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Abstract— We develop and characterize a dynamical network
model for activity-dependent sleep regulation. Specifically, in
accordance with the activity-dependent theory for sleep, we
view organism sleep as emerging from the local sleep states
of functional units known as cortical columns; these local
sleep states evolve through integration of local activity inputs,
loose couplings with neighboring cortical columns, and global
regulation (e.g. by the circadian clock). We model these cortical
columns as coupled or networked activity-integrators that
transition between sleep and waking states based on thresholds
on the total activity. The model dynamics for three canonical
experiments (which we have studied both through simula-
tion and system-theoretic analysis) match with experimentally-
observed characteristics of the cortical-column network. Most
notably, assuming connectedness of the network graph, our
model predicts the recovery of the columns to a synchronized
state upon temporary overstimulation of a single column and/or
randomization of the initial sleep and activity-integration states.
In analogy with other models for networked oscillators, our
model also predicts the possibility for such phenomena as mode-
locking.

I. INTRODUCTION

Sleep is a fundamental process in human and animal life,

that comprehensively impacts both our day-to-day existence

and our long-term growth and development. The fundamental

importance of sleep has fostered extensive study on its

neurological characteristics and mechanisms (e.g., [1], [2]).

This research has been complemented by efforts to mathe-

matically model the sleep-wake cycle as a homeostatic (regu-

lation) process, with the aim of giving predictive descriptions

of sleep dynamics (e.g., [3]–[5]). In a comprehensive activity-

dependent or use-dependent theory for sleep [2], [6], the

fundamental units that transition between sleep and wake

states (as reflected by functional changes in these units)

are groups of tightly-connected neurons known as cortical

columns. The biochemical and bioelectrical mechanisms

underlying the sleep/wake transition in each cortical column

are modulated by local activity, as well as loose network

couplings among the columns and sleep regulatory circuitry.

Our aim here is to develop a mathematical model for this

network of cortical columns, that captures the fundamentals

of the activity-dependent mechanism of sleep.

It is worthwhile to connect our modeling efforts with

the existing models concerned with sleep regulation. Sleep

has been extensively modeled at the behavioral level (e.g.,

[3]). These simple models capture 1) the projection of the

circadian rhythm into sleep dynamics and 2) some home-

ostatic regulation of the sleep state, at a whole-organism

level. However these models do not capture either the

spatial structure or the biochemical/bioelectrical pathways

underlying activity-dependent sleep. Cortical columns (and

more generally neuronal assemblies) are well-known to be

basic building blocks for sleep and memory, and there has

been some interest in modeling their dynamics. In partic-

ular, a variation of the classical Wilson-Cowan model has

been shown to display the periodic responses characteristic

of excitatory/inhibitory processes in cortical columns [7].

Recently, a more complicated model for cortical column

dynamics has been developed, that explicitly codes the notion

of a sleep state as well as the activity-dependent evolution

of assembly dynamics [8]. While these models represent

the regulatory role played by cortical columns, they cannot

capture the translation of local activity (activity at one or

a small number columns) into a global sleep state. The

current work builds on these efforts, by capturing interactions

among cortical columns in order to predict the evolution of a

global sleep state. It advances the existing modeling efforts

by making explicit the impact of local activity on the global

sleep state, and by representing in more detail the mechanism

for sleep regulation.

Broadly, we take the viewpoint that activity-dependent

sleep must be modeled at two levels of detail and time scales

(see e.g. [9], [10] for classical literature on time-scales in

engineered systems). Here, the finer time scale is concerned

with the biochemical and bioelectrical mechanisms that

underly sleep. These include the processes by which local

activity, coupling of neighboring cortical columns, and regu-

latory circuits modulate sleep regulatory substances (SRSs),

as well as the mechanisms by which accumulated SRSs cause

the functional changes associated with sleep-state change. At

a coarser time scale, each column’s intricate dynamics can be

abstractly viewed as an activity-integrator that modulates a

functional sleep state; using this abstraction, we represent

the cortical columns as a network of activity-integrators

with associated functional states, that further interact through

loose coupling and through regulatory circuitry. With this

coarser or network-level model, we are able to study how

the local dynamics of the columns can foster formation of a

global sleep state.

