
  

  

Abstract—This paper introduces a broadcast feedback 
approach to controlling the aggregate behavior of a population 
of cells. Control of the angiogenesis process, which is known to 
exhibit stochastic behavior, is the target application. A simple 
model is considered that assumes a cloud of independent cells 
that need to be controlled to a specific location or along a 
trajectory. Each cell makes a random decision to move to the 
right, to the left, or remain in its current location at each time 
step. Additionally, each cell has a unit time refractory period 
after a movement during which it cannot move again. Because 
the cells live in a “wet” environment, it is not feasible to control 
their behavior independently. Instead, the system output is the 
centroid of the cloud, and the controller uses the error between 
the output and the reference to broadcast a single probability of 
transitioning to the ensemble of cells. Conditions for stability in 
the output are obtained using a stochastic Lyapunov function. 
An analysis of the dispersion of the cloud of cells is given. 
Additional intercellular regulatory behavior is added to better 
represent a real system and leads to a method of variance 
control under some additional assumptions. Simulation verifies 
the theoretical results and affirms that aggregate output can be 
stably controlled to a reference or along a trajectory. 

I. INTRODUCTION 
ngiogenesis is the process of creating a vascular 
network in a tissue matrix. Understanding and 
controlling angiogenesis is critically important for many 

pathological and physiologic research areas, ranging from 
cancer treatment and wound healing to morphogenesis, stem 
cells, and tissue engineering. It is known that angiogenesis is 
a stochastic process where vascular cells (endothelial cells) 
sprout, branch out, and reconnect to other cells. Occurrences 
of sprouting, branching, and extension are stochastic, having 
probabilities modulated by both local and global stimuli [1], 
[2]. Regulating and manipulating the angiogenesis process 
by means of active, real-time control is a truly challenging 
research issue, which will have a significant impact upon 
broad biological engineering and medical fields.  
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 Angiogenesis and other biological processes are 
fundamentally different from traditional engineering systems 
where control technology has been successfully applied. 
First, the system consists of a vast number of cells that have 
local controllers to perform a specific class of functions. 
Collective behavior of the cells exhibits meaningful 
functionality, such as constructing a vascular network. 
Second, cells are living in a “wet” environment, where 
signals propagate through diffusion. Stimuli to the process 
pervasively affect all the cells involved in the wet 
environment. 

 
Figure 1: Broadcast feedback of cellular systems. 
  

In constructing a control system, we have to note these 
features that are specific to biological systems. Figure 1 
portrays the nature of biological control systems. The plant is 
a cell population comprising a vast number of individual 
cells. Their aggregate output Y is the controlled variable we 
wish to regulate or manipulate. The feedback controller 
evaluates the discrepancy between the aggregate output and 
its reference, and sends the error information to the cell 
population. It should be noted that the communication 
between the feedback controller and the individual cells is 
via the wet environment. Unlike traditional control systems, 
where control commands can be directed to individual units 
with discrete address bits, the communication in the wet 
environment is “broadcast” in nature. It is difficult or 
inefficient to generate and send each control command to 
each cell. Input stimuli will influence the entire cell 
population as it is unrealistic to think that we can manipulate 
individual cells selectively. Interventions in this case are 
limited to global, non-selective means, such as shear stress, 
pressure gradient, and biochemical factors concentration; 
called control factors. In turn, the process that we would like 
to control is not metered in terms of individual cell 
performance, but rather an aggregate output obtained from a 
vast number of cells. Each cell behaves stochastically, and 
therefore it does not reflect the global state of the process. 
Thus, “ensemble” behavior of a cell population is inevitably 
the variable to be controlled and describes the objective of 
the control system.  
 The authors’ group has presented the framework of this 
“Broadcast Feedback” control and has developed a 
methodology for designing a stable stochastic regulator [3], 
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[4],[5]. The theoretical foundation of the stable stochastic 
regulator stems from the seminal work on stochastic dynamic 
systems by Doob [6] and stochastic Lyapunov functions by 
Kushner [7],[8]. The method has been applied to cellular 
muscle actuators comprising a number of ON-OFF actuator 
units. It has been demonstrated that broadcast feedback 
based on stochastic recruitment can stably control the 
ensemble of the vast number of ON-OFF actuators, i.e. the 
aggregate output successfully tracked an arbitrary trajectory 
[4],[5].  
 The objective of this paper is to apply this broadcast 
feedback to a simple angiogenesis process. A simple model 
describing individual cell behavior as well as aggregate 
behavior will be presented, and stability conditions based on 
stochastic Lyapunov functions will be developed. Simulation 
experiments will verify the theoretical results.  

