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Stability Analysis of the Interacting Multiple Model Algorithm

Chze Eng Seah*

Abstract—

The Interacting Multiple Model (IMM) algorithm is a
well-known state estimation algorithm for hybrid systems.
We derive a lower bound and an upper bound for the error
covariance of the IMM algorithm for controllable and observ-
able hybrid systems. We then derive sufficient conditions for
the exponential stability of the IMM algorithm for a special
class of hybrid systems by the Lyapunov approach.

I. INTRODUCTION

The Interacting Multiple Model (IMM) algorithm [1] has
been used in many applications, such as target tracking and
fault diagnosis. Several authors have considered performance
analysis of the IMM algorithm under specific operating
scenarios [2], [3], or for specific applications [4]. However,
to the best of our knowledge, no conditions that guarantee
the stability of the IMM algorithm in any application have
been given in the control literature.

In this paper, we present a lower bound and an upper
bound for the error covariance of the IMM algorithm for
controllable and observable hybrid systems. We also derive
sufficient conditions for the exponential stability of the IMM
algorithm for a special class of hybrid systems. Our work
is motivated by the work in [5], which derived sufficient
conditions for the stability of the discrete-time Kalman filter.
However, the IMM algorithm consists of a set of interacting
Kalman filters whose means and covariance updates are
coupled or mixed at each time step. Hence, it is a challenge
to overcome the complexity due to this mixing to prove the
the stability of the IMM algorithm.

The paper is organized as follows: In Section II, we
present the filter equations of the IMM algorithm, and review
the conditions for stability of the Kalman filter. A set of
sufficient conditions for stability of the IMM algorithm are
then derived in Sections III. Conclusions are given in Section
V.

II. BACKGROUND AND MOTIVATION

A. Review of the IMM Algorithm

The Interactive Multiple Model Estimation (IMM) algo-
rithm uses a bank of Kalman filters, each matched to a mode
of the following stochastic hybrid system:

a(k) = A(k)z(k — 1) + B(k)w(k) (1)

z(k) = C(k)z(k) + v(k) 2)
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where A(k‘) = Am(k‘)’ B(k‘) = Bm(k)’ C(k‘) = Cm(k)
are the system matrices correspond to a mode m(k) €
{1,2,...,r} at time k; w(k) and v(k) are white zero-mean
Gaussian noise vectors with covariance Q) and Ry,
respectively. The evolution of the mode m(k) is given by

mi; = pm(k) = jlm(k—1) =14 for ¢,j=1,...,r

where 7;; is a constant; p[-|-] denotes a conditional probabil-
ity. We assume that, forall 4, j = 1,...,r, A; is non-singular
and

0<6I<Q <&l 0<&GI<R <&l ()

Let Z* denote the set of measurements up to time k. The
IMM algorithm computes the posterior mean &;(k|k) and
covariance P;(k|k) for each Kalman filter j, and the mode
probability a; (k) := p[m(k) = j|Z*] recursively as follows:

1. Mixing: Compute the mixing probability

ik =1) = plm(k = 1) = ilm(k) = j, 2"]
1 “)
= T yriezi k-1
S a1 Y

The initial conditions to Kalman filter j are given by

Zjo(k —1) = yjilk = D)a(k—1k—1) (5
r =1
Pio(k —1) =Y {Pi(k =1k — 1) + [&:(k — 1|k — 1)—

jo(k — D)][#:(k — 1k — 1) — 250(k — )] }ry5i(k — 1)

2. Filtering: Each Kalman filter j computes ©
iy (kIk) = Agdjo(k — 1)+ I (B)ry (k) (D)
rj(k) = 2(k) — CjA;ijo(k — 1) (8)
Kj(k) = Pi(klk = 1)C] S; (k) ©)
Pj(klk — 1) = A;Pjo(k — 1)A] + B;Q;B]  (10)
S;(k) = C;P;(klk —1)CT + R; (11)
Pi(klk) = [P ' (klk = 1)+ CTR;'Cy)™H (12)

3. Mode Update: Compute the Likelihood function
Aj(k) := No(rj(k); 0, 5;(k)) (13)

where ¢ is the dimension of r;(k); N,(+;0,3) denotes a ¢-
dimensional multivariate Gaussian pdf with mean zero and
covariance Y. The mode probability is given by