We kindly ask the reader to see [11] for a full introduction

to the two-time-scale model, including a validation of the

network-level model as an abstraction of the more detailed

one. Here, we report only on the network-level (or coarse

time-scale) model, with the dual aims of 1) contributing to

a predictive theory for activity-dependent sleep and 2) intro-

ducing control theorists to the rich class of network dynamics

and control problems that originate from the modeling of

activity-dependent sleep. More specifically, our modeling

efforts contribute to ongoing research in the following ways:

1) From the perspective of sleep research, our network
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model captures analytically the combined roles of local

activity inputs, coupling between cortical columns, and reg-

ulatory circuitry in formation and evolution of a global sleep

state. As such, it is depictive of the activity-based theory

for sleep developed by Krueger and co-workers [2], [6],

and permits exploration of the sleep-state dynamics under

the premises of the theory. While our primary aim here

is to give a plausible description and analysis of activity-

dependent sleep, the model holds promise in the long run as

a tool for prediction and design, for instance in characterizing

the effects of sleep deprivation and/or designing drugs that

impact regulation.

2) In that we model regulatory dynamics defined on a

graph, our work also explicitly connects sleep modeling with

the ongoing effort to model and in turn control dynamical

networks, e.g. [12]–[14]. We note here that the activity-

dependent theory for sleep regulation matches the develop-

ing paradigm for control in modern engineered networks,

wherein highly limited agents interact through localized

network couplings (with possibly rather complex or arbitrary

coupling topologies) to achieve a global regulation task [15],

[16]. Our model here is particularly connected with models

for stabilization and agreement in oscillator networks (e.g.,

[12], [17]–[20], though with novelties in the specifics of the

oscillators’ nonlinear dynamics.

The article is organized as follows. In Section II, we

motivate and formulate the network model. Section III char-

acterizes the model and illustrates its predictive capability,

through both simulation and analysis of three experiments

of interest. All proofs are omitted in the interest of space.

II. NETWORK MODEL FORMULATION

In this section, we propose a network model for the

interaction of cortical columns, which shows promise in pre-

dicting activity-dependent regulation of sleep. Specifically,

we represent individual cortical columns as very simple

but interacting activity-based regulators, and explore the

role played by the network interactions in translating local

activity inputs as well as global regulatory-circuit signals

into whole-animal sleep. Our model captures both the spatial

structure and temporal characteristics of sleep identified in

the activity-dependent theory [2], [6].

In the model that we propose, the interactions among the

cortical columns are critical to the rapid formation of a global

sleep state. This paradigm of local interactions leading to a

global state has been of considerable interest to the complex-

systems modeling community (e.g., [12], [24]) as well as the

network-control community (e.g., [13]–[15]). A key feature

of the networks considered in this literature is that they are

built of agents with very simple internal dynamics, but quite

complicated interactions that lead to interesting global dy-

namics. We note that the model developed here is of the same

form, and hence indicates a new application for this complex

networks theory. Also of interest, the model described here

can be viewed as having an intrinsic mechanism for the

emergence of a global state, but complementarily also can be

viewed as using both external inputs and feedback through

network coupling to achieve regulation. In this sense, this

model is one that marries the modeling paradigm pursued

in the complex-system community with the feedback design

paradigm of the network-control community.

The following are the key points of the activity-dependent

theory for sleep used in model development [2], [6]. During

awake periods, individual cortical columns integrate (store)

activity information (or energy for activity relative to avail-

able energy) through biochemical and electrical means, in

entities known as sleep regulatory substances; when this

integrated activity becomes large enough, the cortical column

transitions to a sleep state (a state exhibiting unrespon-

siveness to sensory stimuli, certain increases in synaptic

plasticity, etc). It is postulated that the transition to a sleep

state is also impacted by spatially-close cortical columns

that are already in a sleep state. These columns tend to

drag the awake column toward the sleep state (through

biochemical and electrical means), and hence foster the

formation of a global sleep state. Similarly, a cortical column

in the sleep state can be viewed as containing processes that

gradually return to a waking state (either through inhibition

of the processes inducing sleep, or through other integrative

processes); again, nearby columns that are in an awake state

have an impact. Besides the activity-dependent dynamics

and couplings, sub-cortical global regulatory circuits impose

a circadian rhythm and also permits rapid waking under

stimulus.

Based on the above description, we abstractly model each

cortical column using a sleep state variable and an activity

variable, which evolve in time due to integration of local

activity, as well as interactions with other columns and global

regulation. Precisely, let us consider a network of n cortical

columns. Each cortical column i is described by a binary

sleep state variable Si(t) (where Si(t) = 1 indicates that
the column is in the sleep state, while Si(t) = 0 indicates
a wake state). We also associate a continuous-valued total

activity variable (or simply activity variable in short) xi(t)
with the cortical column i, which indicates the total activity

since waking when the column is in the wake state, and

indicates the total restoration effort in the sleep state.

