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Abstract— A novel controller for cranes employed in heavy-
lift offshore marine operations is proposed. The control ob-
jective is to reduce the hydrodynamic slamming load acting
on a payload at water-entry of moonpool operations while, at
the same time, the values of the wire tension must be kept
within acceptable bounds. The adopted solution relies upon the
use of an adaptive observer and two external models; as a
result, the closed loop system is adaptive with respect to both
plant parameters and frequencies of the harmonic disturbances
entering the system. Experimental results show improvements
with respect to a previous internal model-based controller.

I. INTRODUCTION

In heavy-lift offshore marine operations, an important

issue is how to safely install a payload on the seabed. This

task can be accomplished by using an actively controlled

crane placed on a vessel, and by lowering the payload trough

a well in the ship hull referred to as a “moonpool”. As docu-

mented in [1], the most critical phase occurs at water entry;

indeed, as the payload is hit by the waves, the impulsive

slamming load to which it is subject can seriously damage

the payload, especially at harsh sea conditions. Moreover,

during the launch of the payload through the moonpool it

is important that the instantaneous value of the wire tension

remains within certain bounds. In particular, the minimum

value of the wire tension must be prevented from becoming

negative to avoid high snatch loads that may break the wire,

and its maximum value must not exceed a safety limit. In

addition, it is desirable to reduce the variations of the wire

tension so as to decrease the wire’s wear and tear.

The problem under consideration has been previously

addressed in [2] and [3] using standard tools from control of

robotic systems. A different approach was pursued in [4],

where a two-phase control strategy was proposed. In the

first phase, which occurs when the payload is in the air

and far enough from the moonpool, “heave compensation”

is applied; the goal is to steer the wire tension to a constant

value equal to the weight of the load. The second phase, re-

ferred to as “wave synchronization”, starts when the payload

is close to the moonpool. As shown in [5], the impulsive

hydrodynamic slamming force that affects the payload at

water-entry increases as the relative velocity between the

waves and the payload increases; consequently, the control

objective of this phase is to lower the payload through the

water-entry zone keeping such relative velocity constant and

equal to a prescribed value. For each of the two phases, [4]

proposed a feedforward compensator to achieve the control
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objectives. Inspired by [4], in [6] a two-phases feedback

compensator based on the internal model principle [7] was

proposed. In each of the two phases, the control objective was

cast as that of letting the output variable track a reference

signal while rejecting the wave-induced disturbances.

The aim of the present paper is to introduce a novel robust

control strategy to relax the restrictive assumptions which the

previous work [6] relied upon; in particular, the proposed

control strategy is made adaptive with respect to both the

plant parameters and the frequencies of the harmonics of the

wave-induced disturbances. Moreover, only an upper bound

on the number of harmonics is assumed to be known. One of

the challenges involved in the present control design is that

part of the state variables and part of the wave-induced har-

monic disturbances are not measurable. As a consequence, a

certainty-equivalence approach is proposed by designing an

adaptive observer and two adaptive external models of the

wave-induced disturbance (see [8]) in order to reconstruct

the needed quantities. A remarkable feature of the proposed

external models is their capability of yielding converging

estimates even in the case of over-parametrization, that is,

when the number of harmonics contained in the external

model exceeds the number of harmonics of the waves in

the basin. The certainty-equivalence approach proceeds by

designing the controllers for the heave-compensation and the

wave synchronization phases using the obtained estimates

in place of the non measurable quantities. The two distinct

controllers are designed in an adaptive fashion, as opposed

to the work in [6]. The effectiveness of the proposed design

is shown both theoretically and experimentally. The experi-

ments are performed on a scale-model of a crane vessel with

moonpool.

II. SCALE-MODEL AND MATHEMATICAL MODELING

In this section, first a brief description of the crane vessel

scale-model is given; then, a mathematical model is derived.

The mathematical model will be used for control design.