05 (k) . A (k) (k)

~ S M(Bar () (1
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where aj (k) = mjai(k—1) (15)
i=1

4. Output: The combined mean and covariance are

#() = 3 0y ()2 (K)

P(k) =) {Pi(k) + [2;(k) — 2(k)][2;(k) — 2(k)]" Fai (k)
j=1

B. State Estimation Errors of the IMM Algorithm

We define the estimation error for Kalman filter j as
¢; (k) = a(k) — (k)
Using (5), (7) and (16), we can show that [3]

(16)

ej (k) = [I = K;(k)C5)A; 3 ik = Veilk = 1) + (k)
= (17)
where
¢(k) =[Ar (k) — A; — K;(F)(Cr (k) Ar (k) — C;4;)]x(k)
+ I = K;(F)Cr (k)] Br (k)wr (k) — K;(k)vr (k)]
and Ar(k), Br(k),Cr(k) are the system matrices corre-

sponding to the true mode (or true system dynamics). We
consider the following coupled systems

ej(k) = [[ = K;(K)C514; 3 ik —Des(k=1) -\
1=1
1=12,...,r

which represents the homogeneous part of (17). Using (9)-
(12), we can show that

Piklk) = [T - KGR (I~ 1) (19)

Hence, (18) can also be written as

ej(k) = P;(k|k) Py (klk — 1) A; > " yji(k — Dei(k — 1)

i=1
(20)
Let é(k) = [eT'(k) ef(k) ... el'(k)]T. The system of
equations in (18) can be written as

é(k) = Uk, k — DI(k — 1)é(k — 1)
U(k,k—1) = diag{[I — Ki(k)ci]Ai}r
D(k—1)=[yk—1)]

We use diag{E;}, to denote a block diagonal matrix con-
sisting of matrices E1, Es, ..., E,, and [a;j],x, to denote a
r X r matrix with entries a;;. Note that

2y

where

> k) =1 VE>0 (22)
i=1

We say that the IMM algorithm is globally exponentially
stable if the origin of system (21) is globally exponentially
stable as defined below.

Definition 1: Exponential stability. The origin of system
(21) is exponentially stable if there exist scalars 0 < A < 1,
¢ >0, po >0, and an integer ky > 0 such that

(k) < ¢lleko) A Yk > ko, [le(ko) |l < po

It is globally exponentially stable if pg is arbitrarily large.
Note that |le|| := v/eTe denotes the 2-norm of vector e.
From Lyapunov’s stability theorem, the system (21) is ex-
ponentially stable if there exists a finite positive integer IV,
positive scalars py, po, i3, and a scalar function V' (é(k), k)
such that

pille(®)|* < V(E(k), k) < pafle(k)]* (23)

V(e(k), k) = V(e(k — N),k = N) < —usl|e(k)||* (24)

for all ||e(k)|| < p, k > ko, p > 0 [6]. If p is arbitrarily large,
then the system (21) is globally exponentially stable.

The main challenge in showing the exponential stability
of this system comes from the coupling among the set of
equations in (18) (also represented by the matrix I'(k —1) in
(21)), and the coupling among the mixed initial conditions
(6). Before we consider the stability of this system, we
can gain much motivation by considering the exponential
stability of a single Kalman filter.

C. Stability of the Kalman filter
Consider a discrete time stochastic system

(k) = A(k)z(k — 1) + B(k)w(k) (25)

2(k) = C(k)z(k) + v(k) (26)

where A(k) is nonsingular; w(k) and v(k) are white zero-
mean Gaussian noise vectors with covariance (k) and R(k)
respectively. The covariance P(k|k) of the Kalman filter for
the system (25)-(26) is given by

P(klk) = {[A(k)P(k — 1|k — 1) AT (k)+
B(k)Q(k)BT (k)] ™' + CT(k)R™ (K)C(k)}
We define the function Y (P) as

1 @7

Ti(P) :={[A(k)PAT (k) + B(k)Q(k) BT (k)] "'+
1 (28)
CT(k)R™'(k)C(k)}

Then the covariance P(k|k) is given by

PklE) = Te(Txr (. T1(PO]0))...)  (29)
Next, we present the following concepts of uniform con-
trollability and uniform observability [7]:
Definition 2: Uniform Controllability. We define a transi-
tion matrix ®(k,) as follows:

Ok, k) = I,  ®(kk—1):= A(k)
O(k,i) = P(k,k—1)0(k—1,i) for k>
(ki) = (i, k) for k<
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The system (25)-(26) is uniformly controllable if there exist
a positive integer /N and scalars k1 > 0, k3 < 0o such that

k
TEEDS
i=k—N+1
Definition 3: Uniform Observability. The system (25)-
(26) is uniformly observable if there exist a positive integer
N and scalars k3 > 0, k4 < 0o such that

®(k,i)B(i)Q(i) BT (i)®" (k,i) < kol

k
ksl < Y @T(6,k)CT (i + )R (i + 1)C(i + 1)D(i, k)
i=k—N

S H4I

Deyst and Price [5] have then shown the following results:
Lemma 1: If the system (25)-(26) is uniformly control-

lable and uniformly observable, and if P(0|0) > 0, then the

Kalman filter covariance given by (29) is uniformly bounded

from below and from above for all £ > N, that is

1
I < P(klk) < (H—l-lig)I k>N
3

1—|—/<;/{

For stability (or convergence of state estimation error e(k))
of the Kalman filter, we consider the system (c.f. (20)) [5]

e(k) = P(k|k)P~ (k|k — 1) A(k)e(k — 1)
= [ = K(k)C(k)]A(k)e(k — 1)
where K (k) is the Kalman filter gain given by

K(k) = P(k|k—1)CT (k)[C(k)P(k|k—1)CT (k) +R(k)]~*
(€1))

(30)

We define a Lyapunov function
V(e(k),k) = e (k) P~" (k|k)e(k)
From Lemma 1, we see that (c.f. (23)) [5]
plle(®)|* < V(e(k), k) < pafle(k)]*
Furthermore, Deyst and Price [5] has shown that
V(e(k), k) = V(e(k = N),k = N) < —pslle(k)||* <0

Deyst and Price [5] then proved the following theorem:

Theorem 1: If the system (25)-(26) is uniformly control-
lable and uniformly observable, then the system (30) is
globally exponentially stable.

ITII. STABILITY OF THE IMM ALGORITHM
A. A lower bound for P;(k|k)

We would like to use a similar approach as above to
show stability of the IMM algorithm. First, we would like
to use Lemma 1 to derive a lower bound for P;(k|k) of the
IMM algorithm. However, although the system (1)-(2) can
be considered as a special case of the time-varying system
(25)-(26), we cannot directly use the result of Lemma 1.
This is because the covariance update of the IMM algorithm
is more complicated than that of the (single) Kalman filter
due to the ‘mixing’ in step 1 of the IMM algorithm.

Due to space limitations the proofs for some of the
lemmas presented below are not given. The omitted proofs
may be obtained from any of the authors. We first rewrite

the covariance update equations of the IMM algorithm as
follows:
Let

Q5 (k) = A3 { 3" il — 1)k — 1k — 1)
i=1
IR H

Note that Q5(k) is a positive semi-definite matrix. Using
(32), we replace (6) and (10) of the IMM algorithm by the
following two equations:

zm

= A;P)(k — 1)AT 4+ Q5(k) + B;Q; B]
(34

(32)

#i0(k — D] [#:(k — 1|k — 1) — 50 (k —

—1lk—1) (33)

Py(klk = 1)

Next, we use the following lemma to overcome the com-
plexity in the covariance update due to the v;;(k — 1) terms.

Lemma 2: Given any positive definite matrices P;, i =
1,2,...,r; nonnegative scalars 7; with Z:Zl v; = 1; and
positive semi-definite matrices Q, R, we have

Hi%ﬂ+@]_l+ﬁf}_l > ivi{[Pi+Q]1+R}

We now presents the following result for the lower bound
of the covariance P;(k|k) of the IMM algorithm.