II. MODELING AND CONTROL OF A STOCHASTIC CELL 
POPULATION 

A. Control Overview 
Angiogenesis is a highly complex process. It is beyond the 

scope of this paper to include many facets of the process. 
Rather, this paper focuses only on the migration process of 
Endothelial Cells (EC) in response to control factors globally 
affecting a cloud of ECs. Figure 2a illustrates the migration 
process of ECs induced by a tumor that emits tumor 
angiogenesis factor (TAF). ECs sprout out from a blood 
vessel and migrate toward the tumor in response to TAF 
propagating through the tissue matrix. Based on the literature 
of angiogenesis, the following properties of angiogenesis are 
known (some of which we will take into account in our 
simple model): 

• Individual ECs make discrete state transitions labeled 
as: Migrating, Dividing, Staying, and Dying. When 
Migrating, the EC moves to an adjacent spot in the tissue 
matrix; when dividing, it goes through a cytokinesis process 
to create another EC; when staying, it does not do anything; 
and when dying, it dilutes and disappears. 

• Once each EC has made a state transition, it cannot 
make another transition for a certain time period, i.e. a 
refraction period. 

• When each EC is not in a refraction period, it makes a 
discrete state transition stochastically, which is affected by 
the control factors received by the EC. 

One of the missing links in the literature is the lack of 
explanation for how control factors influence the state 
transition. Although many control factors have been 
identified, it is not known how these factors affect the state 
transition process. Some qualitative mechanism descriptions 
have been supplied, but their quantitative understanding 
remains a challenging issue. Based on published data as well 
as the in vitro experiments conducted by the collaborators of 
the authors, we hypothesize in this paper that these control 
factors influence the stochastic state transition by modulating 
the transition probabilities. In other words, the cellular state 
transition probabilities, pij, are functions of control factors. 
This modeling assumption has not yet been fully supported 

by experiments, but it is natural to assume this property, 
which allows us to build a quantitative model and analyze 
the process dynamics. This thought experiment will elucidate 
important aspects of the angiogenesis process. 

 
Figure 2: Endothelial cell migration (a); and cloud of N independent cells at 
locations i

ty  with centroid tY  at time t broadcast controlled in 1 
dimension to a reference location, r (b). 

B. Simple Cell Model 
Consider a cloud of N independent cells that we wish to 

migrate toward a target position in one dimensional space. 
See Fig. 2b. Each cell makes a stochastic decision to migrate 
one unit to the right (+1), one unit to the left (-1), or stay at 
the current position. After a cell moves, it enters a refractory 
period during which it is unable to move again for one time 
step.  

We have a means of controlling the global probabilities p 
and q that a non-refractory cell will move the right and left, 
respectively during the next time step.  As described in the 
previous section, a variety of external stimuli may be used 
for global control. 

As shown in Fig. 2b, at time t, the cells are located at 
positions i

ty , where i is the cell index. The cloud centroid is 
given by 

 1 i
t t

i
Y y

N
= ∑  (1) 

and the error between the centroid and its desired location is  
 t te r Y= −  (2) 

The behavior of each cell is modeled as shown in Fig. 3.  
Based on the current global control and the time histories of 
each cell, the probabilities will be ( )1, , ,i i i i

t tv v p q y y −=  and 

( )1, , ,i i i i
t tw w p q y y −=  of moving forward and backward,  

respectively. 

 
Figure 3: Output transition state model of ith cell. 
 
The probabilities vi and wi incorporate the refractory 
behavior by being conditioned on the cell’s state during the 
current and previous time steps: 
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=⎪⎩

 (3) 

Thus, a cell refuses to move during the time step after its 
previous move. The full state of each cell is defined not only 
by its location i

ty , but also by whether it was at that location 
in the previous time step. 