A. Experimental Setup

The scale-model consists of a servo motor, with an internal

speed-control loop, and a spherical payload connected to

the motor by a wire that goes over a pulley suspended

by a spring. The scale-model is equipped with vertical

accelerometers in both the payload and the vessel, and with

a wire tension sensor. Attached to the vessel there is a wave

meter that measures the water level in the moonpool. The

motor position is measured by an encoder. A wave generator

is used to produce waves.
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Fig. 1. Sketch of the scale-model and definition of coordinates

B. Dynamics of the Scale-Model Crane Vessel

In Fig. 1, a sketch of the experimental setup is shown along

with a definition of references and of the coordinates z, z0,

ζ, ζ0, zp, zr and ξs. Note that the “still water level” is an

earth-fixed frame, whereas the “vessel reference” is a body-

fixed frame. Let m denote the payload mass, g the gravity

acceleration, Ft the wire tension, and fz the hydrodynamic

force on the payload in the moonpool; then, the motion of

the payload with respect to the still water level reference

frame is described by

m(z̈ + z̈0) = mg + fz − Ft. (1)

By defining zm
.
= z − zp, the equation of the motion of

the pulley with respect to the pulley reference frame can be

approximated as

kp(z − zm) = Ft − mpz̈0. (2)

In [3], the same approximation was used except for the fact

that the term accounting for mpz̈0 was neglected. Denote

with żd the reference speed of the servo motor which is also

the control input; for the frequencies under consideration,

it is convenient for control design to neglect the fast motor

dynamics and employ the following expression

zm

żd

∼=
1

s
. (3)

As a result, the control input for the system is given by żd,

while the measurable outputs are z̈0, z̈0 + z̈, Ft, ζ0 and zm.

C. Hydrodynamic Forces in the Moonpool

When the payload is in the moonpool, fz can be mod-

eled as

fz = −ρg∇(zr, d) − ρ∇(zr, d)z̈r − Zz̈r
(zr)z̈r

−
∂Zz̈r

∂zr

(zr)ż
2
r −

1

2
ρCDApz(zr)żr|żr| − dl(zr)żr (4)

(see [3, p. 600]). In (4), ρ = 1000 kg m−3 is the density of

water; zr represents the payload position with respect to the

“moonpool water level”; ∇(zr, d) is equal to the volume of

the submerged part of the payload, and d is the diameter of

the payload. The remaining quantities on the right hand side

of (4) are described in detail in section V-B.

D. Wave-induced Disturbances

Following [6], the heave motion z0 of the crane vessel

with respect to the still water level and the wave elevation

ζ0 inside the moonpool with respect to the vessel reference,

both induced by the motion ξs of the waves in the basin, can

be given the following representation

z0 =

p
∑

1

Ai sin(ωit + ϕi), ζ0 =

p
∑

1

Bi sin(ωit + αi).

(5)

In this work, the actual number of harmonics p and the values

of the amplitudes, phases, and frequencies of z0 and ζ0 is

assumed to be unknown. However, knowledge of an upper

bound on p is required for controller design.

III. ADAPTIVE EXTERNAL MODELS

In this section, it is shown how to recover converging

estimates of the harmonic disturbances entering the system.

The external model estimating ż0 and z
(3)
0 by processing

the measurement of z̈0 is presented in details, as the recon-

struction of ż0 requires a peculiar hybrid implementation.

The external model estimating ζ̇0, ζ̈0 and ζ
(3)
0 by exploiting

measurements of ζ0 is introduced at the end of Section III-A.

A. Continuous time external models

Consider the measured signal z̈0 together with its integral

ż0 and its derivative z
(3)
0 (not available for feedback); choose

Fp ∈ R
2p×2p and Gp ∈ R

2p×1 so that (Fp, Gp) is a

controllable pair and Fp is Hurwitz. From equation (5), it

is well known (see [9] and [10]) that there exists a vector

Ψσ ∈ R
1×2p so that z̈0, ż0 and z

(3)
0 can be given the

following representation

ẇp = (Fp + GpΨσ)wp

z̈0 = Ψσwp

ż0 = Ψσ(Fp + GpΨσ)−1wp

z
(3)
0 = Ψσ(Fp + GpΨσ)wp. (6)

