asymptotic

stability. Although there have been attempts to establish 2D

stability for repetitive systems in the literature based on

proportional and proportional integral action, none account

for process constraints. Furthermore, no reported approach

attempts to incorporate optimality within a stabilizing frame-

work.

In this section, we approach the stability problem of 2D

systems using a Lyapunov framework, which also allows the

formulation of an optimal control problem. A 2D Lyapunov

function for the system under consideration is defined as:

V (Xk+1(p)) = XT
k+1PXk+1(p),P > 0 (13)

where Xk(p) is the augmented state vector and P is a

symmetric positive definite matrix. Note that the 2D nature

of the augmented state X makes V inherit the multidimen-

sionality of the processes. In the following theorem we state

conditions that guarantees not only stability but also optimal

performance.

Theorem 3: A cyclic system given by (11) is stable along

the pass and stable asymptotically iff there exist matrix

variables γ > 0, β > 0 Q and Y with diagonal symmetric

matrix P = (γ + βV̄ )Q−1, Y = KQ that are the solution to

the following optimization problem:

min (γ + βV̄)

subject to
[

1 XT
k+1(p|p)HT

HXk+1(p|p) Q

]

≥ 0 (14)







Q QΦT +Y T RT QΦT Q
1
2
1 +YT RT Q

1
2
1

ΦQ+ RY Q 0

Q
1
2
1 ΦQ+ Q

1
2
1 RY 0 (γ + βV̄)I






≥ 0

(15)
Q ≥ 0

which are LMIs in Q, Y, γ and β . H =

[

I 0

0 0

]

is a matrix

of appropriate dimensions.

Proof: The stability in the sense of Lyapunov requires that

the Lyapuonv function decrease with time. To establish the

2D stability we require 2D lyapunov function (13) to satisfy:

V (X+
k+1(p + i|p))−V(Xk+1(p + i|p))

≤ −X+
k+1(p + i|p)

T
Q1X+

k+1(p + i|p) (16)

In addition, to formulate the problem in an optimization

framework we require that the following condition holds:

V (X+
k+1(α|p)) ≤ βV (X+

k (α|p)) (17)

where β ≥ 0. Since X+
k (α) is known, V (X+

k (α)) = V̄ is

also known and remains constant over the cycle k + 1. The

condition in (17) is non-convex and difficult to formulate as

a LMI. To address this issue, we begin with the assumption

that (17) holds. Then, we sum up equation (16) from i =
0,1, . . .α − p, using (17). It can be shown that contraction of

the Lyapunov function across the cycles for terms involving

zk can be omitted leading to a more conservative upper

bound. Subsequently, one can show that the problem reduces

to (14), (15) using steps similar to those in [16] and skipped

here for brevity. Once the solution is obtained, we check if

condition (17) is satisfied.

IV. INPUT/OUTPUT CONSTRAINTS

A large offset from the reference trajectory or the presence

of a large disturbance generally leads to a large control

action. This control action is implemented through actuators

the majority of which are limited by physical bounds. As a

result when the required control action exceeds the physical

bounds of the actuator, the control system does not perform

as expected. Such actuator limits may cause the controller to

windup and the process may go unstable. It is essential for

a practical control strategy to account for such constraints.

Following [16], in this section we show that input and output

constraints can be readily incorporated within the proposed

optimal control strategy for 2D systems.

A. Invariant Ellipsoid

First we establish the following lemma that provides an

ellipsoid bounding on the future state estimates for a cyclic

system given by (11).

Lemma 1: For a cyclic 2D system given by (11) if there

exists a Q, Y, γ and β at some discrete time p within cycle

k + 1 such that Y = KQ and

XT
k+1(p|p)Q−1Xk+1(p|p) ≤ 1

or equivalently,

XT
k+1(p|p)PXk+1(p|p) ≤ (γ + βV̄) (18)

with P = (γ + βV̄)Q−1, then

max
(α−p)≥i≥1

X+
k+1(p + i|p)

T
Q−1X+

k+1(p + i|p) < 1 (19)
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equivalently,

max
(α−p)≥i≥1

X+
k+1(p + i|p)

T
PX+

k+1(p + i|p) < (γ + βV̄)

In other words, E = {z| zT Q−1z ≤ 1} = {z| zT Pz ≤ (γ +
βV̄ )} is an invariant ellipsoid for the predicted states of the

cyclic system given by (11).

Proof: It is simple to show that above lemma always holds

if Theorem 3 holds or in other words Lyapunov function is

decreasing along the cycle.

B. Input Constraint

Extending results from [17] for continuous time, in this

section we incorporate LMI based sufficient conditions ac-

counting for the bounds on control action u into the proposed

discrete MPC based approach for 2D systems.

Consider the following Euclidean norm constraint on the

control action:

‖uk+1(p + i|p)‖2 ≤ umax, 0 ≤ i ≤ (α − p) (20)

The above constraint is imposed on the entire future horizon

(remaining part of the cycle) while calculating the entire

future control sequence.

The following Lemma states conditions for the above con-

straint to be satisfied.

Lemma 2: For a cyclic system given by (11) with control

action defined by (10), if there exist matrix variables Q

and Y = KQ that satisfy (14), (15) and the following LMI

condition at discrete time p within cycle k + 1
[

u2
maxI Y

Y T Q

]

≥ 0 (21)

then the euclidean norm of the control input sequence over

the remaining cycle is bounded by umax.

Proof: Follows along the same lines as the proof in [16] and

is skipped for brevity.