Based on the position transition probabilities in Eq. (3), 
the expected position of each of the cells during the next 
time step can be written as 

 
1

1 1

1
1 1

|

|

i i i
t t t t

i i i
t t t t

E y y y y p q

E y y y y

+ −

+ −

⎡ ⎤= = + −⎣ ⎦
⎡ ⎤≠ =⎣ ⎦

 (4) 

and the variance can be written as 

 
( )21

1 1

1
1 1

|

| 0

i i
t t t

i i
t t t

Var y y y p q p q

Var y y y

+ −

+ −

⎡ ⎤= = + − −⎣ ⎦
⎡ ⎤≠ =⎣ ⎦

 (5) 

From Eqs.  (4) and (5), the expectation of the centroid is  

 ( ) ( )

( )

1 1

1 1
1 1 1

   :    :

| , , , , ,

1
i i i i
t t t t

N N
t t t t t

i i
t t

i y y i y y

R
t

t

E Y y y y y

y p q y
N

N
Y p q

N

− −

+ − −

∀ = ∀ ≠

⎡ ⎤⎣ ⎦
⎡ ⎤

= + − +⎢ ⎥
⎢ ⎥⎣ ⎦

= + −

∑ ∑

… …

 (6) 

where R
tN  is the number of cells that are outside of the 

refractory period, or ready, for their next transition. The 
variance of the centroid is given by 

( )21 1
1 1 1 2| , , , , ,

R
N N t

t t t t t
N

Var Y y y y y p q p q
N+ − −

⎡ ⎤⎡ ⎤ = + − −⎣ ⎦ ⎣ ⎦… …  (7) 

 These statistics will be used in the next section for 
determining the statistics of the system state, which will later 
be used for developing a stable control law. 

C. Controllable State 
We are interested in controlling the aggregate behavior of 

the cell population, understanding that only global control is 
available. This means that if we consider the full system state 
to be the locations of all cells at the previous two time steps, 
we cannot expect state convergence. In fact, as will be 
discussed in Chapter III, the individual cell locations tend to 
diverge in time.  

In order to consider stability (and develop a stable control 
law), we must define a system state that we have control 
authority over: the aggregate output. However, in general, it 
is not possible to write the state transition equations in terms 
of the aggregate output alone. 

We can reduce the problem to state transition equations in 
terms of output alone by considering unilateral control so 
that there is zero probability that a cell will move to the left 
when 0te > and zero probability that a cell will move to the 
right when 0te < : 

 
( )

( )

0, 0
 

, 0

0,
 

00,

t

t t

tt

t

e
p

p e e

eq e
q

e

<⎧
= ⎨ >⎩

<⎧
= ⎨ >⎩

 (8) 

Under assumption (8), 

 
1 1

1 1

1 1
1 1

, 0

, 0

N N
i i
t t t

i iR
t N N

i i
t t t

i i

N y y e
N

N y y e

− −
= =

− −
= =

⎧ ⎛ ⎞
− − >⎪ ⎜ ⎟

⎪ ⎝ ⎠= ⎨
⎛ ⎞⎪ + − <⎜ ⎟⎪ ⎝ ⎠⎩

∑ ∑

∑ ∑
 (9) 

which is valid because there is no ambiguity due to some 
cells moving backward which would be present if bilateral 
transitions were allowed. It follows, then, that 

 
( )
( )

1 1

1 1

1 , 0
1 , 0

t t tR
t

t t t

N Y Y e
N

N Y Y e
− −

− −

⎧ − + >⎪= ⎨ + − <⎪⎩
 (10) 

Now, assuming 1, 0t te e − > , Eqs. (6) and (7) can be recast in 
terms of the aggregate output alone as  

( )1 1
1 1 1 1

1 1

| , , , , , 1

| ,

N N
t t t t t t t

t t t

E Y y y y y p Y pY p

E Y Y Y

+ − − −

+ −

⎡ ⎤ = − + +⎣ ⎦
⎡ ⎤= ⎣ ⎦

… …
 (11) 