Assumption 1 The unknown vector Ψσ ranges within a

known compact set S ⊂ R
1×2p.
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To compute estimate ˆ̇z0 and ẑ
(3)
0 of ż0 and z

(3)
0 , respectively,

the following adaptive external model is proposed

ξ̇ = (F + GΨ̂)ξ − Gkay

ẏ = −kay − Ψσwp + Ψ̂ξ

˙̂
ΨT = −γayξ

ˆ̈z0 = Ψ̂ξ (7)

which has the purpose of reconstructing the available signal

z̈0. While the observation of the state z̈0 is obviously

irrelevant per se, it provides a way of reconstructing its

derivative and its first integral, as will be seen in a moment.

In (7), ka and γa are scalar gains, F ∈ R
2q×2q, G ∈ R

2q×1

so that (F, G) is a controllable pair, F is Hurwitz, q ≥ p is

an upper bound on p, ξ ∈ R
2q×1, and y ∈ R.

The following theorem establishes that, in the process of

reconstructing z̈0, the external model is capable to recover

all the information that is needed to compute the required

estimates:

Theorem 1: There exist a matrix M̄ ∈ R
2q×2p and a

number k∗

a > 0 such that, for any ka > k∗

a and any

γa > 0 all the trajectories of the system (6), (7) are bounded

and satisfy lim
t→∞

y(t) = 0, lim
t→∞

‖ξ(t) − M̄wp(t)‖ = 0,

lim
t→∞

‖ˆ̈z0(t) − z̈0(t)‖ = 0, lim
t→∞

Ψ̂(t) = Ψ̂∞, where Ψ̂∞ is a

constant value. Moreover the following identities hold:

Ψ̂∞M̄ = Ψσ (8)

(F + GΨ̂∞)M̄ = M̄(Fp + GpΨσ) . (9)

Proof: See [8].

The previous result is instrumental in order to prove that,

under a particular assumption that will be removed in section

III-B, an estimate ˆ̇z0 of ż0 can be extracted from the external

model. This is shown in the following theorem:

Theorem 2: Assume that the solution Ψ̂(t) of (7) is such

that F + GΨ̂(t) is nonsingular for all t ≥ 0. Then, the

additional outputs of the external model (7) defined as

ˆ̇z0 = Ψ̂(F + GΨ̂)−1ξ

ẑ
(3)
0 = Ψ̂(F + GΨ̂)ξ

provide a converging estimate of ż0(t) and z
(3)
0 (t), respec-

tively.

Proof: Due to lack of space, the proof of the theorem

is omitted.

Moreover, it can be easily shown that the following external

model is capable of providing converging estimates of the

remaining unknown state variables ζ̇0, ζ̈0, and ζ
(3)
0 :

η̇ = (F + GΘ̂)η − Gkbr

ṙ = −kbr − ζ0 + Θ̂η
˙̂
ΘT = −γbrη

ζ̂0 = Θ̂η

ˆ̇
ζ0 = Θ̂(F + GΘ̂)η
ˆ̈
ζ0 = Θ̂(F + GΘ̂)2η

ζ̂
(3)
0 = Θ̂(F + GΘ̂)3η (10)

where F and G are the same matrices as in (7), kb and γb

are scalar design parameters, η ∈ R
2q×1, r ∈ R, ζ0 is the

available measurement. The signals ζ0, ζ̇0, ζ̈0 and ζ
(3)
0 can

be given an analogous representation as in (6), that is, they

can be regarded as the output of an exosystem in canonical

parametrization.

