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Abstract— This paper introduces the subject of stability
radii for continuous-time infinite Markov jump linear systems
(MJLS) with respect to complex unstructured perturbations.
Among the results derived here we highlight: lower and upper
bounds for the radius; a connection between the radius and
a certain robust stability margin with respect to uncertainty
on the transition rate matrix of the Markov process; and an
explicit formula for the stability radius of two-mode scalar
MJLS. Some examples are addressed in an attempt to illustrate
the applicability of the main results, as well as some of their
limitations.

I. INTRODUCTION

Markov jump linear systems (MJLS) constitute an impor-

tant class of hybrid systems, which have attracted consider-

able interest of the control research community over the last

three decades or so. Its wide potential of applicability has al-

ready been illustrated by many applications in safety-critical

and high-integrity systems (e.g., aircraft, chemical plants,

nuclear power station, robotic manipulator systems, large

scale flexible structures for space stations such as antenna,

solar arrays, etc.), that is, systems which may experience

abrupt changes in their structure (see, for instance, [1] and

references therein).

Different studies of robust stability and stabilization prob-

lems for MJLS can be found from early references such as

[2], [3] until more recent papers such as, e.g., [4]–[7]. Of

particular interest here is the subject of stability radii of

MJLS, which was previously considered, for example, in [8]–

[13] (this last one being presently the only reference to have

addressed the so-called infinite case, in which the Markov

chain is assumed to take values in a countably infinite set).

We remark that none of these papers, however, did consider

the specific case where only unstructured perturbations may

occur on the system model, which is our main concern in

the present work.

This paper is devoted to the study of stability radii of

continuous-time infinite MJLS in the unstructured case. Dif-

ferent from [13], in which the robust stabilization of infinite

MJLS subjected to the more general structured uncertainties

was tackled mainly with the aid of H∞ control theory (the

one from [14]), here we assume that only perturbations such

as Ai Ã Ai +∆i (where Ai is the system matrix of the i-th
subsystem) may affect the system. This, in a parallel to [15],

[16], calls for an investigation of the stability criteria which
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25651-070, Brazil. E-mail: mtodorov@lncc.br and frag@lncc.br

apply to MJLS (such as, for instance, some results from the

Lyapunov theory of [17] or the spectral approach presented

in [18]).

Another problem of interest that we address here is that

which come up when uncertainties in the transition rate

matrix of the Markov process are allowed to occur. Although

this issue has already been considered in the literature within

a quite general framework (we refer to [5]), for the finite

case, one novelty to be found here is a connection between

the stability radius and a margin for robust stability with

respect to uncertainty on the transition rate matrix of the

Markov process. Moreover, the obtained results suggest that

quite precise estimates could be attained if we were to

take different definitions of stability radii into consideration,

indicating a potentially fruitful topic for further research.

This paper is organized as follows. In section II we provide

the bare essentials of notation to be employed in the rest

of the paper. Section III introduces a fundamental model

together with the notions of stability to be adopted, while in

section IV some novel issues regarding the complex stability

radii of infinite MJLS are presented. In section V attention

is given to the problem of uncertainty on the transition rate

matrix and its connection with the stability radius at hand.

Finally, section VI presents specific results regarding two-

mode jump systems, being followed by a few concluding

remarks at section VII.

II. NOTATION

Let ‖ · ‖ denote the euclidean norm in the complex

n-space C
n. We write M(Cm, Cn) as the Banach space

of all matrices M ∈ C
n×m, equipped with the standard

induced matrix norm, ‖ · ‖. Let also λ(M) denote the

spectrum of M ∈ M(Cn, Cn), with complex eigenvalues

λi(M), i = 1, . . . , n and maximal real part Re{λ(M)} :=
max {Re{λi} : λi ∈ λ(M)}. We define S := {1, 2, . . .}
(unless otherwise stated) and, given any complex matrix N ,

denote by M⊗N and M⊕N the Kronecker product and sum,

respectively (see, e.g., [19]). We also denote the complex

conjugate, transpose, and conjugate transpose of such M by

M̄ , M ′, and M∗, respectively, and let λmax(M) stand for

the greatest eigenvalue of M = M∗.