In addition to the internal variables for each column,

the model comprises a network topology describing the

strengths of interactions between cortical columns. In par-

ticular, for each pair of cortical columns i and j, we use

a fixed nonnegative weight wij to capture the strength of

the effect of cortical column i on cortical column j. We

find it convenient to assemble the weights into a (possibly

asymmetric) topology matrix W
△
= [wij ]. Also, we draw a

network graph comprising n vertices labeled 1, . . . , n, with
an edge drawn from i to j if and only if wij > 0. The
model dynamics (i.e., evolution of the activity variables and

sleep state variables) described below can be characterized

for arbitrary network topology. A simple but plausible model

is to locate the columns at arbitrary points in a unit square,

and choose the interaction weights to be inversely propor-

tional to the distances between the columns (or zero if the
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columns are sufficiently far away). However, we stress that

the fundamental observed behaviors are not dependent on the

specifics of the network topology (beyond its connectedness).

In a future study, we expect to elaborate on the specifics

of the network topology to refine our understanding of the

dynamics (e.g. by understanding how the topology impacts

the rate of synchronization or permits part-brain sleep [2] in

some animals).

We also assume the existence of a global clock signal,

which eventually enforces (under normal activity conditions)

that the cortical columns not only synchronize but transition

between the sleep state and wake state at environmentally-

appropriate times, i.e. according to a circadian rhythm. In hu-

mans, the clock signal is maintained by the suprachiasmatic

nuclei (SCN), and distributed globally through neuronal con-

nections, see e.g. [5] for details and modeling methods. Here,

we denote the scalar clock signal by C(t), where C(t) = 1
indicates that the organism should be awake, C(t) = −1
indicates that sleep is desirable, and C(t) between −1 and
1 indicates weaker proclivities for waking/sleep. For our
analysis, we assume a clock signal that transitions between

the two extremes over short periods of time, according to a

sigmoidal function.

Now we are finally ready to describe the evolution of

the sleep state variables and the activity variables. Broadly,

the activity variable gradually increases for each column

during awake periods (depending on activity at the column),

and gradually decreases during asleep periods. The sleep

state variable changes when the activity relative to provided

energy reaches thresholds; this threshold conceptually repre-

sents either an energy-deficit level, or a biochemical state,

such that sleep occurs. Specifically, let us first consider the

evolution of a cortical column i that is currently in the awake

state (Si(t) = 0). We model the activity variable xi(t) and
sleep state variable Si(t) as evolving as follows:

• xi(t) = +ui(t) +
∑n

j=1 Sj(t)sign(xj(t) − Ej)wji +
αi(1 − C(t))

• Si(t) → 1 if xi(t) − Ei > Ti,

where ui(t) is the activity input at the cortical column i

at time T , Ei(t) is the energy available during the awake
period, Ti is the sleep threshold, and sign() is a function that
equals 1 for positive arguments and 0 for negative arguments.
This model for the dynamics can be justified as follows: nom-

inally, the activity variable xi(t) integrates the activity at the
column over time, hence its time-derivative equals the current

activity; however, the cortical column is more quickly driven

toward the sleep state when connected cortical columns have

recently entered the sleep state (Sj(t)sign(xj(t)−Ej) > 0),
and hence the activity variable increases rapidly toward the

threshold. The strength of this interactive response scales

with the weight wji.

Similarly, the activity variable and sleep state variable

evolve during the asleep period, as follows:

• xi(t) = −ri(t)+
∑n

j=1(1−Sj(t))sign(Ej−xj(t))wji+
αiC(t)

• Si(t) → 0 if Ei − xi(t) > Ti,

where ri(t) is called the recovery input to cortical column
i, and represents restoration of the activity variable prior

to waking (which is connected to the repair and synaptic

development occurring during sleep). Again, we note that

the activity variable integrates both local input and signals

from nearby cortical columns that have recently entered the

awake state.

We holistically refer to the model as the activity integrator-

network (AIN). Let us reiterate the connection of the AIN

with the extensive literature on network control. Over the

last twenty years or so, there has been extensive research

concerned with analyzing dynamics defined on a graph,

and relating characteristics of such dynamics with structural

characteristics of the underlying graph, see [16], [25], [26]

for overviews of some important aspects of this analysis.