B. Discrete-time update law

In this section, it is shown how to recover a converging

estimate of ż0 relaxing the restrictive hypothesis about the

invertibility of the matrix F + GΨ̂(t) formulated in Theo-

rem 2. Following [8], let {tk}
∞

k=0 denote a monotonically

increasing sequence of equally spaced sampling times, with

t0 = 0 and lim
k→∞

tk = ∞. The following hybrid external

model is proposed in place of (7)

ξ̇ = (F + GΨ̂)ξ − Gkay

ẏ = −kay − Ψσwp + Ψ̂ξ

˙̂
ΨT = −γayξ

ˆ̈z0 = Ψ̂ξ

Γ̂(k + 1) = µ(Ψ̂(tk))

ˆ̇z0 = Γ̂(k)ξ

ẑ
(3)
0 = Ψ̂(F + GΨ̂)ξ. (11)

In (11), µ(·) denotes a discrete-time algorithm defined below,

while the value of Γ̂(k) is constant during each interval

[tk, tk+1) and commutes at t = tk+1. As a result, the struc-

ture of the proposed external model is that of a continuous-

time system, undergoing switching at each sampling time

tk. Denote with Vg(k) the modal subspace of F + GΨ̂(tk)
corresponding to the eigenvalues different from zero, and

decompose R
2q in the direct sum Vg(k)⊕Vb(k), where Vb(k)

is the modal subspace of F + GΨ̂(tk) associated with the

remaining zero eigenvalues. Then, the following algorithm

defines the discrete-time update law µ(·).

Algorithm

At each time t = tk

• if the condition number of the matrix F + GΨ̂(tk) is

smaller than a prescribed tolerance (i.e., if that matrix

is invertible), set Γ̂(k + 1) = Ψ̂(tk)(F + GΨ̂(tk))−1.

Otherwise

• compute a basis for R
2q adapted to the subspaces Vg(k)

and Vn(k) of F + GΨ̂(tk)
• set Γ̂g(k+1) = Ψ̂g(tk)(F +GΨ̂(tk))−1

g , where Ψ̂g(tk)

and (F + GΨ̂(tk))g are respectively the projection of

Ψ̂(tk) onto Vg(k) and the restriction of F + GΨ̂(tk) to

Vg(k).
• set Γ̂(k + 1) = (Γ̂g(k + 1) 0) and revert back to the

original coordinates.

The algorithm is initialized at Γ̂(0) = Ψ̂(0)(F + GΨ̂(0))−1,

where Ψ̂(0) is chosen so that (F + GΨ̂(0)) is invertible.
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IV. ADAPTIVE OBSERVER

In order to apply a certainty-equivalence approach to

controller design, a way to reconstruct the values of z and

ż must also be devised, as the latter are not measurable.

For this purpose, we resort to an adaptive observer based on

equation (2) and on the measurements of the quantities zm,

z̈, z̈0, and Ft. Rearrange equation (2) as

zm = z −
1

kp

Ft +
mp

kp

z̈0 (12)

where Ft and z̈0 are bounded signals, kp and mp are

unknown constants and the variables z(t), ż(t), z̈(t) and

zm(t) are assumed to be defined for any t ≥ 0. Define x1 as

the output of a stable, first order filter, whose input is zm,

that is

ẋ1 = −λx1 + zm (13)

with λ > 0. Moreover, define x2
.
= z, x3

.
= ż, x

.
=

( x1 x2 x3 )T , θ1
.
= 1

kp

, θ2
.
=

mp

kp

, θ
.
= ( θ1 θ2 )T ,

φ(t)
.
= ( −Ft(t) z̈0(t) )T . Using equations (12) and (13),

the dynamics of the system to be observed can be written as

follows

ẋ = Abx + b̄3φ
T (t)θ + b̄1ȳ + b̄2z̈

ȳ = Cbx (14)

where (Ab, Cb), with Ab ∈ R
3×3 and Cb ∈ R

1×3, are

in Brunowsky’s canonical form, b̄1 = ( −λ 0 0 )T ,

b̄2 = ( 0 0 1 )T , b̄3 = ( 1 0 0 )T ; the quantities b̄1ȳ

and b̄2z̈ are known and can be easily taken into account in the

observer design. As the vector b̄3 is not Hurwitz, a filtered

transformation of order two is necessary in order to design

the adaptive observer for the system (14). To this purpose,

following [11], a time-varying change of coordinates is

performed as p̄ = x − M(t)θ, yielding

˙̄p = Abp̄ + [AbM(t) + b̄3φ
T (t) − Ṁ(t)]θ + b̄1ȳ + b̄2z̈

ȳ = Cbp̄. (15)

