
 

 

 

  

 

Abstract—Oil condition data is a major source of 

information for machine condition monitoring. It contains 

information about the metallic particle content and thus 

reflects the level of wear and fatigue-induced damage in the 

mechanical system. Oil debris sensor is a popular measurement 

device used to collect oil condition data.  This sensor generates 

an output signature with the passage of a metallic particle 

through the oil return lines. Analysis of the measured data 

leads to an estimate of the size and number of metallic particles 

present in the lubricating oil and consequently health state of 

the mechanical system. However, the signal measured through 

the oil debris sensor is severely tainted by various noises, e.g., 

the background noise present as well as the interferences 

caused by the vibrations of the structure where the sensor is 

mounted. These interferences affect the performance of the 

health assessment unit considerably. This will inevitably cause 

misleading maintenance decisions and hence premature 

machine failure as well as lost productivity. As such, this paper 

focuses on the enhancement of the signals acquired from oil-

debris sensors.  This is achieved by a two stage de-noising 

scheme. In the first stage the adaptive line enhancement (ALE) 

technique is applied to remove the vibration related 

interferences. Following this step, the partly purified signal is 

further enhanced using the wavelet decomposition based de-

noising method to remove the background noise mainly caused 

by the wiring and measurement system flaws. The proposed 

approach has been validated using both simulated and 

experimental data. 

 

I. INTRODUCTION 

achinery fault detection and diagnosis is a key step in 

preventive maintenance. Oil condition monitoring is 

one of the most important approaches to machinery 

fault detection and diagnosis. The oil condition data contain 

information about the size and quantity of metal debris in 

the oil and thus provide a direct perspective of the machine 

condition. In off-line oil analysis methods, oil samples are 

collected and later analyzed in laboratories. The analysis 

results can provide information about the health state of the 

mechanical components. Another approach uses a chip 

detector that utilizes magnetic collector to capture the 

metallic debris. An alarm system will then warn machine 

operators when the quantity of such debris reaches a 
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predefined threshold [1, 2].  

ODM (Oil Debris Monitor) is an on-line oil condition 

monitoring device. It is installed on the oil return lines and 

provides a full flow passage way for the lubricating oil. It 

can detect the metallic particles that pass through it [2, 3]. 

The ODM was first developed for monitoring the F22 

Advanced Tactical Fighter engine. The operation of the 

ODM is based on sensing the electromagnetic disturbances 

caused by passing metallic particles [2]. This sensor 

generates a signature similar to a full period of a sine 

function with each metal particle passing. By processing the 

output signal it is possible to find an estimate of the level of 

fatigue-induced material deterioration of the mechanical 

components.  

Figures 1a and b show a typical oil debris sensor. The 

output signature resulting from the passage of a metallic 

particle is shown in Figure 2. This signature is affected by 

the nature and size of the passing metallic particle. The 

phase of the signature depends on the nature (ferromagnetic 

or non-ferromagnetic) of the passing particle and the 

amplitude depends on the mass of the particle for 

ferromagnetic metals and on the surface area of the particle 

for the non-ferromagnetic metals [2]. Following the 

measurements using the sensor the built-in software counts 

the number of such signatures contained in the signal and 

estimates the size and nature of each particle through the 

corresponding amplitude and phase information. As a result, 

an estimate of the damage level could be obtained and if 

necessary an alarm regarding the health state of the 

machinery would provide time for scheduled maintenance 

and consequently reduce unplanned production delays or in-

flight shut-downs in the aircrafts [2, 3]. The minimum 

detectable size particle depends on the sensor bore size. For 

the ½” sensors used in F119 engines this minimum size is 

125 microns. This sensor has shown superior performance 

compared to the traditional magnetic chip collector. It is 

sensitive to non-ferromagnetic particles as well and requires 

no periodic inspection or cleaning as it does not block the 

passing metallic debris [2].  

However, like many other measuring devices the 

performance of the sensor is affected by the noise and 

interferences that contaminate the signatures of interest. The 

interferences are due to vibrations of the structure where the 

sensor is mounted and manifest as addition of a combination 

of modulated sinusoidal signals to the sensor output. This 

masking effect leads to malfunction of the fault estimation 

system and causes false alarms or leaves existent faults 
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undetected. Figure 3a shows the original output of an oil-

debris sensor in response to the consecutive passage of two 

particles without any interference, sampled at 8000 Hz.  

Figure 3b displays the output of the system with added 

simulated vibration interference. As one can see it is not 

possible to detect the passage of metallic particles from the 

noisy signal. 