Let us introduce the infinite dimensional Banach space

H
m,n
sup of all matrices of the form H = (H1,H2, . . .) with

Hi ∈ M(Cm, Cn) for every i ∈ S := {1, 2, . . .}, such that

‖H‖sup := supi∈S ‖Hi‖ < ∞. We further write H
n
sup in

place of H
n,n
sup and define H̃

n+
sup as the set composed by all ma-

trices H = (H1,H2, . . .) ∈ H
n
sup such that H∗

i = Hi ≥ εIn

for all i ∈ S and some ε > 0 independent of i (here In stands

for the n × n identity matrix). Accordingly, we write that
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L ∈ H̃
n−
sup whenever −L ∈ H̃

n+
sup. In addition, we introduce

scaling parameters such as α̌ = (α1, α2, . . .) ∈ H
1
sup such

that αi > 0 for every i ∈ S, or α̌ ≻ 0 for short, and for any

M ∈ H
n
sup, we define α̌M := (α1M1, α2M2, . . .) ∈ H

n
sup.

Finally, we denote by diag(Mi) an infinite-sized matrix with

block diagonal entries M1,M2, . . ., and all the other entries

equal to zero.

Concerning the random objects, we fix a complete prob-

ability space (Ω,F, P) carrying a right-continuous filtration

Ft ⊂ F on t ∈ R+ := [0,∞). Additionally, we denote by

E(·) the usual mathematical expectation and define Ln
2 as the

space of all second order random variables (Ω,F) 7→ C
n.

III. MODEL SETTING AND PRELIMINARIES

Consider in (Ω, F, P) a homogeneous Markov process θ =
{(θt, Ft), t ∈ R+}, with right continuous sample paths and

state space S ⊆ N, such that

P(θt+dt = j|θt = i) =

{

λijdt + o(dt), i 6= j,

1 + λiidt + o(dt), i = j,
(1)

where 0 ≤ λij for i 6= j, and 0 ≥ λii = −
∑

j∈S\{i} λij

for all i ∈ S. Most of the time we will be dealing with the

countably infinite case S = {1, 2, . . .}, and put the additional

conservativeness hypothesis that there is ν < ∞ such that

|λii| < ν for each i ∈ S. The initial condition θ0 : Ω → S is

assumed to be a random variable with fixed distribution π0.

With θ defined in this way consider the following system:

{A, Λ} : ẋ(t) = Aθt
x(t), t ∈ R+, (2)

with initial condition x(0) = x0 ∈ Ln
2 . We refer to this

MJLS by the pair {A,Λ}, where A = (A1, A2, . . .) ∈ H
n
sup

is the state matrix associated with (2) and Λ = [λij ] is the

transition rate matrix of the jump process. For the sake of

brevity we shall denote this latter fact by θ ∼ Λ.

Before proceeding to the introduction of stability radii for

{A, Λ}, in the next section, it is necessary to first present

some basic facts and results concerning this system. To begin

with, let us introduce the following notion of nominal L2-

stability, on the basis of a widely adopted terminology in the

literature for MJLS.

Definition 1: System {A, Λ} is said to be stochastically

stable (SS, or just stable) if, for any initial condition x0 ∈ Ln
2

and initial distribution π0, we have that
∫ ∞

0

E[‖x(t)‖2]dt < ∞. (3)

▽▽

The following lemma summarizes two important results

borrowed from [18], regarding the stability of system {A, Λ}.

Namely, it states that SS holds if and only if the entire

spectrum of an augmented infinite dimensional matrix lies

in the open left half plane or, equivalently, if and only if

an infinite set of interconnected Lyapunov inequalities is

feasible.

Lemma 1: Let A(A, Λ) := Λ′ ⊗ In2 + diag(Āi ⊕ Ai).
Then system {A, Λ} is SS if and only if one of the following

equivalent conditions hold:

(i) Re{λ(A)} := sup{Re{λi} : λi ∈ λ(A)} < 0, where

A := A(A, Λ). (4)

(ii) There is P = (P1, P2, . . .) ∈ H̃
n−
sup such that T (P ) =

(T1(P ), T2(P ), . . .) ∈ H̃
n+
sup, where

Ti(P ) := A∗
i Pi + PiAi +

∑

j∈S

λijPj , i ∈ S (5)

▽▽

Notice that both Definition 1 and Lemma 1 deal only with

the nominal stability of system {A, Λ}. In the next sections

we shall be concerned with the main subject of this paper,

which is the robust stability of system {A, Λ} in face of

specific classes of perturbations.