[ ]
2

1 1
1 1 1 1

1 1

| , , , , , 1

| ,

N N
t t t t t t t

t t t

p pVar Y y y y y Y Y
N

Var Y Y Y

+ − − −

+ −

−⎡ ⎤ = − +⎣ ⎦

⎡ ⎤= ⎣ ⎦

… …
 (12) 

Equations (11) and (12) follow naturally for other conditions 
on the global error (i.e. 1, 0t te e − < , 10, 0t te e −> < , 

10, 0t te e −< > ). 
The previous equations mean that all information required 

to determine the system behavior during the next time step 
can be written in terms of the aggregate output during the 
previous two time steps. Thus, the full system state is 
 [ ]1

T
t t tY Y −=X  (13) 

and the probability distribution of 1t+X is dependent on  

tX alone, so the process is Markovian: 
 ( ) ( )1 1 1Pr | , ,... Pr |t t t t t+ − +=X X X X X  (14) 

The control problem can now be fit into a standard 
stochastic control analysis as described in the next section. 
Before moving on, we should note that assumption (8) may 
seem artificial. However, it reduces the control architecture 
to a form that can be analyzed using standard stochastic 
control techniques. Also, it may not be unreasonable to 
assume that a cell, when needed at a certain location will 
have very low likelihood of traveling away from the location 
where it is required.  

D. Stability Analysis 
Since we are using a stochastic model to describe the 

cellular behavior, we cannot use traditional deterministic 
analysis to ascertain stability and a stable control law. 
Therefore we resort to a stochastic Lyapunov-like stability 
theory considered by Kushner [7],[8] and used by the 
authors’ group for controlling stochastically behaving 
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cellular actuators in [5]. Conditions for asymptotic stability 
adapted from [7] and [8] are given in Theorem 1. 

Theorem 1: Asymptotic Stability of Discrete Parameter 
System [7] 

Let ( )SV ε  be a scalar-valued, non-negative function 

satisfying ( ) 0SV = =0ε  and ( ) 0, 0SV > ≠ε ε . Define 

( ): s
mQ V m⎡ ⎤= <⎣ ⎦ε ε , m < ∞ . Let 0 1, ,...ε ε  be a vector 

valued discrete parameter Markov process, where 0ε is the 
initial condition in mQ . If a non-negative, real, scalar 
function ( )tk ε  exists such that the difference between 

( )S
tV ε  and the conditional mean ( )1 |S

t tE V +⎡ ⎤⎣ ⎦ε ε  at time 
1t +  is bounded as  

 ( ) ( ) ( )1 | 0S S
t t t tE V V k+⎡ ⎤ − − ≤⎣ ⎦ �ε ε ε ε  (15) 

in mQ , then tε  converges to 

 ( ){ }: 0t m mP Q k→ = ∩ =ε ε ε  (16) 

with a probability no less than ( )01 /SV m− ε . If ( )SV ε can 
be chosen such that m is arbitrarily large, then the probability 
of convergence is 1. 
 

( )S
tV ε  is referred to as a stochastic Lyapunov function. 

Let us assume that we wish the centroidal position to 
converge to the reference, r, which is a constant. The origin 
of the state tX  can be shifted to satisfy the theorem by 
defining the new state 
 [ ] [ ]1

T T
t t t tr r e e −= − =Xε  (17) 

Consider, then, the candidate Lyapunov function 

 
2 2

1 1

1 1/ 2
;                    

1 / 2 1
S T

t t t

t t t t

V

e e e e− −

−⎡ ⎤
= = ⎢ ⎥−⎣ ⎦
= − +

U Uε ε
 (18) 

which satisfies ( ) ( )0 and 0,  0S S
t t tV V= = > ≠0ε ε ε . 

