
 
 

Abstract—In this paper, a fault diagnosis scheme for a class 
of time-varying faults using output probability density 
estimation is presented. The system studied is a nonlinear 
system with time delays. The measured output is viewed as a 
stochastic process and its probability density function (PDF) is 
modeled, which leads to a deterministic dynamical model 
including nonlinearities, uncertainties. The fault considered in 
this paper is time-varying, piecewise continuous with finite 
discontinuous points. A new adaptive fault diagnosis 
algorithm is proposed. An ideal estimation of the fault and its 
modified form are analyzed. Simulation example is given to 
demonstrate the effectiveness of the proposed approaches. 
Keywords—Fault detection and diagnosis; time delays; 
observer design; B-spline expansions; probability density 
function (PDF).   

 

I. INTRODUCTION 
As an important aspect for practical processes, such as 
large-scale chemical engineering processes, oil refining 
processes and aeronautical system processes, the safety and 
reliability problem of control systems has long been 
investigated [1-26]. For stochastic systems, the standard 
methodologies of the fault detection and diagnosis (FDD) 
or fault tolerant control (FTC) mainly include filter- or 
observer-based approaches, identification-based approaches, 
et al. [3-4], [17-20], [24]. Generally, the filter- or 
observer-based approaches suit systems with unknown 
input while identification-based approaches suit systems 
with unknown parameters [3-4], [17-20], [24] or their 
unpredictable change [29]. Up to now, most approaches 
concentrate on Gaussian systems. In fact, some processes 
exhibit asymmetric non-Gaussian distributions [17], the 
expectation/variance of the traditional Kalman filtering 
approach is obviously insufficient for characterizing such 
processes and hence the probability density functions (PDF) 
approach is needed. PDF approach is actually a shape 
control method. To approximate a kind of distributions, one 
way is to use statistical approaches, such as Monte-Carlo or 
particle filter approaches, where the Bayesian lemma and 
the likelihood method are used [27- 28]. Another way is 
function or functional approach, such as spline approach 
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[17-20], [24], where a B-spline expansions technique is 
used. 

In references [17-20], [24], a kind of general stochastic 
systems was investigated, where an output PDF approach 
via B-splines expansion technique was proposed. The 
B-spline bases represent different parts of an output 
distribution. In other words, one can determine details of 
the whole output through such an approach. The virtue of 
output PDF approach is that it transfers a stochastic system 
to a deterministic dynamical system, and hence the 
corresponding stochastic problem is transferred to a 
deterministic one . 

Since the stochastic system can be modeled as a 
deterministic one by using PDF approach, the conventional 
linear or nonlinear filter can tackle the corresponding FDD 
or FTC problem. Wang and Lin [17] presented a linear 
spline functional approach and a fault detection threshold. 
Guo et al. [19, 20, 24] put up a nonlinear functional 
approach named square root B-spline functional approach 
to further investigate FDD and FTC filter problems, where 
time delays, nonlinearity and modeling uncertainties are 
considered and some optimization performances such as 

2H  or H∞  are applied [19], [24]. Their filter of FDD 
and FTC scheme consists of two parts, one is conventional 
systems filter and the other is fault filter. The fault filter is 
designed to perform faults mapping and faults measurement, 
which is the key of FDD and FTC schemes. A drawback of 
those algorithms is that only constant unknown input is 
considered.  

This paper will continue our research on fault diagnosis 
to address a kind of time-varying faults. As a popular tool, 
linear matrix inequality (LMI) is used as a numerical 
method for its computing convenience. The remainder of 
this paper is organized as follows: In Section 2, some 
preliminaries on output PDF and related nonlinear system 
are introduced. The fault diagnosis problem is investigated 
in Section 3 where an adaptive filtering algorithm is 
provided. A fault tolerant controller is presented in Section 
4 and to simulation examples show the effectiveness of the 
proposed methods in section 5. 