IV. THE UNSTRUCTURED STABILITY RADIUS

Consider the following perturbed version of system (2),

ẋ(t) = (Aθt
+ ∆θt

)x(t), t ∈ R+ (6)

with x(0) = x0 ∈ Ln
2 , where ∆ = (∆1, ∆2, . . .) ∈ H

n
sup.

We denote such model for uncertainty by the map {A,Λ} Ã

{A + ∆,Λ} and assume, from now on, that the nominal

system {A,Λ} is SS.

In this paper we consider the following definition for the

stability radius of system {A, Λ}.

Definition 2: The (complex) stability radius of the SS

system {A, Λ} in face of unstructured perturbations such as

{A, Λ} Ã {A + ∆, Λ} is defined as

r({A, Λ}) = inf
∆∈Hn

sup

{‖∆‖sup : system (6) is not SS}.
▽▽

The stability radius corresponds to the size of the smallest

destabilizing perturbation, in an appropriate sense. It is a

direct measure of robustness for system {A,Λ} in that, the

larger the radius is, the more robust is the (stochastic) stabil-

ity of that system with respect to the class of perturbations

taken into consideration.

The following proposition states that the stability radius of

system {A,Λ} is homogeneous with respect to multiplication

by a scalar.

Proposition 1: The stability radius of system {A, Λ} is

such that, for every constant τ > 0,

τ r({A, Λ}) = r({τA, τΛ}). (7)

Proof: See the appendix.

Remark 1: A consequence of the above result is that a

scaling of the radius corresponds to a change on the jump

process’s dynamics – in the sense that, in general (we refer to

(29)), one has τ r({A, Λ}) 6= r({τA, Λ}). This illustrates the

fact that, as an extension of a well-known feature of MJLS,

the robustness of SS of system {A,Λ} depends, among other

things, on the switching behavior of the jump process, θ. ▽▽

The following lemma shows how the maximal real part of

the spectrum of A may be used to obtain an upper bound

for the stability radius of (2).

Lemma 2: The stability radius of system {A,Λ} satisfies

r({A, Λ}) ≤ −1

2
Re{λ(A)} (8)
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Proof: Denote ξ := −Re{λ(A)} > 0. Then, since for

all i ∈ S we have λi(A + ξI) = λi(A) + ξ, it follows that

Re{λ(A + ξI)} = 0. But since ξ ∈ R, we have

ξIn2 = 1
2 ξ̄In2 + 1

2ξIn2 = 1
2{(ξ̄In) ⊕ (ξIn)}, (9)

and hence A + ξI = A(A + 1
2ξIn, Λ). This means, the

multiple-of-identity perturbation {A, Λ} Ã {A + 1
2ξIn, Λ}

draws the system into instability, from which the result

follows.

An important result from H∞ control theory is the follow-

ing extension of [8, Theorem 4] to the infinite setting (see

also [20]).

Lemma 3: System (6) is SS for any ∆ = (∆1,∆2, . . .) ∈
H

n
sup such that ‖∆‖sup < ρ whenever there exist P =

(P1, P2, . . .) ∈ H̃
n−
sup and α̌ = (α1, α2, . . .) ≻ 0 such that

[

T (P ) − ρ2α̌In P
P α̌In

]

∈ H̃
2n+
sup , (10)

with T (P ) = (T1(P ), T2(P ), . . .) given by (5). Moreover,

ρ = ρ(α̌).
Proof: This is a direct consequence of [13, Theorem

3.3]. The proof relies on an appropriate re-scaling of P and

α̌, together with the identity γ = ρ−1.

It is important to notice that, in the preceding lemma, we

have ρ = ρ(α̌) ≤ supγ̌≻0 ρ(γ̌). A consequence of this fact

is the following unifying theorem, which states what bounds

on the stability radius can we obtain by means of appropriate

optimization of the scaling parameters.

Theorem 1: The stability radius of system {A, Λ} satisfies

ρ̂ ≤ r({A, Λ}) ≤ −1

2
Re{λ(A)} (11)

where ρ̂ := supα̌≻0 ρ(α̌). ▽▽

One last result is as follows. It states that, in some cases, an

alternative estimate for the stability radius of system {A, Λ}
may be obtained in terms of the radius of a certain real scalar

system {ã,Λ}.

Lemma 4: Suppose system {ã,Λ} is SS, where ã =
(ã1, ã2, . . .) with ãi = λmax(Ai + A∗

i )/2, i ∈ S. Then

r({ã,Λ}) ≤ r({A, Λ}) (12)

Proof: The proof goes in the same manner as that of

[18, Corollary 4.20].