For asymptotic stability, and to find a control law that 
provides stability, require 0S

tVΔ ≤ , where S
tVΔ is given by 

[ ]

1

2 2 2 2
1 1 1 1

2 2
1 1 1 1

2 2
1 1 1 1 1

|

|

|

| | |

S S S
t t t t

t t t t t t t t t

t t t t t t t

t t t t t t t t t t

V E V x V

E e e e e e e e e

E e e e e e e

Var e E e e E e e e e

+

+ + − −

+ + − −

+ + + − −

⎡ ⎤Δ ≡ −⎣ ⎦
⎡ ⎤ ⎡ ⎤= − + − − +⎣ ⎦ ⎣ ⎦
⎡ ⎤= − + −⎣ ⎦

⎡ ⎤ ⎡ ⎤= + − + −⎣ ⎦ ⎣ ⎦

ε

ε

ε ε ε

(19) 

using [ ] 22
t t tVar e E e E e⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦ to provide the last equality 

in Eq. (19). 
Consider 0te >  (a separate analysis must be done for 

0te < ):  

 

2
2

2

2
1 1

R R R
S t t t

t t t t

t t t

N N N
V p p e p e e p

N NN

e e e− −

⎡ ⎤ ⎡ ⎤
⎡ ⎤Δ = − + − − −⎢ ⎥ ⎢ ⎥⎣ ⎦

⎣ ⎦ ⎣ ⎦
+ −

 (20) 

where R
tN  is now defined by Eq. (10). For stability, 

0S
tVΔ ≤ : 

 ( ) ( )
2

2
1 12 1 0

R R R
t t t

t t t t
N N N

p p e p p e e e
N NN − −

⎛ ⎞
− − + + − ≤⎜ ⎟

⎝ ⎠
(21) 

which is a convex quadratic in p (assuming 1R
tN > ) with 

roots: 

 
( )2

1,2

2

1

2 1

R
t

t

R
Rt
t

N Ne
Np

N N
N

α− ±
=

⎡ ⎤−⎣ ⎦

 (22) 

where 

 ( ) ( )
2

2
1 121 4 1

R R
Rt t

t t t t t
N N

Ne N e e e
N N

α − −

⎛ ⎞
⎡ ⎤= − − − −⎜ ⎟ ⎣ ⎦

⎝ ⎠
 (23) 

and admissible transition probabilities: 0 1p≤ ≤ . 
 Equations (21) and (22) are written for 0te > , which 
means that either 10 t te e −< ≤  or 1 0t te e− ≤ <  under 
assumption (8). Either way, the quantity ( )1 1 0t t te e e− −− ≤ , 
which means that the left root 2 0p ≤ , and that the stable 
control law is governed by 0 and the right root: 

( )10 min 1,p p≤ ≤ . Stable policies for 0,1R
tN =  are 

apparent from Eq. (21). 
The complete control law guaranteed asymptotically 

stable by the stochastic Lyapunov function while 0te >  is 

 
( )
( )

10 max 1, 1
0 max 1, 1, 1/

0 1

R
t

R
t t

p p N
p p N e N

p otherwise
μ

⎧ ≤ ≤ >
⎪= ≤ ≤ = <⎨
⎪ ≤ ≤⎩

 (24) 

where ( ) ( )2
1 / 1t t t tN e e e Neμ −= − − . 

The control law for 0te <  can be developed similarly. 
Since a stable control law is available for every 1and t te e − , m 
is arbitrarily large and the probability of convergence is 1. 

III. CELL CLOUD DISPERSION 

A. Dispersion under Current Model 
A key feature of our control strategy is that we are 

controlling the aggregate behavior of the cell cloud and we 
have no command authority over individual cells. Since each 
cell moves stochastically and independently, the cell cloud 
will be more likely to spread out the longer the cloud is 
allowed to behave stochastically. This idea can be quantified 
by considering the variance of the distance, dij, between any 
two cells i and j. 

Assume that particle i has undergone i
tR  non-refractory, or 

ready, time steps and particle j has undergone j
tR  ready time 

steps at time t. Say that the cells start at a distance 0 0ijd = at 
time 0t =  and say that the random variable describing the 
change in distance from the motion of cells i and j are i

kδ  
and j

kδ , respectively where the k index denotes an instance 
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that each cell has been in the ready state. The distance 
between the cells at time t is given by 

 
1 1

i j
t tR R

i j
t k k

k k

d δ δ
= =

= +∑ ∑  (25) 

The probability mass function for kδ while the control law 
broadcasts movement to the right, 0 and q p const= = , is 
given by Table I, where the lack of superscript indicates 
either cell under consideration. 
 