 

II. SYSTEM DESCRIPTION 
Consider a dynamical system 

( ) ( ) ( ) ( )( ) ( ) ( ) ,dx t Ax t A x t d Gg x t Hu t JF t= + − + + +
i
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( ) ( ) ( ) ( ) ( ) ( )( ), , , ,y t f x t x t d u t t F tξ= − ,     (2) 

where ( ) nx t R∈  is the system state, ( ) mu t R∈  is the 

control input, ( )y t R∈  is the measured output, ( )tξ  

is the measurement noise or exogenous disturbance, ( )F t  

is the fault to be detected and diagnosed. A, Ad, G, H and J 
are constant matrices of appropriate dimensions. ( )( )g x t  

is a continuous nonlinear function satisfying Lipschitz 
condition, that is, there exists known matrix 1U  such that 

( )( ) ( )( ) ( ) ( )( )1 2 1 1 2g x t g x t U x t x t− ≤ −   (3) 

for any ( )1x t  and ( )2x t . 

The fault free system of (1) and (2) is a bounded input 
bounded output stable system. Assume that the measured 
output satisfies ( ) [ ],y t a b∈ . Based on the statistical 
information of sample data, the distribution function of the 
output sample can be obtained, and the corresponding 
probability density function (PDF) can be further studied. 
Of course, the output distribution law is usually 
complicated, which often results in the complexity of the 
output PDF. To obtain the output PDF, the B-spline 
approximation technique is often used. Under conditions of 

( ) ,u t ( )tξ   and ( ) ,F t  

( ){ }P a y t ξ≤ < ( ), ,
a

p z u F dz
ξ

= ∫  

defines a conditional probability on [ ], ,a b  where 

( )( ), , 0p z u t F ≥  is the corresponding conditional PDF. 

Let ( ) ( ), , , , , , ,t z u F p t z u Fγ =  then ( ), , , 0p t z u F ≥  

is always true. We assume the model 

 ( ) ( ) ( ) ( )
1

, , , , , , ,
q

i i
i

t z u F u F z z u Fγ β φ ω
=

= +∑ (4) 

where ( ) ,i zφ 1, 2, ,i q= "  are pre-specified basis 

functions ( ), ,i u Fβ 1, 2, ,i q= " are corresponding 
weighting functions. Assume that the model error ω  

satisfies ( )( ), ,z u t Fω δ≤  for all ( ){ }, ,z u t F , 

where δ  is a known positive constant. Due to 

 ( ){ } 1P a y t b≤ ≤ =  ( )2 , , 1,
b

a
z u F dzγ⇒ =∫  

( )ib z  1, 2, ,i q= "  are not independent. Assuming 

that ( )q zφ  can be described by ( )i zφ  

1, 2, , 1,i q= −"  ( ) ( )( ),q u F h tβ β=  is a function 

of ( ),i u Fβ  1, 2, , 1,i q= −"  that is 

( )( ) ( ) ( ) ( )( )1
3 2 3 0

Th t t t tβ β β β−= Λ −Λ + Λ − Λ  (5) 

where ( ) ( ) ( ) ( )1 2 1, , , ,
T

qt u F u F u Fβ β β β −⎡ ⎤= ⎣ ⎦"  

( ) ( ) ( ) ( )1 2 1 ,
T

qz z z zφ φ φ −⎡ ⎤Φ = ⎣ ⎦"   

( ) ( )1 ,
b T

a
z z dzΛ = Φ Φ∫ ( ) ( )2 ,

b T
qa

z z dzφΛ = Φ∫
( )2

3 0,
b

qa
z dzφΛ = ≠∫  0 1 3 2 2.TΛ = Λ Λ − Λ Λ  

  Obviously, ( )( )h tβ satisfies Lipschitz condition, that 

is, there exists matrix 2U  such that 

( )( ) ( )( ) ( ) ( )( )1 2 2 1 2h t h t U t tβ β β β− ≤ −  (6) 

for any ( )1 tβ  and ( )2 tβ . If ( )tβ  is known, the 
output PDF model is set up. We assume the model 

( ) ( ) ,t Ex tβ =                  (7) 
where E is a known matrix. Let 

 ( ) ( ) ( ) ,
TT

qt t tβ β β⎡ ⎤= ⎣ ⎦ ( ) ( ) ( ) ,
TT

qz z zφ⎡ ⎤Φ = Φ⎣ ⎦  

equation (4) can be further written as 

( ) ( ) ( ) ( ), , , , .
T

z u F z t z u Fγ β ω= Φ +   (8) 

The deterministic equations (1), (7) and (8) describe a 
stochastic process, where (7) and (8) characterize the 
probability feature of the output. 