 

 
 

(a) (b) 
 

Fig. 1. (a) Oil debris sensor (b) Sensor cross section (Miller and 

Kitaljevich 2000) 

 
 

Ferromagnetic 

Non-Ferromagnetic 

Fig. 2.  Sensor output in response to the passage of a metallic particle 

 

 

Though not as disturbing as the vibration related 

interferences, background noise due to the wiring and 

measurement system flaws also affects the performance of 

the system specifically in the case of the very small particles 

where the corresponding signatures can be easily masked by 

the corrupting noise.  

One possible approach for removal of the vibration 

interferences is the adaptive noise cancellation (ANC) 

method. In this approach a reference signal correlated with 

the interfering signal is required. Such reference signal can 

be obtained by installing additional vibration sensors to the 

structure where the oil debris sensor is mounted. In this 

paper, a variation of the above noise cancellation scheme, 

adaptive line enhancement (ALE) technique, is used to 

enhance the oil debris output signal. The notion of adopting 

ALE will be explained in section 2. Following the ALE step, 

a wavelet decomposition based de-noising method is applied 

to remove the background noise. The proposed de-noising 

scheme is evaluated using the oil-debris signals with 

simulated vibration interferences as well as the signals 

measured from the sensor mounted on an electrodynamic 

shaker.   

Hereafter, this paper is organized as follows: In section 2 

we provide a brief introduction to Adaptive Line 

Enhancement (ALE) technique and its application in 

vibration interference removal. Section 3 explains the 

wavelet decomposition based de-noising method and applies 

it to further enhance the partly purified signal achieved 

through the ALE step. The proposed de-noising algorithm is 

evaluated on both simulated and experimental data in 

section 4. Section 5 concludes this paper.  
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(a) 

(b) 
  

Fig. 3.  (a) The output of the sensor due to two consecutive metallic 

particle passages (Particles: ferromagnetic, diameter = 175 µm and non-

ferromagnetic, diameter = 508 µm) (b) Output Signal + 

( ) ( )( ) ( ) ( )( )2sin 1400 1 cos 900 2sin 2000 1 cos 700t t t tπ π π π+ + +  

 

 

II. ADAPTIVE LINE ENHANCEMENT AND ITS 

APPLICATION IN VIBRATION INTERFERENCE 

REMOVAL  

A filtering process designed to eliminate the noise 

components and pass the signal components can lead to an 

estimate of the signal corrupted by noise. These filters can 

be either fixed or adaptive. A fixed filter can be designed 

when adequate prior knowledge about both signal and noise 

is available whereas an adaptive one works by adjusting 
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certain parameters dynamically to compensate for the lack of 

such information.  

The frequency content of the particle signals are mainly 

dependent on the speed in which the metallic particles pass 

through the sensor. This is associated with the lubricating oil 

flow speed. The vibration interferences on the other hand 

depend on the vibrations of the structure where the sensor is 

mounted. Accordingly, it is obvious that both signal and 

interference attributes are entirely dependent on the working 

conditions of the machinery and are unknown beforehand 

for the purpose of filter design. Consequently, an adaptive 

system capable of adjusting filter parameters according to 

the working conditions of the machinery is desirable. 

 Adaptive noise cancellation makes use of a reference 

input correlated with the corrupting noise. The reference 

input is filtered to find an estimate of the corrupting noise by 

minimizing the mean square error. Subtraction of this 

filtered signal from the primary input results in a signal with 

higher signal to noise ration (SNR). The block diagram of 

the ANC approach is shown in Figure 4.  
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Fig. 4.  Adaptive Noise Cancellation technique 

 

Assume that 
0 1, ,s n n and y are statistically stationary with 

zero means (Figure 4). Assume that s is uncorrelated with 

0n and 
1n but 

0n is correlated with
1n . The output z is then 

0z s n y= + −
. 

By squaring both sides of the equation and taking the 

expectation, we have [4] 

 

{ } { } ( ){ } { }

{ } ( ){ }
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As the above equation shows, by minimizing { }2
E z  the 

signal power { }2
E s  remains unaffected and 

( ){ }2

0E n y− approaches zero by proper adjustment of the 

filter coefficients. As a result, filter output y represents an 

estimate of noise 
0n  in the minimum mean square error 

sense.  
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Fig. 5.  Adaptive linear filter 

  

Now let us consider the linear filtering process shown in 

the Figure 5 where x is the input vector, w the filter weight 

vector, y the filter output and d the desired output of the 

filter. The purpose of this filtering process is to find an 

estimate of a desired signal d in the minimum mean square 

error sense through linear filtering the signal x. Comparing 

this filtering process with the ANC method explained above, 

we see that in the ANC the primary input plays the role of 

the desired signal. Assuming linear filtering with weight 

vector W of length L, we can write [5] 