Remark 2: Notice that the estimate of Lemma 4 may only

be obtained in the particular case where the jump system
˙̃x(t) = ãθt

x̃(t) is SS. Furthermore, we remark that in the

case S = {1, 2} an exact formula for the radius of {ã,Λ}
may be employed at this point (see section VI-B). ▽▽

V. UNCERTAINTY IN THE TRANSITION RATE MATRIX

In this section we suppose that, for fixed A ∈ H
n
sup, system

(2) is subjected to some uncertainty on the transition rate

matrix, Λ. We assume that the rate of leaving the ℓ-th mode,

for a given ℓ ∈ S, is not precisely known. More specifically,

we try to figure out how robust is the stochastic stability of

system (2) with respect to parametric perturbations such as

λℓj Ã κλℓj , (13)

for a given ℓ and every j in S, (with λij unchanged for

i 6= ℓ), where κ > 0 is the uncertain parameter. The perturbed

system, from now on represented by the map {A,Λ} Ã

{A, Λℓ(κ)}, is the following:

ẋ(t) = Aθ̃t
x(t), t ∈ R+, (14)

with initial condition x(0) = x0 ∈ Ln
2 and uncertain jump

process θ̃ ∼ Λℓ(κ). To some extent, our aim is to characterize

how much uncertainty on the Markov switching properties

can the nominal model tolerate without becoming unstable.

Remark 3: Although this uncertainty structure may not be

so general as to include each vicinity of Λ around its nominal

value, we underline here the important class of finite Markov

chains described by

Λ =











−λ1 λ1 0 . . . 0
0 −λ2 λ2 . . . 0
...

...
...

. . .
...

λN 0 0 . . . −λN











(15)

with λi ≥ 0 for each i ∈ {1, . . . , N}. This includes the

2-mode example treated in section VI and is capable of

describing, for instance, an “ordered” Markov chain (maybe

a tandem of N queues like the one arising in token ring

networks). An important issue here is that a perturbation

such as Λ Ã Λℓ(κ) does not destroy qualitative properties

of the Markov chain, such as its natural ordering or the

presence/absence of absorbing modes. ▽▽

Our first result here goes as follows. Roughly, it states

that all the uncertainty related to the jump process may be

somewhat transferred to the state matrix, A ∈ H
n
sup.

Lemma 5: System {A, Λℓ(κ)} is SS if and only if system

{Aℓ(κ), Λ}, governed by

ẋ(t) = Aℓ
θt

(κ)x(t), t ∈ R+ (16)

with Markov switching θ ∼ Λ is also SS, where

Aℓ
i(κ) =

{

Ai, i 6= ℓ

κ−1Ai, i = ℓ

Proof: From Lemma 1 we have that system {A,Λℓ(κ)}
is SS if and only if there is P = (P1, P2, . . .) ∈ H̃

n−
sup

such that T κ,ℓ(P ) = (T κ,ℓ
1 (P ), T κ,ℓ

2 (P ), . . .) ∈ H̃
n+
sup,

where T κ,ℓ
i (P ) = A∗

i Pi + PiAi +
∑

j∈S(κλij)Pj whenever

i = ℓ, and T κ,ℓ
i (P ) = Ti(P ) otherwise. To prove the

result, simply notice that this is equivalent to T̃ κ,ℓ(P ) =
(T̃ κ,ℓ

1 (P ), T̃ κ,ℓ
2 (P ), . . .) ∈ H̃

n+
sup, where

T̃ κ,ℓ
i (P ) = [Aℓ

i(κ)]∗Pi + PiA
ℓ
i(κ) +

∑

j∈S

λijPj , i ∈ S.

Remark 4: Notice that we may write Aℓ(κ) = A+∆ℓ(κ),
with ∆ℓ(κ) := (0, . . . , 0, (κ−1 − 1)Aℓ, 0, . . .) ∈ H

n
sup. This

fact is employed in the sequel. ▽▽

The main result of this section is the following. It provides

us with a margin for the robust SS of system {A, Λ} with

respect to perturbations such as Λ Ã Λℓ(κ).
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Theorem 2: Let µ(ℓ) := r({A, Λ})/‖Aℓ‖. Then, when-

ever µ(ℓ) < 1, we have the uncertain system {A,Λℓ(κ)}
stable for every κ ∈ R such that