Table I: Probability mass function of kδ while 0 q = , where a is 1 for the 
cell to the right and -1 for the cell to the left.  

kδ  0 a 

( )Pr kδ  1-p p 

From the probability mass function, 
 [ ] 2

kVar p pδ = −  (26) 
regardless of a. 

Thus the variance of the distance between two arbitrary 
cells is given by 
 ( )( )2i j

t t tVar d R R p p⎡ ⎤ = + −⎣ ⎦  (27) 
Note that Eq. (27) is still valid if the cells change place, 

(left-to-right) but that detail is omitted for simplicity. Since 
i
tR and j

tR are monotonically non-decreasing, a consequence 
of Eq. (27) is that the dispersion of the cell cloud is bounded 
only by the distance that the cloud must travel, or the number 
of time steps that the cells are behaving stochastically. Thus, 
while the output centroid of the cell cloud can be stably 
controlled, the cloud itself may be diverging. 

Even though the cloud may be diverging, the global control 
framework is still useful. In general, when controlling the 
development of a vascular structure, or other biological 
structure, the exact location of all structural cells does not 
need to be controlled. It may be the case that the cellular 
structure only needs to propagate in a general direction. In 
controlling angiogenesis, for example, it may only be 
necessary that more vasculature is provided to a region of 
ischemic tissue. It is not necessary to pinpoint control the 
locations of the growing blood vessels. 

B. Expected Time to Travel and Expected Dispersion 
Two important questions regarding cell cloud control are 

how long will it take for the centroid to converge to the 
reference, and how much variance is there in the cloud at that 
time? Beginning with the first question, consider a reference 
at r and a cell cloud centroid beginning at position 0Y = . In 
the ensemble sense, then, the expected number of forward 
movements, Z, of a particular cell is 
 [ ]E Z r=  (28) 
Then, the expected number of times that cell is in the ready 
state, RN , before reaching the reference, r, can be found 
using the law of iterated expectations 

 
1

|
RN

k R
k

E E N rδ
=

⎡ ⎤⎡ ⎤
=⎢ ⎥⎢ ⎥

⎣ ⎦⎣ ⎦
∑  (29) 

From Eq. (29) and knowing that kδ are i.i.d., 

 [ ] [ ]R
k

rE N
E δ

=  (30) 

where [ ]kE pδ = from Table I with 1a = . Finally, the 
expectation of the time, T, to convergence is approximated 
by 

 [ ] rE T r
p

≈ +  (31) 

where the additional r is due to the refractory time required 
after each cell transition. It should be noted that this is an 
approximation of the expected convergence time assuming 
that the controlled transition probability, p, is approximately 
constant during the majority of the cell travel. However, p is 
not constant as the centroid approaches the reference, as 
given by the control law (24). The answer to the second 
question follows from Eqs. (30) and (27) to yield that the 
variance (in the ensemble sense) of the distance between any 
two cells is approximated by 

 
[ ] ( ) ( )22 2 1T

k

rVar d p p r p
E δ

⎡ ⎤ ≈ − = −⎣ ⎦  (32) 

IV. SIMULATION 

A. Control to Fixed Reference 
There are a number of different ways that we may wish to 

control the cell cloud. As one example, a region of ischemic 
tissue may require perfusion, and endothelial cells may need 
to travel from nearby existing vasculature. Thus, we simply 
want the cells to travel as quickly as possible from their 
current location to the ischemic site. 
 To see how our control scheme works, consider a cloud of 

10N = cells that need to be moved from a starting location 
to the ischemic site, and that do not possess any local 
regulatory mechanisms. It may seem strange to consider only 
10 cells traveling from a previously existing vasculature. 
However, as previously mentioned, we are currently 
considering only the simple case of moving independent 
cells where they need to go. It may seem more realistic if the 
cells are thought of as vascular sprout tip cells, each acting 
independently of the other sprouts, and trying to make its 
way to the ischemic region. 
 One important point is that, in practice, it is not possible to 
control cell behavior deterministically. For example, if the 
reference location is to the right of the cell centroid, we 
cannot modulate the probability of moving to the right 
to 1p = . Thus, for these simulations, we will assume that the 
maximum attainable probability authority is 0.5 in either 
direction. Figure 4a shows the cloud of cells, all started at 
position 0 0iy = . The cells are controlled to a static location 

