
l1-Optimal Robust Iterative Learning Controller Design

Kevin L. Moore Senior Member, IEEE

Division of Engineering, Colorado School of Mines

Golden, CO 80401, USA – kmoore@mines.edu

Mark H.A. Verwoerd

Hamilton Institute, National University of Ireland

Maynooth, Co. Kildare, Ireland – Mark.Verwoerd@nuim.ie

Abstract— In this paper we consider the robust iterative
learning control (ILC) design problem for SISO discrete-
time linear plants subject to unknown, bounded disturbances.
Using the supervector formulation of ILC, we apply a Youla
parameterization to pose a MIMO l1-optimal control problem.
The problem is analyzed for three situations: (1) the case of
arbitrary ILC controllers that use current iteration tracking
error (CITE), but without explicit integrating action in itera-
tion, (2) the case of arbitrary ILC controllers with CITE and
with explicit integrating action in iteration, and (3) the case
of ILC controllers without CITE but that force an integral
action in iteration. Analysis of these cases shows that the best
ILC controller for this problem when using a non-CITE ILC
algorithm is a standard Arimoto-style update law, with the
learning gain chosen to be the system inverse. Further, such an
algorithm will always be worse than a CITE-based algorithm.
It is also found that a trade-off exists between asymptotic
tracking of reference trajectories and rejection of unknown-
bounded disturbances and that ILC does not help alleviate this
trade-off. Finally, the analysis reinforces results in the literature
noting that for SISO discrete-time linear systems, first-order
ILC algorithms can always do as well as higher-order ILC
algorithms.

Key Words: Iterative learning control, robust control, Youla

parameterization, l1-optimal control.

I. INTRODUCTION

The iterative learning control (ILC) paradigm for systems

that operate in a repetitive fashion has attracted considerable

attention and has a well-established research literature ad-

dressing both analysis and design (see the recent overview

[1] for the basic ideas of the approach and the survey paper

[2] for a detailed taxonomy of the literature). Though the

basic questions of ILC have been understood under nominal

assumptions about the plant to be controlled, there remain a

number of open issues. One area of active research is related

to robustness. Robustness can be considered from a variety

of perspectives, including robustness with respect to variation

in inputs and disturbances as well as robustness with respect

to variation in process itself. For a summary of these issues,

see [3].

In this paper we address a specific form of robustness that

has not been considered in the ILC community: robustness

with respect to disturbances that are unknown, but bounded,

with a known bound. Specifically, we consider how to

minimize the maximum value of the error given that we know

the maximum value of the disturbance. In non-ILC control,

this problem is known as the l1-optimal control problem (in

the discrete-time case, or the L1 problem in the continuous-

time case), because in the l∞ signal space topology, the

induced norm of the operator that maps the disturbance to

the error is the l1 norm [4]. While the l1-optimal control

problem is well-understood, we wish to investigate how the

problem is impacted in an ILC scenario.

The paper is organized as follows. First we summarize the

ILC framework in which we operate: a lifted representation

we call the supervector approach. In this framework we then

define our problem and apply the Youla parameterization

to form a model matching problem with an l1 optimality

criteria. This formulation is done for three specific cases,

distinguished by the presence or absence of current iteration

feedback (CITE) and whether there is explicit use of an

integrating action in iteration. Next, each scenario is analyzed

to derive an l1-optimal ILC controller and the controller’s

properties are discussed. The results indicate that in general

ILC does not help improve the robustness of the system to

l∞ disturbances. The paper concludes with a summary of

the results and a discussion of future research questions.

II. ILC FRAMEWORK

A. The basic “supervector” approach

Let the SISO discrete-time plant P (z) be given by

Yk(z) = P (z)Uk(z) = (h0 + h1z
−1 + · · ·)Uk(z)

where the system is assumed (with some loss of generality)

to have relative degree zero (h0 6= 0), z−1 is the standard

delay operator with respect to time t, k denotes the iteration

index, and the parameters hi are the standard Markov param-

eters of the system H(z). Per the normal ILC methodology

[5], let the trial length be N and lift the time-domain signals

to form the so-called supervectors:

Uk = (uk(0), uk(1), · · · , uk(N))

Yk = (yk(0), yk(1), · · · , yk(N))

Yd = (yd(0), yd(1), · · · , yd(N))

from which we can write Yk = HUk, where H is a lower-

triangular Toeplitz matrix of rank n whose elements are the

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

FrA08.1

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 3881

Markov parameters of the plant P (z), given by:

H =











h0 0 · · · 0
h1 h0 · · · 0

...
...