1

1 + µ(ℓ)
≤ ‖Aℓ‖

‖Aℓ‖ + ρ̂
< κ <

‖Aℓ‖
‖Aℓ‖ − ρ̂

≤ 1

1 − µ(ℓ)
(17)

On the other hand, whenever µ(ℓ) ≥ 1 we have the stability

of system {A, Λℓ(κ)} guaranteed for any κ such that

1

1 + µ(ℓ)
≤ ‖Aℓ‖

‖Aℓ‖ + ρ̂
< κ < ∞. (18)

Proof: Suppose first that (17) holds true together with

µ(ℓ) < 1. In this case, it may be easily verified that

µ(ℓ) ≥ ρ̂
‖Aℓ‖

>
(

1
κ
− 1

)

> − ρ̂
‖Aℓ‖

≥ −µ(ℓ), (19)

from which we immediately have that (see Remark 4 above)

‖∆ℓ(κ)‖sup := | 1
κ
− 1|‖Aℓ‖ < ρ̂ ≤ r({A, Λ}),

in such a way that the perturbed system is SS. Finally,

the infinity-bound in (18) is a consequence of the fact that
∣

∣

1
κ
− 1

∣

∣ < 1 for every κ ≥ 1, which, together with µ(ℓ) ≥ 1,

implies that ‖∆ℓ(κ)‖sup < ‖Aℓ‖ ≤ r({A,Λ}) for the

perturbation introduced in Remark 4.

Remark 5: One natural way to obtain better estimates

for the acceptable uncertainty on Λ Ã Λℓ(κ) would be

to further explore the structure of the perturbation Aℓ Ã

Aℓ + (κ−1 − 1)Aℓ, defined in Remark 4. It seems that the

more direct – and innovative – approach to do so would

be to seek for an estimate for the values of κ such that

the system {(A1, . . . , κ
−1Aℓ, . . .),Λ} is SS. But another

approach, perhaps more appealing in view of recent results

from [13], is to describe such perturbation as a structured

one. This will be considered in a future work. ▽▽

VI. CASE STUDIES

In this section we show how the preceding results can be

used to study the robust stability of two-mode jump systems.

Suppose that S = {1, 2}, so that the transition rate matrix

of θ is, without loss of generality, given by

Λ = [λij ] =

[

−β1 β1

β2 −β2

]

, β1, β2 > 0, (20)

what we denote by θ ∼ (β1, β2). Notice that we explicitly

rule out the case in which β1β2 = 0, i.e., we assume that

none of the modes is absorbing. In fact, the existence of

an absorbing mode would lead the system to an LTI regime

after a finite number of jumps had occurred (at most one, in

this case), so that the problem would be easily tackled by

well-known results from, e.g., [21, Section 5.3].

A. Two-mode jump systems (general case)

With respect to the jump process (20) defined above, let

us consider the following MJLS:

ẋ(t) = Aθt
x(t), θ ∼ (β1, β2), t ∈ R+, (21)

with A = (A1, A2) ∈ C
n×n × C

n×n. We also introduce

Ξi = Āi ⊕ Ai, i ∈ {1, 2}, and rewrite A(A, Λ) in (4) as

A(A1, A2, β1, β2) :=

[

Ξ1 − β1In2 β2In2

β1In2 Ξ2 − β2In2

]

(22)

The following proposition states that the problem of

optimizing the lower bound in (11) can be reduced to a one-

dimensional problem, in the two-mode case.

Proposition 2: The stability radius of the two-mode sys-

tem (21) is such that ρ̂ ≤ r({A, Λ}), where

ρ̂ = sup
α1>0

sup
α2>0

ρ(α1, α2) = sup
α1>0

ρ(α1, α2) (23)

for any given α2 > 0 or, alternatively,

ρ̂ = sup
α2>0

sup
α1>0

ρ(α1, α2) = sup
α2>0

ρ(α1, α2) (24)

for any α1 > 0.

Proof: Since ρ̂ = supα1>0 supα2>0 ρ(α1, α2) and (10)

depends affinely on P and α̌ we have

ρ̂ = sup
α1>0

sup
α2>0

ρ(α1/α2, 1) = sup
ω>0

ρ(ω, 1),

where ω := α1/α2. Hence, defining ω̃ = α2ω it follows

that ρ̂ = supω̃>0 ρ(ω̃, α2), which is just (23). By a similar

argument, we have that

ρ̂0 := sup
α2>0

sup
α1>0

ρ(α1, α2) = sup
ω̂>0

ρ(1, ω̂) = sup
α2>0

ρ(α1, α2)

for ω̂ := α2/α1, and so it only remains to show that ρ̂ = ρ̂0.