20r = (Fig. 4b) and separately to 100r =  (Fig 4c) using the 
maximum stable transition probability guaranteed stable by 
Eq. (24). 
 Figure 5 shows the behavior of the cell cloud centroid. 
Even though the cell cloud further disperses with greater the 
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distance the centroid has to travel, the centroid still 
converges to the correct reference.  

Figure 4: Cell cloud started at position 0 (a); and controlled to centroidal 
positions 20Y = (b); and 100Y = (c). 

 
Figure 5: Cell cloud centroid vs. time controlled to 20Y =  (a); and 

100Y = (b). 
 

Running the experiment 100 times for each reference, the 
average spatial variance of the cell cloud is 11.4 units 
squared for 20r = and 47.8 for 100r = . Using Eq. (32), 
multiplied by a factor of ½ (to look at the spatial variance of 
a cell instead of the distance between two cells) the expected 
spatial variance of an ensemble of cells with centroid 
traveling 20 units and transition probability 0.5p = is 
approximately 10, while the expected variance of traveling is 
approximately 100 units is 50. Thus the simulation matches 
with the analytical result. The simulation average result 
would converge to the analytical result as the number of 
trials is increased. 

B. Trajectory Control 
Another way we may wish to control the cell cloud is along 

a particular trajectory. For example, a new tissue bed may be 
growing, like an artificial muscle, that requires a vasculature 
to grow along with it. The vasculature cannot grow too 
slowly because the muscle will not be provided sufficient 
nutrients to keep growing or maintain health in the newly 
grown tissues. Additionally, the vasculature cannot attempt 
to grow beyond the bounds of the tissue because it will not 
form properly and may interfere with the tissue development.  
 Here we consider an exponential tissue growth requiring 
an exponential centroid trajectory starting at position 0 and 
terminating at 100 units. For the trajectory to be trackable, it 
is important that the rate of travel of the reference location is 
less than the maximum expected rate of travel of the cell 
centroid, which is given as 

 
[ ]

[ ]
1 max

max max
1

kt t

k

EY YE
t E

δ
δ

+ −⎡ ⎤ =⎢ ⎥Δ +⎣ ⎦
 (33) 

where kδ is the random variable describing the movement of 
an arbitrary cell that is in the ready state. Our maximum 
transition probability is 0.5p = , so [ ]1 max

/ 1/ 3t tE Y Y t+ − Δ = . 
The exponential trajectory tracking is shown in Fig. 6. 
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Figure 6: Reference trajectory and cell cloud centroid vs. time. 

V. INTERACTION AND VARIANCE CONTROL 

A. Cellular Interaction 
Cell dispersion is not something we would expect to see in 

a real biological system. Biological processes possess local 
regulatory mechanisms that guide cellular behaviors based 
on local requirements and conditions. For example, 
endothelial cells remain adjacent to each other and do not 
scatter when forming a new blood vessel. This chapter 
considers incorporating local control into the system model, 
but has to require that the location of each cell is directly 
measurable at each time step.  

There are many mechanisms that locally regulate cell 
behavior. Here we consider laws for intercellular attraction. 
Cellular attraction is one way to moderate the spatial 
variance of a cell cloud developed by global randomness. In 
fact, it may be possible to harness the opposing forces of cell 
attraction and global randomness to control the spatial 
variance of a cell cloud in addition to its centroid. The 
theoretical development of Chapter II required a unilateral 
broadcast control scheme so that the number of ready cells 
could be determined from the aggregate output alone. 
However, if bilateral transitions (i.e. , 0p q > ) were allowed 
in addition to intercellular attraction, it can be possible to 
control the variance of the cell cloud in addition to the 
centroid. 