{ } { } { }

{ }

2 2

2

T T

k k k k

T

k k

E E d W E X X W

E d X W

ε = +

−

       (1)  

The performance surface given in (1) is a quadratic 

function of the weight vector W [6]. Here we take a 

stochastic gradient approach known as Least Mean Square 

method. In this approach the noisy gradient is calculated 

from a single realization of matrix X andε  by taking the 

derivative of (1) with respect to W. In other words at each 

iteration in the adaptive process, we have a gradient 

estimation of the form 

ˆ 2
k k k

Xε∇ = −
    

The corresponding steepest descent algorithm for filter 

weight matrix W update is defined as 

1
ˆ

k k k
W W µ+ = − ∇

 
where µ is a gain constant or learning rate regulating the 

speed and stability of adaptation.  

To apply ANC for interference removal from the output 

signal of the oil debris sensors, we need a reference signal 

correlated with the vibrations of the structure where the 

sensor is mounted. However, this method requires a 

vibration sensor and related hardware, which would 

substantially complicate the system and thus should be 

avoided.  

Adaptive line enhancement (ALE) is a variation of the 

above approach and was first applied to the classical 

detection problem of finding a sine wave in noise [5]. The 

block diagram of the method is illustrated in Figure 6. This 

approach becomes appealing mainly due to the fact that the 

method uses a delayed version of the primary input as the 

reference signal. It is based on the assumption that there is 

no correlation between the noise samples.  
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Fig. 6.  Adaptive Line Enhancement technique 

 

The same idea can be used in the oil debris sensor 

interference problem to avoid the use of extra sensors and 

associated hardware.  

As the metallic particles pass through the sensor 

randomly, there would be no correlation between their 

signatures. On the other hand, it is reasonable to assume that 

the rate of change of the vibration nature of any mechanical 

system is sufficiently slower than the adaptation rate of the 

ALE algorithm. In other words a delayed version of the 

measured signal will be correlated with the original signal 

due to such vibration interferences. As a result, following 

the same idea as that of using the ALE technique for sine 

wave detection, it would be possible to detect and eliminate 

such interferences.  

In contrast to other adaptive systems, in this case very 

high adaptation rate is undesirable whereas it may also cause 

the particle signatures to be distorted or eliminated. As the 

characteristics of these signatures (phase and amplitude) are 

later used to assess the damage level of the machinery 

components, it is very important that the adaptive algorithm 

leaves the particle signals intact.  To prevent such distortions 

in the particle signatures, filter weight vector is updated 

following a number of iterations. The update value is then 

calculated by averaging the weight vector changes found in 

these iterations, analogous to the Block LMS algorithm [6]. 

It should be noted that this method is unable to remove the 

white Gaussian noise included in the signal while noise 

samples are also expected to be uncorrelated. Such noises 

will be tackled later in a separate step using a wavelet 

decomposition based de-noising method.   

Figure 7a shows the mixture of the particle signal shown 

in Figure 3a and simulated interferences. The de-noised 

version of the same signal mixture using the ALE approach 

with L=100, ∆=300 and µ=0.05 is presented in Figure 7b. 

As one can see, the metallic particles can be easily detected 

from the de-noising result. 

 

III. WAVELET DECOMPOSITION BASED DE-NOISING 

Nevertheless, as mentioned above the proposed ALE 

method is unable to remove the white Gaussian background 

noise present in any measurement device since there is no 

correlation between such noise samples. To further enhance 

the signal achieved through the ALE step, a wavelet 

threshold de-noising scheme is proposed.     

The wavelet transform is given by [7] 

1
, (2 ) ( ) (2 )

2

j j

j
f t n f t t n dtψ ψ

∞
− −

−∞
− = −∫   (2)  

where (2 ), (2 ) 0k j
t m t nψ ψ− −− − =  for m n≠ or 

j k≠ . 

The orthogonal wavelet transform provides a non-

redundant wavelet representation. Then 

, ,, j n j n

j n

f f ψ ψ
∞ ∞

= −∞ = −∞

= ∑ ∑           (3) 

where 
,

1
(2 )

2

j

j n
j

t nψ ψ −= − . 
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(b) 
 

Fig. 7.  a)  Output Signal Shown in figure 3(a) 

( ) ( )( ) ( ) ( )( )2sin 1400 1 cos 900 2sin 2000 1 cos 700t t t tπ π π π+ + + +  

b) ALE result (Particles: ferromagnetic, diameter = 175 µm and non-

ferromagnetic, diameter = 508 µm) 

  

 

According to (3), the original function f(t) can be 

reconstructed using the wavelet coefficients given by (2). 