Choose the vector d̄ =
(

1 d̄1 d̄0

)

such that the poly-

nomial s2 + d̄1s + d̄0 has all the roots in C
−; then, it is

well known that by partitioning M(t) ∈ R
3x2 as M(t) =

(

0
N(t)

)

, with N(t) ∈ R
2x2, it must exist β(t) satisfying

β(t)T = CbAbM(t)+Cbb̄3φ
T (t) so that system (15) can be

rewritten as

˙̄p = Abp̄ + d̄β(t)T θ + b̄1ȳ + b̄2z̈

ȳ = Cbp̄.
(16)

The adaptive observer for system (14) is then given by

Ṅ = AdN + Bdb̄3φ
T (t)

˙̄̂p = Ab ˆ̄p + d̄β(t)T θ̂ + k̄0(ȳ − Cb ˆ̄p) + b̄1ȳ + b̄2z̈
˙̂
θ = γ̄β(t)(ȳ − Cb ˆ̄p)

x̂ = ˆ̄p +

(

0
N(t)

)

θ̂

(17)

where γ̄ > 0 and

Ad =

(

−d̄1 1
−d̄0 0

)

, Bd =

(

−d̄1 1 0
−d̄0 0 1

)

.

Choose k̄0 = ( d̄1 + λ̄ d̄0 + λ̄d̄1 λ̄d̄0 )T , with λ̄ > 0.

Since it is assumed that z̈0(t) is at least sufficiently rich

of order two, from the physics of the problem it makes

sense to conjecture1 that the signal φ(t) is capable to deliver

enough information to ensure convergence of θ̂(t) to θ. As

a consequence, following [11] it is possible to conclude that

the adaptive observer (17) yields an asymptotic estimate of

the state x and, as a byproduct, of the vector θ. The estimates

x̂ and θ̂ will be both used for control design.

V. CONTROL DESIGN

Similarly to [4] and [6], the control strategy proposed in

this paper consists of two distinct phases (heave compen-

sation and wave synchronization) and a transition between

them.

A. Heave compensation

Set the regulation error as the difference between the

payload velocity with respect to the inertial frame and the

desired velocity c, that is as eh
.
= ż + ż0 − c, define b

.
=

kp

m

and ḡ
.
= m

kp

g. From equations (1), (2) and (3), since fz = 0
in the air, the error system can be written as

ėh = b [zm − z(t) + ḡ − θ2z̈0(t)]
żm = uh

(18)

where uh is the control input. It is assumed that the constants

ḡ and θ2 are unknown and that b ∈ [b0, b1] with b0 > 0. From

sections III and IV it is seen that an estimate of eh can be

computed as êh = ˆ̇z(t) + ˆ̇z0(t) − c. From now on, in order

to ease the notation, the dependence of a given quantity by

the time will be omitted. Choose k1 > 0 and define z̃m =
zm − (ẑ − ˆ̄g + θ̂2z̈0), where ˆ̄g is still to be determined; as a

result, the error system in the new coordinates reads as

ėh = b[z̃m + ˜̄g − z̃ − θ̃2z̈0]

˙̃zm = uh − ˙̂z + ˙̄̂g −
˙̂
θ2z̈0 − θ̂2z

(3)
0

(19)

where z̃ = z − ẑ, θ̃2 = θ2 − θ̂2 and ˜̄g = ḡ − ˆ̄g. Then the

following result holds.

Theorem 3: Set γh, k2 > 0; the following control law

˙̄̂g = γhêh

uh = −k1êh − k2z̃m + ˙̂z − ˙̄̂g +
˙̂
θ2z̈0 + θ̂2ẑ

(3)
0

(20)

is such that the regulation error eh converges to zero and all

the trajectories are bounded.

Proof: The proof is omitted for lack of space.