Recently, control theorists have realized that understanding

network structure further is critical to controlling/designing

dynamics on a network, in such diverse fields as au-

tonomous vehicle team formation, sensor networking, and

virus-spreading control [13]–[15], [27]. What these various

works have in common is that individual agents with very

simple internal dynamics achieve a global task through net-

work interactions. The AIN falls within this paradigm, in that

cortical columns with essentially integration and thresholding

capabilities achieve global sleep regulation. Within this broad

class, the AIN is most closely connected to models for

oscillator networks and rotational agreement, though the

specifics of the dynamics differ from the models in the

literature, e.g. [17]–[20]. One very significant novelty in our

development, from a modeling and control-theory standpoint,

is that we consider the impact of external input signals

(including possibly stochastic ones) on the dynamics.

Let us conclude our formulation of the AIN by noting

two limitations of the model. First, we have entirely excluded

modeling of the humoral mechanisms for sleep, see e.g. [29],

because our efforts are focused on the local couplings in the

cortex that underly sleep. Second, we have not attempted yet

to model all the time- and state-dependent variations of the

network structure/parameters that are observed in the sleep

cycle (e.g. [6]). Most prominently, the coupling parameters

between the cortical columns would be expected to change

between the sleep and wake states, and also during sub-

intervals of sleep and waking (e.g., REM sleep, high-activity

waking periods).

III. PREDICTION OF WHOLE-ANIMAL SLEEP:

SIMULATIONS AND ANALYSIS

We illustrate that the AIN dynamics match the predictions

of the activity-dependent sleep theory through simulations

(System III.A) and system-theoretic analysis (Section III.B).

We note that our efforts characterize both the internal dy-

namics and the input-to-state behavior of the AIN.

A. Illustrative Simulations

We illustrate the combined role of the activity inputs and

network interactions in the AIN dynamics, using several

canonical simulations. We present simulation results using
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Fig. 1. Top left: The network topology for the 30-cortical-column (neuronal
assembly) example is illustrated. Top right: The baseline activity simulation
is shown. Middle: The local overstimulation experiment is simulated, with
the activity variables for five representative cortical columns shown. Bottom:

The coordination experiment is simulated, for two different interaction
strengths. Higher interaction yields faster coordination.

a network with 30 cortical columns with identical internal

dynamics, see Figure 1.

a) Baseline Activity Simulation: Under normal rest or

light activity conditions, a reasonable assumption is that the

cortical columns are initially synchronized, and the activity

inputs at each column are independent stochastic signals

with identical statistics. In Figure 1, we show time-traces

of two columns’ total activity variables in the example AIN,

under baseline activity conditions. The simulation illustrates

that the loose couplings between columns are needed for

maintaining coordination: because of the loose coupling, we

see that the transition to the sleep state flows in a wave-like

fashion through the network.

b) Local Overstimulation Experiment: Experiments in

which one or a small number of cortical columns are

overstimulated have been of particular interest in the sleep

community, because they permit evaluation of the claim that

sleep is activity dependent. For instance, the impact on a

rat’s sleep response of repeatedly moving a single whisker

has been studied [28]. We simulate such an experiment, by

driving one or a small number of cortical columns with

an input that is significantly larger than the nominal. In

particular, we overstimulate one cortical column for a period,

causing it to quickly enter the sleep state. Once the column

has entered the sleep state, nearby columns begin to rapidly

transition toward a sleep state, with the rate of transition

become more pronounced as more columns enter the sleep

state, see Figure 1. Thus, the sleep state spreads rapidly

throughout the network, before the nominal falling-asleep

time. We also note that the columns become even further

coordinated during the subsequent transition from sleep to

waking.

c) Coordination Experiment: It has been postulated

that cortical columns with initially uncorrelated sleep states

eventually achieve coordination, because of the interactions

between the columns. To capture this instance in our

model, we initialize each cortical column with a random

total activity variable value and a random sleep state, and

observe the responses of the columns over several days.

Our simulations indicate that, indeed, the cortical columns

become coordinated over time, with the duration needed

for coordination depending on the strengths of interactions

between the columns (Figure 1).

The simulations together highlight the critical role played

by both the activity inputs and the network couplings in

regulating sleep, in the presence of varying activity inputs.