. . .
...

hN−1 hN−2 · · · h0











For each t ∈ [0, N], let the (one-sided) w-transform W (·)
be defined as

W ({uk(t)})
.
=

∞
∑

k=0

uk(t)w−k (1)

We comment that the w-transform is similar to the standard

z-transform, but it is operating from trial-to-trial, with time t
fixed, as opposed to the standard z-transform operator, which

operates from time step-to-time step, with k fixed. It should

also be noted that to the authors’ best knowledge, the first

appearance of a transform operator operating from trial-to-

trial was in [6]. The use of the transform operator has been

developed in a number of citations. See [7], [8], [9], for

example. However, again to our best knowledge, (1) is the

first formal definition of the w-transform presented in the

literature.

Note that using (1), we have

W ({uk−1(t)}) = w−1W ({uk(t)}) + u−1(t)

Thus, assuming uj = 0 for all j < 0, we can write

W ({uk−n(t)}) = w−nW ({uk(t)}).

In the sequel, we will apply the w-transform to our lifted vec-

tors Uk, Yk, and Yd, to get vector w-transforms U(w), Y (w),
and Yd(w), respectively. Thus, we may write the plant Yk =
HUk as Y (w) = HU(w).

To proceed, consider the general form of a (higher-order)

ILC algorithm:

Uk+1 = −D̄n−1Uk − · · · − D̄0Uk−n+1 (2)

+ NnEk+1 + Nn−1Ek + · · · + N0Ek−n+1

where, for all k, Ek := Yd − Yk denotes the tracking error.

Observe that in this update law the “next input” is computed

as a filtered sum of n “past inputs”, “past errors”, and

“current errors”, the latter via the current iteration tracking

error (CITE) term NnEk+1
1 Taking the w-transform of both

sides of this equation and combining terms gives

D̄c(w)U(w) = Nc(w)E(w)

where

D̄c(w) = wn + D̄n−1w
n−1 + · · · + D̄1w + D̄0

Nc(w) = Nnwn + Nn−1w
n−1 + · · · + N1w + N0

1Standard ILC convention refers to the “order” of an ILC algorithm as
the number of past trials that are used in computing the next input. Thus an
algorithm such as Uk+1 = Uk +ΓEk is a first-order ILC algorithm, while
Uk+1 = Uk + Γ1Ek−1 + Γ2Ek−2 is considered a third-order algorithm
(three past trials, k, k − 1, and k − 2 are used to compute the input on the
next trial, k + 1). Though the presence of a CITE term may produce some
ambiguity, we will define order in terms of the maximum number of past

trials used, either past errors or past inputs. Thus, the algorithm in (2) is an
n-th order ILC update rule.

which can also be written in a matrix fraction as U(w) =
C̄(w)E(w) where C(w) = D̄−1

c (w)Nc(w). Note that the

invertibility of Dc(w) is subject to the same conditions as

typically found in the theory of multivariable matrix fraction

descriptions.

A common special case of (2) uses the general (higher-

order) ILC update law

Uk+1 = (I − Dn−2)Uk + (Dn−2 − Dn−3)Uk−1 (3)

+ · · · + (D1 − D0)Uk−n+2 + D0Uk−n+1

+NnEk+1 + · · · + N1Ek−n+2 + N0Ek−n+1

Taking the w-transform of this update law now yields

(w − 1) · I · Dc(w)U(w) = Nc(w)E(w), where

Dc(w) = wn−1 + Dn−2w
n−2 + · · · + D1w + D0

Nc(w) = Nnwn−1 + Nn−1w
n−1 + · · · + N1w + N0

which can also be written in a matrix fraction as

U(w) =
I

(w − 1)
C(w)E(w)

where C(w) = D−1
c (w)Nc(w).

Figure 1 depicts the set of equations we have just devel-

oped based on (3) for an ILC update law represented by

(w − 1)−1C(w) (more generally, we can replace the two

blocks containing C(w) and 1/(w − 1) with a single block

containing C̄(w) if using the general ILC update law of (2)).