B. Wave synchronization

Set the regulation error as ew
.
= ż − ζ̇0 − c. From

equations (1), (2), (3), this yields the following error system

˙̂ew = b[ḡ − (mθ1 + θ2)z̈0(t) − mθ1ζ̈0(t) + 1
kp

fz

+zm − z(t) − 1
b
˙̃ew]

żm = uw

(21)

where, for convenience, system (21) is written in observer

coordinates and the observation error ẽw
.
= ew − êw is

1Simulations and experimental results seem to validate the conjecture.
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regarded as a converging perturbation; uw denotes the control

input. The mass m of the payload can be measured by

means of equation (1) whenever the payload is in the air

(e.g. before starting the lowering operations), as a result,

the value of m is available for control design. It is as-

sumed that θ1 is unknown and that kp ∈ [kp0
, kp1

] with

kp0
> 0. Notice that, at water entry, if the part of the

wave synchronization task that takes place in the air has

been pursued correctly, then the hydrodynamic force (4)

is mainly due to the buoyancy, i.e. fz
∼= −ρg∇(zr, d). In

particular, since żr = ew +c, it is seen that the effects of the

force −ρ∇(zr, d)z̈r = −ρ∇(zr, d)ėw and of the added mass

−Zz̈r
(zr)z̈r = −Zz̈r

(zr)ėw are extremely small and there-

fore can be neglected. The term accounting for the slamming

force can be written as −
∂Zz̈r

∂zr

(zr)ż
2
r = −

∂Zz̈r

∂zr

(zr)(ew+c)2,

where the function of the depth −
∂Zz̈r

∂zr

(zr), is bounded,

Lipschitz, non-negative, and vanishes when the payload is

in the air (zr < 0) or when it is completely submerged

(zr > d). The nonlinear viscous drag force term reads

as − 1
2ρCDApz(zr)żr|żr| = − 1

2ρCDApz(zr) × sgn(ew +
c)(ew + c)2, where the term − 1

2ρCDApz(zr) is bounded,

Lipschitz, nonnegative, vanishes when the payload is in

the air, and is equal to a constant, say c1, when it is

completely submerged. As a result, it is convenient to define

f1(zr, ew) = −
∂Zz̈r

∂zr

(zr) −
1
2ρCDApzsgn(ew + c) − c1 and

rewrite the sum of the slamming load and the nonlinear

viscous drag force as

−
∂Zz̈r

∂zr

(zr)(ew + c)2 −
1

2
ρCDApz(zr)sgn(ew + c)

× (ew + c)2 = [f1(zr, ew) + c1](ew + c)2 (22)

where the function f1(zr, ew) is bounded and Lipschitz. A

sufficient condition for f1(zr, ew) to be equal to zero is when

zr > d and |ew| < c. The linear drag force term reads as

−dl(zr)żr = −dl(zr)(ew + c), where the function −dl(zr)
is bounded, Lipschitz, never positive, equal to zero in the air

and equal to a constant, say c2, when zr > d. As a result,

we define f2(zr)
.
= −dl(zr) − c2 and rewrite

−dl(zr)żr = [f2(zr) + c2](ew + c) (23)

where the function f2(zr) is bounded, Lipschitz, and is

equal to zero when the payload is completely submerged.

The contribution due to the buoyancy is pre-compensated

by including in the control law the term 1
k0

ρg∇(ẑr, d0),
where k0 is chosen so that k0 ∈ [kp0

, kp1
], d0 denotes the

nominal value of the payload’s diameter d, and ẑr = ẑ − ζ̂0

is an estimate of zr. Notice that by definition, the quantity
1
k0

ρg∇(ẑr, d0)−
1
kp

ρg∇(zr, d) is bounded, Lipschitz and, as

the payload reaches a certain depth, that is when zr > d and

ẑr > d0, is equal to a constant, denoted here by c3; hence, by

defining f3(zr, ẑr) = 1
k0

ρg∇(ẑr, d0) −
1
kp

ρg∇(zr, d) − c3,

it is convenient to write

−
1

kp

ρg∇(zr, d) = c3 + f3(zr, ẑr) −
1

k0
ρg∇(ẑr, d0) (24)