As mentioned in section 1, only constant faults have 
been restricted in previous works [19-20], [24]. We will 
focus on a kind of time-varying faults in the following. 
 
Assumption 1: The following assumptions on fault are 
made in this paper 

1) ( ) ( ) ( ) ( )1 2, , ,
T

mF t F t F t F t= ⎡ ⎤⎣ ⎦"  ( 0t > ) is 

piecewise continuous with finite discontinuous points at 
,it t= 1 20 rt t t< < < <"  and there exist ( )iF t =  

( ) ( )lim
i

i t t
F t F t+

+
→

= and ( ) ( )lim ,
i

i t t
F t F t−

−
→

=  

1 i r≤ ≤ ; 

2) ( )F t ( 0t > ) is differentiable except for 

it t= ,1 i r≤ ≤  and its right-derivative ( )iF t +
i

 exists at 

,it t=  1 i r≤ ≤ , where 

 ( ) ( ) ( )( )0
lim ;i i it

F t F t t F t t+
+

∆ →
= + ∆ − ∆

i
  

3) There exist scalars 1 0M >  and 2 0M >  such 

that ( ) 1F t M≤ , ( ) 2F t M≤
i

 for 0t >  and 
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,it t≠  1 i r≤ ≤  and ( ) 2iF t M+ ≤
i

 for all ,it t=  

1 .i r≤ ≤  
 

Remark 1: In most present literature, the fault related is 
usually an unknown constant input or a bounded 
differentiable input with bounded derivative. Assumption 1 
generalizes the case to the faults with discontinuities. In 
another aspect, the property of bounded derivative or 
right-derivative is very important, it follows that the filter 
of the fault in the following has bounded derivative or 
bounded right-derivative. 

The system of (1), (7) and (8) being a deterministic 
formulation, the standard filter-based approach can be used 
to diagnose the fault. In the next section we will design an 
adaptive filter to estimate and to map the fault. Furthermore, 
we can obtain an ideal form of the fault by analyzing the 
fault dynamical equation. 

III. ADAPTIVE FAULT DIAGNOSIS 
The following adaptive filter is applied 

� ( ) � ( ) � ( ) � ( )( )dx t Ax t A x t d Gg x t= + − +
i

 

 ( ) ( ) l ( ) ,Hu t L t J F tε+ + +         (9) 

l ( ) l ( ) ( )1 2 ,F t F t tε= −ϒ + ϒ
i

               (10) 

( ) ( ) ( ) � ( )( ), , , , , ,
b

a
t z t z u F t z u dzε σ γ γ= −∫   (11) 

� ( ) ( ) l ( ), ,
T

z u z tγ β= Φ                    (12) 

l ( ) � ( )t Ex tβ =                             (13) 

where � ( )x t  is the estimation of the state, 

l ( ) l ( ) l ( ) l ( )1 , , , ,
T

i mF t F t F t F t⎡ ⎤= ⎣ ⎦" " is the 

estimation of ( )F t , n sL R ×∈  is the filter gain to be 

determined. Unlike the classical filtering methods, the 
residual signal ( )tε  is formulated as an integral of the 

difference between the measured PDF and the estimated 
one, where ( )z Rσ ∈  is a pre-specified weighting vector 

defined on [ ],a b . In fact, ( )tε can be regarded as a 

generalized distance or difference of two PDFs. 

1( 0)ϒ > and 2ϒ  are learning operators to be determined. 