For the following development, we remove the cellular 
refractory period for simplicity. This means that all cells are 
ready at each time step. Also for simplicity, we will assume 
that cellular interactions add with the ‘forces’ broadcast from 
the local controller. Thus, the probabilities of transitioning 
right and left become 
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min ,1 , 0
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p otherwise

q
w

q otherwise
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where ξ is the attractive ‘force’ due to cellular interactions. 
Here we consider both a linear attraction law 

 ( )
1

N
j i

t t
j

y yξ γ
=

= −∑  (35) 

 were γ is a parameter and an inverse square law  

 
( )2

1

N
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t ty y

υξ
β=

=
− −
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where β  and υ  are parameters. 
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B. Variance Control 
If we are considering cellular interactions in developing the 

control law, the aggregate output is not good enough and we 
need to know the location of each cell (which we assume can 
be directly measurable). We then define a new system state 

 1   
TN

t t ty yX ⎡ ⎤= ⎣ ⎦  (37) 
which completely defines the system behavior during the 
next time step and we define the quantities we wish to 
control to zero: 
 ( ) ( ) ( )[ ]Tt t t tr Y u SZ X = − −  (38) 
where u is the desired spatial variance and the spatial 
variance is 

 ( )2

1

1 N
i

t t t
i

S y Y
N =

= −∑  (39) 

From the work in [7], Theorem 1 can be generalized to 
guarantee asymptotic stability of tZ  if a Lyapunov function 

satisfying ( ), 0SV = =Z 0 X�  and ( ), 0, 0SV > ≠Z X Z� can be 
obtained. We propose the function  
 ( ) ( )2 2S

t t tV r Y u S= − + −  (40) 

and require 0S
tVΔ < , as in chapter II. 

 Unfortunately, it is not possible to obtain an analytically 
expressed control law for p and q because of the number of 
terms involved due to cellular interaction and the fourth 
moment of tY  in S

tVΔ  due to squaring of a variance . Thus, 
p and q satisfying 0S

tVΔ <  have to be determined using a 
search algorithm. Whether a stable control law exists 
depends on the parameters in Eqs. (35) and (36). 

C. Simulation 
We will again consider the case of cells moving from a 

start location at 0 to a reference location 100r = . In 
addition, we choose a spatial variance reference 30u = .  
Figure 7a shows the cell cloud after 500 time steps with the 
linear control law and 0.00001γ = . The final centroid is 

107.4Y =  and the variance is 34.0S = . Figure 7b shows 
the same simulation for the inverse square control law with 

0.0001ν =  and 0.01β = . The final centroid is 103.8Y =  
and the variance is 30.2S = . Since the variance is 
controlled to a nonzero reference, p and q will always be 
positive and thus there will always be wander in all of the 
cell locations as well as centroid and variance. 

 
 
Figure 7: Cell cloud controlled to centroid location 100Y = and variance 

30S =  using linear attraction model (a); and inverse square attraction 
model (b). 

VI. CONCLUSIONS AND FUTURE WORK 
This work has proposed a broadcast feedback control 

framework for controlling the position of a population of 
cells. The controller uses the aggregate output of the 
population, its centroid, to modulate the cellular transition 
probability, which is broadcast to the population. With 
broadcast control only, aggregate behavior is shown to be 
stably controllable even though the cell cloud is diverging. 
An approximate measure of expected cloud variance given 
distance to travel and transition probability authority was 
given. Theory validity was confirmed by simulation. 
Acknowledging that cell behavior is not divergent in real cell 
populations, we proposed intercellular attraction as a means 
of controlling spatial variance. By harnessing bilateral 
transitions it is possible to control the spatial variance of 
groups of attractive cells. However, to implement such a 
scheme, direct measurement of all cell locations is required.   

The authors are currently working to extend the control 
framework presented in this paper in two ways. First, we are 
working to eliminate the unilateral transition requirement 
when only an aggregate output is available. Secondly, we 
wish to incorporate more realistic local regulatory dynamics 
into the behavioral model and stability analysis.  

In the future, we will also extend the cell model to include 
cellular interactions, mechanical interactions in the form of 
shear forces, dividing, death, continuous motion in 3 
dimensions, and the relationship between chemical stimulus 
and cell transitional behavior.   
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