B. System-Theoretic Analysis

We conclude our study of the AIN with a preliminary

system-theoretic analysis of its dynamics. This analysis

serves to verify the characteristics of the dynamics postu-

lated through the experiment simulations, and to delineate

conditions on the AIN for which these characteristics are

observed. We believe that the formal analysis of the dynamics

will also eventually facilitate the study of sleep ailments, by

permitting identification of conditions (on the activity inputs

and/or couplings) that lead to particular sleep dynamics.

Explicit analysis of the AIN dynamics is both difficult and

valuable from a system-theory standpoint. The novelty (and

complexity) in the analysis stems from three aspects of the

model: 1) the (novel) nonlinear dynamics, 2) the fact that the

model represents a distributed system or network defined on

an arbitrary graph, and 3) the need for characterizing the

response to (deterministic or stochastic) external signals.

In this preliminary analysis, we characterize the synchro-

nized state (as observed in the nominal-experiment simu-

lations), then describe the approach to synchronization (as

observed in the localized-activity and coordination experi-

ments), and give a simple result regarding the disturbance

response of the AIN. In the interest of space, we focus

on obtaining relationships between the network topology

and qualitative features of the dynamics, leaving graph-

based quantifications of network performance to future work.

We characterize the AIN’s dynamics for arbitrary network

topologies, but for convenience we shall assume that the

cortical columns in the AIN have identical internal dynamics

(that is, Ei, Ti, and αi are the same for all cortical columns);

it is easy to see that the results naturally transfer to an

inhomogeneous network with scaled inputs.
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Let us begin by verifying a simple observation: cortical

columns that are synchronized and are driven by the same

activity inputs remain so. To present the analytical result, we

require a careful definition of synchrony. Since synchrony

has to do with whether or not the differences between the

activity variables are null, we first find it convenient to define

relative activity variables. WLOG, we define these relative

states with respect to the integrated activity of cortical

column 1. In particular, we define the relative activity

variable zi for agent i, 2 ≤ i ≤ n, as zi = xi −x1. We also

define the relative sleep state yi as yi = Si−S1. Synchrony

is naturally defined in terms of the relative activity variables

and relative sleep states:

Definition 1: The AIN is said to be synchronized at time

t if zi(t) = 0 and yi(t) = 0 for i = 2, . . . , n.
Let us now formalize that, under the conditions of the

nominal experiment, the cortical columns remain synchro-

nized:

Theorem 1: Consider an AIN whose cortical columns

have identical internal dynamics (Ei, Ti, and αi are the

same for all i). If the AIN is initially synchronized and the

activity/recovery inputs to the cortical columns are identical,

then it remains synchronized at all time t ≥ 0.
In system-theoretic terms, any set of activity variables

and sleep state variables such that the AIN is synchronized

can be viewed as a relative equilibrium of its governing

equations.

Let us now analyze the approach to synchronization of

the AIN, with the aim of giving some general insight into

the localized-activity and coordination experiments. Both

experiments can be viewed analytically as follows: an exter-

nal process (whether additional local activity or some other

reason for asynchronization) causes the activity variables

and perhaps sleep state variables of the cortical columns

to be different at a particular time t0. After this time, the

cortical columns are driven by their nominal inputs, and the

question of interest is whether or not they subsequently re-

synchronize. We shall study this problem in two steps, first

in the case where the perturbation of the cortical columns

from their synchronized state is small and second in the

general case. In the general (large-perturbation) case, we will

only illustrate the analysis through a simple (two-assembly)

example, in the interest of space.

We find it convenient to combine the sleep state variable

and activity variable into a single angular state, which

describes the “distance” along the sleep-wake cycle traveled

by the cortical column from a reference point (say the

occurrence of waking). Formally, let us define the angle θi

of column i as follows:

• When the cortical column is awake, θi =
180xi−(Ei−Ti)

2Ti

.

• When the cortical column is asleep, θi = 180 +
180Ei+Ti−xi

2Ti

.

Notice that the cortical column’s angle moves from 0 to 180
during the wake state, and from 180 to 360 during the sleep
state. This notion of an angle is a clever way to incorporate

both the activity variable and sleep state variable into a single

scalar, and hence to differentiate between asleep and awake

columns that have equal activity variables.

We also find it useful to define angle differences, to

describe the “distance” along the sleep-wake cycles between

two cortical columns. Specifically, for two cortical columns

with angles θi and θj , we define the angular distance

d(θi, θj) as follows: d(θi, θj) = (θi−θj+180)mod360−180.
This measure equals the shorter of the two angles between

the two columns’ angles. We note that the network is

synchronized at time t if and only if d(θi(t), θj(t)) = 0
for all i, j.