Lemma 3: Suppose the system (1)-(2) is uniformly con-
trollable and uniformly observable, then

-1

Piklk)>pI>0 k>N

Proof: Substituting (33) and (34) into (12), we have
with a change in notations of the subscripts,

{[ Z Virgu-r (b = 1) A5 P, (k

Jk—1=1

—-1 -1
+ Q50 + B, Q5 BL +CLR G )

P, (klk) = — 1|k —1)AT

Jk

Note that we use ji, jx—1, - - - to denote a sequence of modes
m(k) = jr,m(k —1) = jr—1,.... Using Lemma 2 and the
fact that Qf, (k) > 0, we have

Pl = 3" i, o~ D[4 (b~ 1)k~ AT
Jr—1=1
]t T p—1 -1
+ BijjkBjk} + Cijjk Cjk}
(35)

We define the function Y, ;(P) as
- -1

={[A;PA] + B;Q,;B] "' + C] R;'C;}
(36)
Comparing (28) and (36), Y ;(P) can be considered as a
special case of Y (P) (which gives the covariance update for

Ty, ; (P
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the Kalman filter of the system (25)-(26)) with A(k) = A;,
B(k) = Bj, etc. Using (35) and (36),

Z Virgn- (

Jr—1=1

Jk k‘k

= DTk (Pjy_y (k= 1[k = 1))

We can derive by iteration (using Lemma 2 repeatedly) that

P, (klk) = Z Z Vinir- 1 'lejo(O)P*(km)
Jrk—1=1 Jo=1
where
P*(kfk) = Y (Th-tgus (- T, (P 010)) - )

37

Comparing (29) and (37), we see that P*(k|k) can be

considered as the Kalman filter covariance of the system

(25)-(26), with A(k) = A;,, A(k —1) = A;, ., and so

on. Thus, using Lemma 1, there exists a positive scalar 3y
such that

Tis, (Tk,l,jkfl(...Tl,jl(P]—O(om))) ) > 31 (38)

for any jr_1,...,J0 € {1,2,...,7}. From (22),
ST oD Vi B =150 =1 (39)
Jrk—1=1 Jjo=1
Thus Py, (klk) > p11
|

B. An upper bound for P;(k|k)

In this section, we derive an upper bound for the covari-
ance P;(k|k). From (9) and (11), the set of gains K (k) of
the IMM algorithm are given by

K;(k) = P;j(klk — 1)CT[C; P;(klk — 1)C] + R;]™" (40)

Furthermore, from (40), we have

K;(R)R; K (k) = [I — K;(k)Cj)P;(k|k — 1)C] K[ (k)
(41)
From (33), we have
Z’m Pi(k[k)[I — K;(k)Ci) "+
(42)

Pi(k|k)CT KT (k)

Z%v

Substituting (19) and (34) into (42), and then using (41), we
have

P (k) = zr:%'i(k){[f — K;(k)Cy] [Ai P (k — 1) AT+
=1

Qi (k) + BiQiBT |l - Ki(k)Ci]” + K (k) ReK [ (k) }

We define a function
Xik(P K) :=[I — KC;][A;PA] + Q5 (k)+

43
BQBT| - KCJT + KRK™ )

Hence

lec Po(k

Z vji(k

The following lemma establishes that the set of gains
K(k) in (40) “minimizes” the covariance P} (k) [8].

Lemma 4: Suppose v;;(k) and Q$(k), for k > 0, 1,5 =
1,...,r, are given. Let K¢ (k) be an arbitrary sequence of
gains. ;. Define a sequence To(kz) with T7(0) given and

Z'Y]z

for k> 0,7 =1,2,...,r. Let P%(k) be the sequence given
by (44). Note that the gains K? (k) in (45) are arbitrary while
those in (44) are the gains of the IMM algorithm given by
(40). Then, if PJQ(O) < TJQ(()), it follows that Pjo(k) < Tjo(k)
for all k£ > 0.

Proof: In [8] (or see also [4]), it has been shown that,
for any K¢ (k),

1), Ki(k)) 44

)Xk (T7 (k — 1), K (k) (45)

Xi k(P (k = 1), Ki(k)) < xan (P (k = 1), K{'(k))
Now, suppose PO(k — 1) < TO(k — 1), then
Zvﬂ )Xk (P (k = 1), Ki (k)
< Z%z ik (PR(E — 1), K2(8))
< Z%z )Xok (T (k = 1), Ki (k) = T} (k)

Since P2(0) < TP(0), by induction, P?(k) < T?(k) for all
k>0. ]
We present the following corollary based on Theorem 1.
Corollary 1: Let F(k) = [I — K(k)C(k)]A(k). Suppose
the system (25)-(26) is uniformly controllable and uniformly
observable, then there exist gains K (k) such that Vk > ko,

|F(k)F(k—1)...F(ko)| < codi™ ¢4 >0,0< A < 1

We then have the following lemma that establishes an
upper bound for P;(k|k).