where f3(zr, ẑr) is bounded, Lipschitz, and is equal to zero

when zr > d and ẑr > d0. Using results from sections III

and IV, an estimate of ew(t) can be computed as êw(t) =
ˆ̇z(t) −

ˆ̇
ζ0(t) − c. From now on, the dependence of a given

quantity by its own arguments will be omitted. Group the

constants as c4
.
= −[c3 + 1

kp

(c1c
2 + c2c) + ḡ], define µ1

.
=

2
kp

[f1 + c1]ẽw + 1
kp

[(f1 + c1)2c+f2 + c2], µ2
.
= 1

kp

(f1 + c1)
and

µ3
.
=

1

kp

(f1 + c1)ẽ
2
w +

1

kp

[(f1 + c1)2c + f2 + c2]ẽw

−
1

b
˙̃ew + f3 +

1

kp

(f1c
2 + f2c),

choose k3 and λw > 0, and change variable as z̃m =

zm − [(mθ̂1 + θ̂2)z̈0 + mθ̂1
ˆ̈
ζ0 + ẑ + λwξw − k3êw +

1
k0

ρg∇(ẑr, d0)], where ξw is still to be determined; as a

result, from equations (22), (23) and (24), after easy but

tedious manipulations, the error system (21) in the new

coordinates reads as

˙̂ew = b[z̃m − (mθ̃1 + θ̃2)z̈0 − mθ̃1ζ̈0 − mθ̂1
˜̈
ζ0 − z̃ − c4

+λwξw − k3êw + µ1(zr, ew, ẽw)êw + µ2(zr, ew)ê2
w

+µ3(zr, ew, ẽw)]

˙̃zm = uw − (m
˙̂
θ1 +

˙̂
θ2)z̈0 − (mθ̂1 + θ̂2)z

(3)
0 − m

˙̂
θ1

ˆ̈
ζ0

−mθ̂1

˙̂
ζ̈0 − ˙̂z − λw ξ̇w + k3

˙̂ew − d
dt

1
k0

ρg∇(ẑr, d0)
(25)

where θ̃1 = θ1 − θ̂1, θ̃2 = θ2 − θ̂2,
˜̈
ζ0 = ζ̈0 −

ˆ̈
ζ0, z̃ = z − ẑ

and ẽw = ew − êw. Then, the following result holds.

Theorem 4: There exist numbers k∗

3 > 0, k∗

4 > 0 and

λ∗

w > 0 such that, if k3 > k∗

3 , k4 > k∗

4 and λw > λ∗

w then

the dynamic controller

ξ̇w = −λwξw + v

uw = (m
˙̂
θ1 +

˙̂
θ2)z̈0 + (mθ̂1 + θ̂2)ẑ

(3)
0 + m

˙̂
θ1

ˆ̈
ζ0

+mθ̂1

˙̂
ζ̈0 + ˙̂z + λw ξ̇w − k3

˙̂ew + d
dt

1
k0

ρg∇(ẑr, d0)

−k4z̃m − k5êw

(26)

with v = −(k3 + λw)êw + λwξw and k5 = 1, is such that

all the trajectories of the closed loop system (25)-(26) are

bounded and the regulation error ew converges to zero.

Proof: The proof is omitted for lack of space.

C. Transition from Heave Compensation to Wave Synchro-

nization

When the payload approaches the moonpool, the heave

compensating feedback control uh needs to turn into the

wave synchronizing control uw. The transition is achieved

through the blending factor α whose dependence on ẑ is as

follows

α(ẑ) =











0 if ẑ < h1
1

h2 − h1
(ẑ − h1) if h1 ≤ ẑ ≤ h2

1 if ẑ > h2

(27)

where h1 = −0.20 m and h2 = −0.15 m are selected so

that the transition ends before the payload hits the waves.