We now consider constraints on the peak value of indi-

vidual components of control input to a Multi-Input Multi-

Output (MIMO) system. Such a constraint is encountered

more frequently in practice than a Euclidean norm constraint.

Bounds on the peak value of each component can be ex-

pressed as:

|u j
k+1(p + i|p)| ≤ u j

max, 0 ≤ i ≤ (α − p), j = 1..l (22)

The following Lemma provides a LMI feasibility condition

that guarantees that the above constraint is satisfied.

Lemma 3: For a cyclic system given by (11) with control

action defined by (10), if there exist matrix variables Q, X ,

and Y = KQ that satisfy (14), (15) and the following LMI

condition at discrete time p within cycle k + 1

[

Z Y

Y T Q

]

, Z j j ≤ (u j
max)

2 (23)

where j = 1..l, then the control input u j is bounded by u
j
max

over the remaining cycle.

Proof: Follows along the same lines as the proof in [16] and

is skipped for brevity.

C. Output Constraint

Performance based criteria for industrial processes are

often stated as bounds on purity, temperature, speed, etc.

which can be typically expressed as output constraints at

discrete time p within cycle k + 1:

max
1≤i≤(α−p)

‖yk+1(p + i|p)‖2 ≤ ymax, 0 ≤ i ≤ (α − p) (24)

The above condition is further formulated as a LMI using

the following Lemma.

Lemma 4: For a cyclic system given by (11) with control

action defined by (10), if there exist matrix variables Q

and Y = KQ satisfying (14), (15) and the following LMI

at discrete time p within cycle k + 1
[

Q (ΦQ+ RY)T HT

H(ΦQ+ RY) y2
maxI

]

≥ 0 (25)

then the euclidean norm of the plant outputs over the

remaining cycle is bounded by ymax.

Proof: Follows along the same lines as the proof in [16].

V. NUMERICAL EXAMPLES

A. Example 1

In this section we demonstrate the performance of the pro-

posed results using a MIMO numerical example studied in

[14]. We use LMI toolbox from Matlab® (version 7.1.0.183

R14 Service Pack 3) for all the calculations. Consider a

system defined by (1) with the state space parameters given

by:

A =









0.92 0.14 −0.98 0.41

−0.76 −0.93 −0.62 0.13

0.68 −0.65 1.02 −0.81

0.94 0.04 0.83 0.2









B =









0.99 −0.99 0.07

0.07 −0.94 −0.63

0.98 −0.73 0.02

−0.37 0.19 −0.65









C =

[

−0.75 0.75 0.31 0.84

−0.86 0.99 0.33 −0.84

]

D =

[

−0.33 −0.14 0.59

−0.18 0.94 −0.17

]

B0 =









−0.01 −0.43

0.29 −0.13

0.98 1.09

1.09 0.17









, D0 =

[

1.11 −0.66

0.46 1.23

]

The system outputs are required to track values of [10,-3]

in the first half and [-10,3] in the second half over each

pass with pass length equal to 20 (discrete time). We use

Theorem 3 to solve for K that establishes both across the

pass and along the pass stability. In addition, we require that

the euclidian norm of the inputs over the control horizon

is bounded by 450. We use Lemma 2 in addition to the

Theorem 3 to evaluate the control input sequence uk+1(p +
i|p) to be applied over the control horizon but apply only the
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Fig. 1. Plant output 1 and 2 when input constraints are active (Lemma 2)

current control input uk+1(p|p) before moving onto the next

discrete time to repeat the calculations. The system response

is given in Figure 1. We can clearly see that the proposed

approach not only performs significantly better but is also

quick when compared to [14]. It is important to note that we

have used a cycle length of 20, significantly smaller than 100

which has been used in [14]. A small pass length makes it

difficult for the control action to stabilize the system within

one pass and may lead to the requirement of high number of

passes to finally bring the system to desired trajectory. We

can clearly see that MPC based approach performs quicker

inspite of having a smaller pass length.

VI. CONCLUSION

The two dimensional dynamics of a cyclic process makes

it difficult to control using conventional control techniques

which use only one dimensional system information. In this

paper, we have proposed a novel and systematic predictive

control framework that exploits the 2D information associ-

ated with cyclic processes to develop an efficient optimal

predictive control strategy.

Following [15], we have used a 2D Lyapunov function

to establish stability criteria for 2D processes that extends

naturally to an optimal model-based controller synthesis for-

mulation for optimally tracking cyclic reference trajectories.

It is important to notice that the prediction horizon for 2D

processes is finite along a cycle and infinite across the cycles.

It is well established in the literature that the presence of a

finite horizon limits the applicability of many of the well

developed predictive control strategies and requires special

care. We have shown in this paper that the 2D information

associated with cyclic processes can be used to not only

overcome this problem but also to use it to guarantee cycle-

to-cycle improvement.

We note that the prediction horizon used in the proposed

approach shrinks as we move forward within a cycle. Such

an approach is the only consistent way to capture the finite

length of each cycle before the cycle index is updated.

Moreover, this also makes the formulation computationally

more efficient, eliminating predictions beyond the end of

the cycle. The entire control strategy is recast in an LMI

framework making it convex and hence computationally

tractable. We have extended the proposed control strategy

to incorporate the most frequently occurring nonlinearities

in control applications,namely, input saturation/output con-

straints. We incorporate these constraints into our approach

as LMIs of appropriate system variables.

The proposed approach can be extended to include model

uncertainties as well and remains part of our current research

effort.
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