This is proven by writing down

ρ̂ = sup
ω>0

ρ(ω, 1) = sup
ω>0

ρ(1, 1/ω) = sup
ω̂>0

ρ(1, ω̂) = ρ̂0.

Remark 6: A direct consequence of the above proposition

is that, in order to optimize the scaling parameters in the

two-mode case, one only has to determine the optimal ratio

between α1 and α2. The result is illustrated by the following

example. ▽▽

Example 1: Consider system (21) with A1, A2 given by

A1 =

[

0.5 −1
0 −2

]

, A2 =

[

−2 −1
0 0.5

]

and (β1, β2) = (3, 4). The relationship between the maximal

ρ of Lemma 3 and different choices of scaling parameters

(α1, α2) is depicted in Figure 1 below. As it suggests, the

optimal lower bound ρ̂ in (11) can be attained by the ratio

α1/α2 = 1 (shown as a bold line). Perhaps this can be

better observed in Figure 2, where solutions to the fixed-α2

maximization problem sup ρ(·, α2) are compared for three

diferent values of α2.

Another important feature to be observed in Figure 2

is that, according to what we stated in Proposition 2, the

maximum of sup ρ(·, α2) does not in fact depend on α2.

The two bounds on the stability radius which we stated in

(11) are, in this case, given by

0.1579 ≤ r({A,Λ}) ≤ 0.2087, (25)
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Fig. 2. Estimates for r({A, Λ}) in terms of (α1, α2).

corresponding to dashed and dotted lines in Figure 2. Also,

notice that a bound such as (12) may not be constructed in

this case, since both ã1 := λmax(A1 + A∗
1)/2 and ã2 :=

λmax(A2 + A∗
2)/2 are positive (so that the corresponding

scalar system of Lemma 4 is unstable; see Remark 2).

Finally, according to Theorem 2 a stability margin with

respect to uncertainties on β1 or β2 may be constructed in

terms of the lower bound in (25). If we perturb, say, β1 onto

κβ1 then we have that the resulting uncertain system is stable

for any perturbation such that

0.9344 < κ < 1.0755, (26)

which is consistent with the actual margin κ ∈ (2/3, 4)
that one can obtain experimentally. Such conservatism also

suggests that a destabilizing perturbation such as A Ã A+∆
with norm close to r({A,Λ}) should have a quite different

structure from that of (A1, A2). ▽▽

B. Two-mode scalar jump systems

In what follows we provide an explicit formula for the

stability radii of system (21) in the scalar case, n = 1. To

this end, let ı :=
√
−1 together with a = (a1, a2) and b =

(b1, b2) in R
2 define the following system,

ẋ(t) = (aθt
+ ıbθt

) x(t), θ ∼ β̃ := (β1, β2) (27)

on t ∈ R+, which we denote by {a+ ıb, β̃}. The main result

of this section is presented as follows.

Theorem 3: The stability radius of the two-mode scalar

system (27) is given by

r({a + ıb, β̃}) = −a1 + a2

2
+

β1 + β2

4

−1

2

√

β1β2 +
(

β1−β2

2 − a1 + a2

)2

, (28)

in such a way that r({a + ıb, β̃}) = r({a, β̃}). In particular,

r({a+ ıb, β̃}) =
β − (a1 + a2) −

√

β2 + (a1 − a2)2

2
(29)

whenever β̃ = (β, β).

Proof: See the appendix.

Remark 7: From the proof of the above result we have that

the minimal destabilizing disturbance is a real one. Hence, if

we were to define a real stability radius here, it would equal

the one from Definition 2, in this case. ▽▽

In contrast to Example 1, in the sequel we present a

particular situation in which exact values for stability radii

and uncertain switching rates may be obtained. This also

illustrates how the formulas of Theorem 3 may be employed

for non-scalar systems, in the spirit of Lemma 4.