Let ( ) ( ) � ( )x t x t x t= −� , � ( )( ) ( )( ) � ( )( ) ,g x t g x t g x t= −   

� ( )( ) ( )( ) � ( )( ) ,h x t h x t h x t= − the estimation error system of 

(1) and (9) is formulated as (14), 

� ( ) ( ) ( ) ( ) � ( )( )1 dx t A L x t A x t d Gg x t= − Γ + − +
i

� �  

� ( )( ) l ( ) ( ) ( )2 2L L h Ex t JF t JF t L t− Γ − Γ − + − ∆  

( ) ( ): AX JF t L t= + − ∆                    (14) 

where [ ]1 2dA A L A L G J= − Γ − Γ − , 

( ) ( ) � ( )( ) � ( )( ) l ( ) ,
TT T T T TX x t x t d h Ex t g x t F t⎡ ⎤= −⎢ ⎥⎣ ⎦

� �

and 

( ) ( )1

b T

a
z z EdzσΓ = Φ∫ , ( ) ( )2

b

qa
z z dzσ φΓ = ∫ , 

( ) ( ) ( ), ,
b

a
t z z u F dzσ ω∆ = ∫    (15) 

It can be seen that 

       ( ) ( ) � ( )( ) ( )1 2 .t x t h E x t tε = Γ + Γ + ∆�  (16) 

Since ( )( ), ,z u t Fω δ≤ , we have 

( ) ( ) ( ) �, ,
b

a
t z z u F dzσ ω δ∆ = ≤∫ , i ( )b

a
z dzδ δ σ= ∫  (17) 

Assume that (0)x  is known and (0)x�  can be assumed 
to be zero or sufficiently small. 
 

Theorem 1: The solution of error system (14) is bounded 

and satisfies ( ) l 2
( )x t F t M⎡ ⎤ ≤⎣ ⎦� , if there exist matrices 

0P > , 0Q > , R , L  and constants 0µ > , 0κ >  
satisfying 

  
11 21 31

21 1

31

2 0 0
0

T TI
I

I

µ
κ

⎡ ⎤Ψ + Ψ Ψ
⎢ ⎥Ψ = Ψ − ϒ + <⎢ ⎥
⎢ ⎥Ψ −⎣ ⎦

   (18) 

and 1L P R−= , for all [ )0,t ∈ ∞ ,where iδ  is defined 

by (10), and  
� �( )21 1 2 2 2

1 1 2 2 1max{ , } 2 TM M J J Mµ κ θ δ δ θ− − − −= + ϒ + , 

1 2

11 2
2 1

2
2

0 0
0 0
0 0

d
T
d
T T

T

PA R PG
A P Q

R I
G P I

λ
λ

−

−

Π − Γ⎡ ⎤
⎢ ⎥−⎢ ⎥Ψ =
⎢ ⎥−Γ −
⎢ ⎥−⎢ ⎥⎣ ⎦

 , 

( ) ( )1 1 1
TPA R PA R QΠ = − Γ + − Γ + , 

21 2 1 2 20 0TJ P⎡ ⎤Ψ = − + ϒ Γ ϒ Γ⎣ ⎦ ,  
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1
1 1

1
2 2

31
1

2

0 0 0
0 0 0
0 0 0
0 0 0

T

U E
U
R
P

λ
λ
θ
θ

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥Ψ =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, 

for some ,iλ iθ  with 0,iλ >  0,iθ > 1, 2i = . 
 

By Euler formula, for any sufficient small t∆ , it 
follows from the fault filter (10) that 
l ( ) ( ) l ( ) ( )1 2F t t I t F t t tε+ ∆ = − ϒ ∆ + ϒ ∆ .                      