On the other hand, according to equation (2) the wavelet 

coefficients are the correlations of the function f(t) with the 

wavelet basis. With this interpretation, we expect to see 

higher wavelet coefficient values on the intervals where f(t) 

has higher correlation with the daughter wavelet or in other 

words where the wavelet describes the features of the 
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function better. Bearing this concept in mind, it is possible 

to construct an approximation of the original function using 

the larger wavelet coefficients. 

  In the presence of noise, this approach is equivalent to 

hard threshold de-noising method. The thresholding function 

is defined as 

 






<

≥
=

Txif

Txifx
xT

0
)(θ

 
where x is the wavelet coefficient and T is the threshold 

value. We have  

, ,( , )j n j n

j n

f Zθ ψ ψ
∞ ∞

= −∞ = −∞

= ∑ ∑ɶ  

where Z f W= + and W is the white Gaussian noise. 

As one can see, in this approach the wavelet coefficients 

larger than some threshold value are used for the 

reconstruction process and the rest of the coefficients are 

discarded. 

Donoho and Johnston [8] proved that for the Gaussian 

corrupting noise, by applying the hard thresholding rule and 

using an appropriate threshold given below   

2 logj j eT Nσ=              (4) 

where N is the number of data points and 

{ }
2

2

,,j j nE Wσ ψ= , it is possible to have an estimation 

error that is within a factor of 2log2N of an ideal selection 

error. However, the noise variance 
j

σ  should be known. 

One possible approach for noise variance estimation 

would be to measure the system noise in the absence of any 

passing particles or structural vibrations. However, it should 

be noted that the system background noise characteristics 

may vary in accordance with the working conditions. 

On the other hand, a variance estimator insensitive to 

large outliers in the data set was introduced as [7]: 

( ),
0

2

1
,

0.6745 m

m m n N
n

M ed Wσ ψ
≤ <

=ɶ       (5) 

Following the same concept, for the signal containing 

particle signatures and white Gaussian noise, it is possible to 

consider the particle signatures as the outliers in the data set 

and use the above variance estimation method to calculate 

the threshold value. In this case no prior knowledge about 

the background noise is required.  

  In this study, we apply the hard thresholding method 

explained above to remove the background noises. The 

threshold value is calculated using (5) and Symlet 4 is 

chosen as the mother wavelet. As shown in Figure 8, 

applying the proposed wavelet threshold de-noising method 

to the partly purified signal shown in Figure 7b yields very 

clean particle signatures. 

 

IV. EXPERIMENTAL EVALUATION 

To experimentally evaluate the proposed method, we 

acquired data using an oil debris sensor mounted on a shaker 

(Fig 9). A metallic particle embedded at the tip of a plastic 

catheter was manually passed through the sensor while the 

vibration was introduced by the shaker. Sampling frequency 

was set at 8000 Hz. The collected signal mixture is shown in 

Figures 10a. As the first step, the ALE was applied to 

enhance the signal. The ALE output is shown in Figure 10b. 

This result was then further enhanced using the proposed 

threshold de-noising scheme which leads to much cleaner 

result as plotted in Figure 10c. The passage of particle can 

be easily detected from the final de-noised result. 
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Fig. 8 Threshold de-noised version of the ALE result shown in fig. 7b  
(Particles: ferromagnetic, diameter = 175 µm and non-ferromagnetic, 

diameter = 508 µm) 
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Fig.9 Schematic of test setup. 
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(c) 

 Figure.10  a) Measured signal mixture, b) Interference removal result 

obtained using ALE, and  c) Result obtained after threshold de-noising the  

ALE output shown in part (b) (Particle: ferromagnetic, diameter =125 µm, 
shaker frequency = 500 Hz) 

 

V. CONCLUSION 

In this paper, a two-stage approach is proposed to 

enhance the detectability of metallic particles in the ODM 

signal. In the first stage, the ALE technique was applied to 

eliminate the vibration related interferences from the oil 

debris signal. The ALE method is well suited for 

interference elimination because: a) the passage of metallic 

particles holds a random nature and consequently there 

would be no correlation between the corresponding 

signatures, and b) the change rate of the vibration pattern of 

the mechanical system is much slower than the adaptation 

rate of the filter. As the ALE method is unable to remove the 

white Gaussian background noise caused by the wiring 

flaws and electrical interferences, wavelet hard threshold de-

noising method is then applied following the ALE step. The 

proposed de-noising approach was evaluated using 

simulated and experimental data and performed very well in 

both cases.  
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