Example 2: Consider system (21) with A1, A2 given by

A1 =

[

0.25 −2
2 0.25

]

, A2 =

[

−2 10
−10 −2

]

and β̃ = (β1, β2) = (2, 1). Then, the scalar system

{ã, β̃} : ˙̃x(t) = ãθt
x̃(t) (30)

with ãi = λmax(Ai +A∗
i )/2, i ∈ {1, 2} is such that, in view

of Lemma 2, Lemma 4 and (28),

1
2 = r({ã, β̃}) ≤ r({A, β̃}) ≤ − 1

2Re{λ(A)} = 1
2 , (31)

where A = A(A1, A2, 2, 1), in this case. If we suppose now

that the rate of leaving the first mode is uncertain, such as

θ ∼
[

−2κ +2κ
+1 −1

]

(32)

then, in view of Theorem 2 and the fact that

µ(1) := r({ã, β̃})/|ã1| = 2 > 1, (33)

we conclude that for every κ ∈ (1/3,∞), stability of the

scalar system is preserved (which, from [18, Corollary 4.20],

also guarantees stability of system {A, β̃}). Finally, it is not

difficult to prove (either experimentally or with the aid of

(29)) that such estimate coincides with the largest admissible

uncertainty (32) that the system at hand can tolerate without

becoming unstable. ▽▽

VII. CONCLUSIONS

In this paper we have considered a novel stability radius

for continuous-time infinite MJLS. Different from previous

approaches in the literature (even if we restricted ourselves

to the finite case) we focused here on the particular situation

in which only unstructured additive disturbances are allowed

to occur. By doing so, we were able to provide a new upper

4625



bound for the radius in terms of the maximal real part of

the spectrum of an augmented infinite dimensional matrix.

Also, two alternative lower bounds have been presented: one

corresponding to the radius of a certain scalar MJLS, and

other one in terms of an optimal choice of scaling parameters

in an LMI problem. Besides, a new connection between

stability radii and a robust stability margin with respect to

uncertainty on the transition rate matrix of the Markov chain

has been unveiled. Finally, particular attention was given to

the so-called two-mode case. By this, not only we could

show that the optimal scaling problem may be reduced by

one parameter, but also it was possible to obtain an explicit

formula for the radius of two-mode scalar jump systems.

Two examples have then been studied, showing that even if

restricted to the finite case, the obtained results can in fact

provide new quantitative measures for the robust stability of

MJLS.

APPENDIX

Proof of Proposition 1. Bearing in mind Lemma 1, that

the Kronecker product is homogeneous with respect to

multiplication by a scalar [19] and that Re{λ(τ−1(·))} ≡
τ−1

Re{λ(·)}, it follows that τA(A, Λ) = A(τA, τΛ) and

τr({A,Λ}) = τ inf{‖∆‖sup : Reλ[A(A + ∆,Λ)] ≥ 0}
= inf{‖∆̃‖sup : Reλ[A(A + τ−1∆̃, Λ)] ≥ 0}
= inf{‖∆̃‖sup : Reλ[A(τA + ∆̃, τΛ)] ≥ 0},

which corresponds to (7).

The following auxiliary remark should ease the proof of

Theorem 3 below.

Remark 8: For any z1, z2 ∈ C, it may be easily verified

that A(z1, z2, · , · ) ≡ A(Rez1, Rez2, · , · ). ▽▽

Proof of Theorem 3. First notice that, from Remark 8, we

immediately have r({a + ıb, β̃}) = r({a, β̃}). Moreover:

r({a, β̃}) = inf{‖δ‖max; Reλ[A(a + δ, β̃)] ≥ 0}
= inf{‖δR‖max; Reλ[A(a + δR, β̃)] = 0}

from continuity of the spectrum together with Remark 8,

in which δR = (δR
1 , δR

2 ) is the real part of δ = (δ1, δ2)
and ‖ · ‖max is the maximum norm in R

2. But since the

SS of systems {a + δR, β̃} and {(a + δR)/β̃, 11}, in which

11 := (1, 1), are equivalent (due to Lemma 5), it follows that

r({a, β̃}) = inf{‖δR‖max; det A((a + δR)/β̃, 11) = 0},

because A((a + δR)/β̃, 11) is self-adjoint. The solution of

this problem satisfies r({a, β̃}) = infδ>0{β1δ; detA = 0},

in which

A =

[

2(a1 + β1δ)/β1 − 1 1
1 2(a2 + β1δ)/β2 − 1

]

.

After performing some calculations (namely, solving for

δ the second-order algebraic equation detA = 0 at the

above problem), we finally have that the only candidates for

solution are given by

δ± :=
1

4
+

1

4β1
{β2 − 2(a1 + a2)

±
√

4β1β2 + (β1 − β2 − 2a1 + 2a2)2},

so that r({a, β̃}) = β1δ− yields the desired results.
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