Then, 
l ( )F t n t+ ∆ ( ) l ( )1

nI t F t= − ϒ ∆  

+ ( ) ( )( )
1

1 2
0

1 .
n

i

i

I t t n i t tε
−

=

− ϒ ∆ ϒ + − − ∆ ∆∑  

With the diagnosis filter, we need l ( )F t n t+ ∆  

( )( )0F t→ ≠ and ( )( ) ( )1t n i t tε ε+ − − ∆ →  

( 0,1, , 1i n= −"  and ( )tε  is small enough) when 

0.t∆ → Then, for large enough t , we have 
l ( ) ( )1

1 2F t tε−= ϒ ϒ            (19) 

Equation (19) reflects the relationship between the residual 

signal ( )tε and the fault estimation l ( ).F t  If the filter is 

so well designed that ( )tε  tends to zero when t → ∞ , 
1

1 2
−ϒ ϒ  should be sufficiently large for non-zero fault, 

which needs a sufficiently small solution of 1.ϒ  It means 
that a well effective diagnosis filter needs a small enough 
residual ε  and a small enough learning rate 1ϒ . Thus we 
have the following conclusion. 
 
Theorem 2: Given the fault estimation 

l ( ) l ( ) ( )1 2F t F t tε= −ϒ + ϒ
i

, where 1 0ϒ >  and 2ϒ  

are designed learning rates, ( )tε  is the residual signal, 
then its ideal fault estimate is given by 
l ( ) ( )1

1 2F t tε−= ϒ ϒ . 
 
Remark 2: We note that the ideal fault estimation 
l ( ) ( )1

1 2F t tε−= ϒ ϒ  is an analysis result under ideal 
modeling case, that is, the modeling is precise. The estimate 
precision depends on the learning rates 1ϒ  and 2ϒ . If 
the system is subject to process noise, exogenous 

disturbance and modeling error as usual, their effects may 
be amplified by 1

1 2
−ϒ ϒ  through ( )tε . 

Observe that in the residual formulation (16), the term 

( ) ( ) ( ), ,
b

a
t z z u F dzσ ω∆ = ∫  relates to the modeling 

error ( ), ,z u Fω , l ( ) ( )1
1 2F t tε−= ϒ ϒ  is precise if and 

only if ( ) 0t∆ = . Otherwise, when ( ) 0t∆ ≠ , the 

estimation should be modified 

 l ( ) ( ) ( )( )1
1 2F t t tε−= ϒ ϒ − ∆ .       (20) 

 
Theorem 3: Given the fault diagnosis filter (9-13), the fault 

estimate is given by l ( ) ( ) ( )( )1
1 2F t t tε−= ϒ ϒ − ∆ , 

where 10 I< ϒ �  and 2ϒ  are determined by Theorem 

1, ( )tε  is defined by (16) and ( )t∆  is defined by (15). 

 

IV. SIMULATION EXAMPLE 
A linear system on papermaking process is considered in 

reference [20], 
,x Ax Hu JF= + +�               (21) 

with output (3) and (6), where ( ) ( ) ( )0 2u t u t Dx t= = − , 

{ } 9 90.2,0.2, ,0.2H diag R ×= ∈" ,  

{ }0 0 1.4 0 0 0 0 2.25 0J diag= , 9D E I= = , 

0 .83 0 .25 0 0
0 .1 0 .83 0 .25 0
0 0 .1 0 .83 0 .25
0 0 0 .1 0 .83
0 0 0 0.1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

A

−⎡
⎢ − −⎢
⎢ − −
⎢ − −⎢
⎢= −
⎢
⎢
⎢
⎢
⎢
⎢⎢⎣

  

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 .2 5 0 0 0 0
0 .8 3 0 .2 5 0 0 0
0 .1 0 .8 3 0 .2 5 0 0
0 0 .1 0 .8 3 0 .2 5 0
0 0 0 .1 0 .8 3 0 .2 5
0 0 0 0 .1 0 .8 3

⎤
⎥
⎥
⎥
⎥
⎥
⎥−
⎥

− − ⎥
⎥− −
⎥

− − ⎥
⎥− − ⎥⎦

 

( ) ( ) ( ) ( )1 2 10, , , ,
T

z z z zφ φ φΦ = ⎡ ⎤⎣ ⎦"  

( ) ( )( )2 2exp ,i i iz z zφ σ −= − −  
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( )0.003 0.006 1iz i= + − , 