Blending uh and uw gives the following final control law:

u = α(ẑ)uw + (1 − α(ẑ))uh, where u
.
= żd and żd denotes

the speed commanded to the servo motor.

2502



VI. EXPERIMENTAL RESULTS

The controller proposed in this paper and the one in [6]

were compared experimentally. For each of the two con-

trollers, fifteen tests were carried out at the MClab at NTNU,

by generating waves in the basin; the waves are characterized

by a JONSWAP spectrum with significant wave height Hs =
0.02 m and peak frequency ωs = 4.8 rad/s; as the latter

matches approximately the moonpool and vessel natural

frequencies, a resonant behavior is induced in the motion

of both the vessel and the water level in the moonpool.

The scalar gains of the external models were chosen as

ka = kb = 10, γa = γb = 100; the matrix F was

selected so that spec(F )={−10,−10,−10,−10,−10,−10}.

The parameters of the adaptive observer were selected as

λ = λ̄ = 5, γ̄ = 50, d̄0 = 1, d̄1 = 1. The gains of

the heave-compensating and wave-synchronizing controllers

were chosen as k1 = 1.5, k2 = 30, γh = 2, k3 = 0.01,

k4 = 10, λw = 2. The initial conditions for the external

models and the adaptive observer were selected at the origin;

in this way, no a priori knowledge on the waves’ frequencies

and on the plant parameters is exploited. The values of the

frequencies of the harmonics embedded in the internal model

control in [6] were chosen to be in the range of the moonpool

and vessel resonant frequencies, namely, they were set as:

ω1 = 4 rad/s, ω2 = 4.5 rad/s and ω3 = 5 rad/s. The

desired velocity c in sections V-A and V-B and the one in

[6] was chosen as 0.02 m/s. The averaged results over the

fifteen experimental runs are summarized in Table I, where

“Int” denotes the internal model-based controller presented

in [6], “Ext” denotes the controller proposed in this paper,

and “Imp” denotes the improvement achieved by the latter

with respect to the former. For the control strategy proposed

in this paper, the time history of the regulation error in both

phases (Fig. 2) is plotted.

As it can be seen from Table I, the controller proposed

in this paper leads to a 13.54% reduction of the maximum

of the absolute value of the hydrodynamic force, which in

turn implies a reduction of the probability that the payload

could suffer damages at water entry. Such an improvement

is consistent with the reduction from 0.20 N to 0.11 N

of the standard deviation of the hydrodynamic force when

the payload is completely submerged (σ(fz)). Wire tension

parameters are improved as well. More specifically, the

improvement related to the standard deviation in the heave

compensation phase (σHC(Ft)) implies that the proposed

controller attains the heave compensation objective better.

Magnitude Int Ext Imp

max(|fz |) 4.80 N 4.15 N 13.54 %

σ(fz) 0.20 N 0.11 N 45.00 %

max(Ft) 6.15 N 6.04 N 1.78 %

min(Ft) 1.15 N 1.70 N 32.35 %

σHC(Ft) 0.18 N 0.12 N 33.33 %

σ(Ft) 1.80 N 1.60 N 11.11 %

TABLE I

AVERAGED PERFORMANCE COMPARISON.
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Fig. 2. Experimental results. Left: estimated regulation error êh in the
heave compensation phase. Right: estimated regulation error êw in the wave
synchronization phase.

This is consistent with the fact that the standard devia-

tion calculated throughout the whole experiment (σ(Ft)),
the maximum (max(Ft)) and the minimum (min(Ft)), are

improved as well. In particular, the 32.35% improvement

related to min(Ft) is important, since avoiding negative

values of the wire tension is essential in order to prevent

high snatch loads.

VII. CONCLUSIONS

In this work, a novel control strategy for cranes employed

in heavy-lift offshore marine operations was presented. The

proposed solution relies upon the use of an adaptive observer

and two external models. Experimental results show that the

control scheme proposed in this paper leads to removal of

restrictive assumptions as well as an overall improvement

over the results obtained with a classic internal model-based

control as the one proposed in [6].
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