Let us now present the asymptotic-synchronization result

in the case where the cortical columns are perturbed only

a small amount from synchronization. For simplicity in

presentation, we describe only the case where the identical

input to each cortical column is a positive constant during the

wake period and a negative constant during the sleep period,

although the analysis generalizes naturally to the case where

the columns have identical but non-constant nominal inputs.

To highlight the role played by the network, we also exclude

the SCN input in the analysis. Here is the result:

Theorem 2: Consider an AIN whose cortical columns

have identical internal dynamics (Ei and Ti are the same for

all i, and αi = 0), and have identical constant activity inputs
ui(t) = ū and recovery inputs ui(t) = −ū. Also assume

that the AIN has a connected network topology. Then there

exists M > 0 such that if |d(θi(t0), θj(t0))| ≤ M for all i,

j at some time t0, then the synchronized state is attractive,

i.e. d(θi, θj) → 0 as t → ∞ for all i and j.

Third, let us study the asymptotics of the AIN for arbitrary

initial conditions (i.e., for large perturbations). The global

asymptotics of nonlinear-oscillator networks such as this

one are well-known to be complicated, see e.g. [17]–[19].

One prominent characteristic of these oscillator networks

is the possibility for mode-locked trajectories, or in other

words equilibrium trajectories that do not correspond to

synchronized states. Here, let us demonstrate using a two-

cortical-column example that the AIN also can have such

mode-locked trajectories, although in this case the mode-

locked trajectory is not attractive.

Theorem 3: Consider an AIN with n = 2 cortical columns
with identical internal dynamics (Ei and Ti are the same for

all i, and αi = 0), and identical constant activity inputs
ui(t) = ū and recovery inputs ui(t) = −ū. Also assume

WLOG that w21 ≥ w12 > 0. Now consider that cortical
column 2 has an initial angle θ2(t0). Then there is exactly
one initial angle for cortical column 1 such that the AIN

does not synchronize and instead reaches a periodic orbit;

for all other initial angles, the AIN synchronizes.

Since the mode-locked state is not an attractive one, we

notice that in practice the cortical columns will not evolve

to this state. However, the existence of the mode-locked

state indicates the possibility that the cortical columns

will remain away from synchronization for an extended

period. This possibility for extended asynchronization may

be reflective of such phenomena as part-brain sleep in e.g.
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dolphins.

Finally, let us consider the disturbance response properties

of the AIN.

A key postulate of the activity-dependent theory for sleep

is that the cortical columns maintain coordination for variable

activity levels and inputs, but their sleep state dynamics

are also modulated by the activity inputs. This dual task is

fundamentally achieved through the interplay of local activity

integration at individual columns and network couplings

among the columns. Here, we verify that coordination among

the columns in the AIN is maintained in the presence of

persistent variations in the activity inputs, but the predicted

durations of sleep/waking are dependent on the local inputs.

The verification of coordination in this case fundamentally

requires study of the disturbance-rejection (or external sta-

bility) properties of the AIN. We stress that a disturbance-

rejection analysis constitutes an entirely new focus in the

study of oscillator networks (see e.g. [30] for a discussion

of why the disturbance rejection of even simple nonlinear

systems, let alone networks, is so complicated).

For the AIN, verification of coordination in the presence

of input variations (disturbances) follows naturally from the

initial-condition analysis of the AIN. In particular, we obtain

the following:

Theorem 4: Consider an AIN comprising identical cor-

tical columns that are driven by activity inputs ui(t) =
u+dui(t), where u is a strictly positive constant. Let us call

the angle difference between the leading column s(t) and the
lagging column r(t) at an initial time t0 by θinit. For each

θinit < 90, there exists β̂ > 0 such that for all β < β̂, if

||dui(t)||∞ ≤ β for all t, then 1) |d(θr(t)(t), θs(t)(t))| < 90o

for all t ≥ t0, and 2) |d(θr(t)(t), θs(t)(t))| ≤ Cβ for all

sufficiently large t and for some constant C.

The above theorem points out the critical role played

by the network coupling in achieving and maintaining a

coordinated sleep state: without the coupling, the columns

would lose coordination over time. While the columns re-

main coordinated through the couplings, however, the sleep-

state evolution nevertheless is modulated by the activity

input.
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