0.003,iσ = 1, 2, ,10.i = "  
It is assumed that the model is so precise that 

( ), , 0.001z u Fω ≤ . Then 9 9
1 90.05U I R ×= ∈  is 

reasonable due to (4). At the same time, 9 9
2 0U R ×= ∈  

is natural for linear system. To diagnose the fault in (29), 
filter of (9)-(13) is adopted, where ( ) 0.5zσ = . The 

following results are obtained based on (15) and (17), 
3

1 [6.3 7.5 7.5 7.5 7.5 7.5 7.5 7.4 5.0] 10−Γ = ×  

2 0.0063Γ = , ( ) �53 10t δ−∆ ≤ × = . 

In this case, the initial value of the filter is with � ( )0 0x ≡  
9R∈  for all 2 0t− ≤ ≤  while the initial values of the 

plant (21) are 

( ) ( )
( ) ( )
( ) ( )
( ) ( )

1

2

5

9

3 4 6 7 8

2.05 exp 5

1.05 exp 5

2.05 exp 5

3.0 exp 5
0

x t t

x t t

x t t

x t t
x x x x x

= + −⎧
⎪

= + −⎪
⎪ = − + −⎨
⎪ = + −⎪
⎪ = = = = =⎩

 ( 2 0t− ≤ ≤ ). 

In this example, the fault is assumed to occur at the 40th 
second with the values 

1

0 40
40 120 ,

1.3 120

t
F F t

F t

<⎧
⎪= ≤ <⎨
⎪ ≥⎩

 

1 [0,0,1.36 0.05sin( ),0,0,0,0,2.25 0.05sin( ),0]TF t tα α= + + . 

Choose 1 2 0.55λ λ= = , 1 2 0.1θ θ= = , by Theorem 1, 
we have the following results 

[0.0058 0.0081 1.9074 -0.0042L =  

]-0.0010 -0.0068 -0.0576 5.1125 0.0229 T
, 

[ ]2 0 0 20.0609 0 0 0 0 33.7806 0 Tϒ = , 

4.4340e-004µ = , 9.0085e-004κ = , 
 

1

0 .0 0 9 7 0 0 0
0 0 .0 0 9 7 0 0
0 0 0 .0 1 7 2 0
0 0 0 0 .0 0 9 7
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 .0 0 1 6 0
0 0 0 0

⎡
⎢
⎢
⎢
⎢
⎢
⎢ϒ =
⎢
⎢
⎢
⎢

−⎢
⎢⎢⎣

 

0 0 0 0 0
0 0 0 0 0
0 0 0 0.0016 0
0 0 0 0 0

0.0097 0 0 0 0
0 0.0097 0 0 0
0 0 0.0097 0 0
0 0 0 0.0157 0
0 0 0 0 0.0097

⎤
⎥
⎥
⎥−
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥⎦

. 

Figure 1 shows the 3-D plot of output probability 
information, there are 2 distinct changes in the 3-D plot at  
the 40th second and the 120th second, respectively. Figure 2 
shows that the residual tends to zero vicinity rapidly. Figure 
3 shows the fault and its estimate. From Figure 1 to Figure 
3, it can be seen that the proposed fault diagnosis algorithm 
is effective for time-varying piecewise fault with finite 
discontinuous points. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1 3-D Mesh Plot of Plant for FDD

Fig.2 Residual response for FDD 

Fig.3 Fault and its Estimate 

time

time
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V. CONCLUSION 
In this paper, a fault diagnosis scheme for a class of 

time-varying faults using output probability density 
estimation is presented. The system studied is a nonlinear 
system with time delays. The measured output is viewed as 
a stochastic process and its probability density function 
(PDF) is modeled, which leads to a deterministic dynamical 
model including nonlinearities, uncertainties. The fault 
considered in this paper is time-varying, piecewise 
continuous with finite discontinuous points. A new 
adaptive fault diagnosis algorithm is proposed. An ideal 
estimation of the fault and its modified form are analyzed. 
Simulation example is given to demonstrate the 
effectiveness of the proposed approaches. 
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