Lemma 5: Suppose the system (1)-(2) is uniformly con-
trollable and uniformly observable, then

Pj(klk) < 821, B2 <o00,k>N
Proof: Substituting F; = [I — KCi)A4,, Gi(k) =
THQe(k) + B,QiBI AT TFY + KAR,K? into (45)
yields

Zwﬂ J{RTO 0= 1)FT +Gilh) |
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By iterations, we have (with a change in the subscript

notations)
]k+1 Z Z 73k+1jk wo Vistds (s)
Je=1 js=1
[F L FTH(OFS . F+ (46)
EE:f?k-~-J?SC?u71(S-1)f§€--~f§2‘%(?n(k)]
s=1
Using Corollary 1, and considering A(k) = A,,, K(k) =

K$ (k), etc, there exist gains K7, (k), such that

I Fyy -y | < coXg™™ Wk > ko co > 0,X0 < 1
47
By taking the 2-n0rm on (46), and utilizing (22) and (47),
we see that || T} (k)| < ¢ < oo for all k& > 0. Hence,
T (k) is unlformly bounded from above, i.e. T} (k) < c1.
From Lemma 4, it follows that P} (k) < TO (k) < col.
Then, from (34) and (12), we see that P; (k|k) is uniformly
bounded from above.
|

C. Stability conditions for a special case

We define a Lyapunov function for the system (21) as

V(&(k), k) = max e; (k) Py (k|k)e; (k) (48)

J
where Q := {1,2,...,7}. From Lemmas 3 and 5, there exist
scalars k5 > 0, kg < oo such that

g max llej(k)|[? < V(e(k), k) < ke max llej (k)]
Furthermore, it can be shown that [9]

ma e () [° < [|é(h) [ < rma le;(B) 49)
Hence, V(é(k), k) satisfies (23). For exponential stability,
we need to show that V(é(k), k) also satisfies (24). We first
present the following lemmas which would be used later:
Lemma 6: Given any vectors y; and any positive definite
matrices M;, 1 = 1,2,...,r, of appropriate dimensions; and
nonnegative scalars 7; such that 22:1 ~v; = 1, we have

T T T _1 T T
(D ww) (o) (Doww) <Dl Mty
i=1 i=1 i=1 i=1
(50)
Lemma 7: For any positive semi-definite matrix M, any

nonnegative scalars +; such that Y., v, = 1, and vectors
y;, we have

Z%yz My, > [Zvy} [Zvy}

Lemma 8 Consider the system (21). For j =12,...,r,
we define the functions

Vi(ej(k), k) := ef (k)P

J

) = A 2{:792

L (k|k)e; (k) (51)

~1) (52)

uj(k) == [Py (k|k) Py (klk = 1) = I]y;(k)  (53)
Then, we have
k)SZ;'in(k_l)Vi (ei(k—1),k—1)— (54)

e (k)CT Ry 'Cie;(k) —
forall k>0,j=1,2,...,r
Proof: From (12) and (51),

Vj(e;(k), k) =ej (k) [Py (k[k — 1) +

uy (k) Py (k|k — 1)u; (k)

CJTR;ICJ} ej(k;)
Using (33), (34), (52) and (53), we have (see [5] for details)

Viesh.1) = [A4; 302k = et —1)] 4,
i=1

Z ik

4 Zvﬂ

o

— 1k = D)AT + Q5 (k) + B;Q;B] |

k-] -

Lkl — 1)u; (k)

The inequality (54) can then be proved using Lemma 6 and
the fact that Q5 (k) + B;Q; B} > 0.

J (R)CT R Cje;(k)

|
In the following, we will show that the IMM algorithm
is globally exponentially stable for hybrid systems which
satisfy the following conditions:
1) The system (1)-(2) is uniformly controllable.
2) The system (1)-(2) is uniformly observable and sat-
isfies the observability condition in Definition 3 with
N <2
3) The observation model (2) is the same in all modes,
ie. C;=Cand R,=Rforalli=1,2,...,r
Condition 3 above is common in hybrid state estimation
applications such as target tracking. Condition 2 is more
restrictive but it is still applicable in some applications such
as that in [10]. We conjecture that Condition 2 could be
relaxed to include general controllable hybrid systems which
satisfy the observability condition with any finite NV, and we
hope to extend the result here to the more general case in
future.
From Lemma 8, we can deduce the following:

‘?(ej(k) k) <

Z Z%z '71[

i=1 [=1

— 2)Vileulk — 2),k — 2) — J (k)

(55)

—1)CTR™1Cei(k — 1)+

Z’Yﬂ —1)e;
Z’YJ’L — Lu;

e; (k)CTR™'Ce;(k) + uj (k)P;"

Tk — )Pk — 1]k — 2)us (k — 1)

(k[k = D)u;(k)
(56)
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Using Lemma 7 and (52), we can write (56) as

Ji(k) >yl (k)ATTCTRTICAT y; (k)+
> itk = Vuf (k= 1)P7 (k= 1k — 2)u;(k — 1)
=1

+ e (k)CTR™'Ce;(k) + uj (k)P; ' (k|k — 1)u; (k)

7
Let
M; = A;TCTRTICA! (58)
From (20), (52) and (53), we have
Y (k) = ej(k) —u;(k) (59)

Substituting (58) and (59) into (57), we have (after simpli-
fying the notations by e; = e;(k), u;o = u;(k — 1) etc.)

Jj >(e5 —uy) " My(e; —uj) + Y vjudg Pl uio
=1
+ ejTCTR_lCej + uJTPj*luj = lj

(60)

We now consider the problem of minimizing J; with respect
to the variables wu;, and ;. By differentiation,

0J; _ ‘
au:, :2vjiu%PiOl i=1,2,...,7
o0J;
b T Tp—1
aiuj = —2(6j — ’U,J) MJ + 2Uj Pj
Putting the first derivatives to zero, we have
ity =0 1=1,2,...,r (61)
wi = (M; + P )~ Mje; (62)

Substituting (61) and (62) into (60), the minimum J; is

J; =ej [ — (M + Py )~ M) M
[[ — (Mj + Pj_l)ile]ej + efCTRilcej‘i’
ef M;(M; + P )7 Pt (M, + P )~ Me,
:e?[Mj — Mj(Mi + Pj_l)_le]ej + 6?CTR_1CEJ‘
(63)
Using (58) and the matrix inversion lemma,
[M; — M;(M; + P; 1)~ Mj]
= A;TCT[R™ = R'CA;Y(A;TCTRTICA '+
ijl)—lAjfTCTR—l]CAjfl
— AT T -1 —T ~T7—1 -1
=A; " C [R+CA; PjAT CT]7 CA;

Using Lemma 5, we can show that P; = P;(k|k —
1) is uniformly bounded from above, ie. P; < (3]
where 0 < (33 < oo. The matrices C, R and A; are
constant and bounded. Thus, it can be shown that [R +
CA;leAj_TCT]*l > (41 where (34 > 0.Therefore, from
(63),

I > Buel ATTCTCA ey + el CTR™ Cey

From (3), A;TCTR’lCAjl < fglA;TC’TC’Aj_l. Hence
J; > Babse] A;TCTRTICA e + €] CTR ™' Ce;

> Bse] [A;TCTRTICAT + CTR™1Cley

where 05 = min(£4&3,1) > 0. If Condition 2 holds, then
A;TCTR™CAT + CTR™'C > ksl
where k3 > 0. Thus,
J; > Bskslle; |
From (55), we have

Vi(e; (k) k) < maxVi(e(k = 2), k = 2) = Bsniale;

Using Lemma 3, we have

Vile; (), ) < max Vifer(k = 2),k — 2) = e1Vy(e; (4), )

where ¢ = (1053 > 0. Hence,
max V;(e; (k). k) <
max Vi(ei(k — 2),k — 2) — gleagclvj(ej(k)’ k)

= V(e(k),k)—V(elk—2),k—2) < —c1V(e(k), k)
< —calle(k)|?

"l:hus, if Conditions 1-3 holds, the Lyapunov function
V(é(k), k) satisfy (23) and (24). By Lyapunov’s stability
theorem, the IMM algorithm is globally exponentially stable.

IV. CONCLUSIONS

We have derived bounds on the error covariance and
presented sufficient conditions for the exponential stability
of the IMM algorithm. We are currently working on the
possible extension of the current stability conditions to
general controllable and observable hybrid systems.
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