From this figure it is clear that the repetition-domain closed-

loop dynamics from Yd to Y (w) become either:

Ḡcl(w) = H [D̄c(w) + Nc(w)H]−1Nc(w)

for (2) or, for (3),

Gcl(w) = H [(w − 1)Dc(w) + Nc(w)H]−1Nc(w)

For the latter case, because we now have an integrator in

the feedback loop (a discrete integrator, in the repetition

domain), applying the final value theorem to Gcl shows that

Ek → 0 as long as the ILC algorithm converges (i.e., as long

as Gcl is stable).

)1(

1

�w
H

-

dY)(wY)(wU)(wE

)(wC

)(wC

Fig. 1. Standard ILC setup in the supervector framework.

B. A generalized framework

As described in detail elsewhere [3], we can extend the

development given above in a number of ways, by including:

1) Iteration-varying reference signals Yd(w).
2) Iteration-varying noise signals N(w).

3882

3) Iteration-varying disturbances signals D(w).
4) Iteration-varying nominal plant models H(w).
5) Iteration-varying plant model uncertainty, ∆H(w).
6) Separation of the control action into current cycle

feedback CCITE and ILC update CILC .

Figure 2 depicts the complete picture. Note that in this

figure we have assumed that integrating action (in the itera-

tion domain) is used in the control law. Further, the diagram

shows the current iteration feedback (CITE) separated from

the ILC update. Both of these effects can be absorbed into

a single controller denoted by C̄(w). In particular, note that

the use of CITE has been incorporated into our algorithm

by the term NnEk+1 in both (2) and (3). This simply means

that with respect to our iteration-domain feedback system,

the controller now has relative degree zero rather than the

relative degree one controller that results when only previous

cycle feedback is used.

)(ILC wC

CITEC

)1(

1

�w)(wH p

)(wH'

-

)(wD)(wN

)(wYd
)(wY)(wU)(wE

Fig. 2. More general ILC framework.

In the remainder of this paper we consider the ILC design

problem for the case when the plant is subjected to an

iteration-varying, unknown, and bounded disturbance D(w).
We will assume that there is no noise, that there is no

iteration-variation for the plant or the reference signal, and

that there is no uncertainty associated with the nominal

model. With these assumptions and combining any inte-

grating action or current cycle feedback into the controller,

the general block diagram for our problem is given by

Fig. 3, where we have dropped the overbar notation on the

controller.

H

-

)(wD

dY)(wY)(wU)(wE
)(wC

Fig. 3. General l1 problem framework.

III. YOULA PARAMETERIZATION

Consider Figure 3, where again we note that the plant and

reference signal are iteration-invariant, there is no noise, and

we might have integrating action in the controller and we

might have current cycle feedback (CITE). The signal D(w)
is assumed to be iteration-varying, unknown, and bounded.

Our goal is to design a controller C(w) to minimize the

effect of the worst possible disturbance on the output. That

is, if we denote the map from the disturbance to the output

as TY D(w), our problem is2

min
C(w)

‖TY D(w)‖l1

Our approach is to use the Youla parameterization, as

suggested in [9] to convert this to a model matching problem

and then solve the model matching problem with an l1
optimality criteria.

As described in many places, e.g., [4], the Youla pa-

rameterization provides a characterization of all stabilizing

controllers for a given system. Recall that H(w) = ND−1 =
D̄−1N̄ is a doubly coprime factorization if there exist stable,

rational, coprime matrices X, Y, X̄, and Ȳ such that the

Bezout equation
[

X Y
−N̄ D̄

] [

D −Ȳ
N X̄

]

= I

is satisfied. Under these hypotheses the control law U =
−C(w)Y stabilizes the system, where

C(w) = (Ȳ +DQ)(X̄−NQ)−1 = (X −QN̄)−1(Y +QD̄)

and Q(w) is any stable, rational matrix such that X̄−NQ 6=
0 and X − QN̄ 6= 0.

Because many ILC algorithms do no have a pure integrator

in iteration, we consider three separate cases: not forcing an

integrating action in iteration, forcing an integrating action in

iteration while viewing the integrator as part of the controller,

and forcing an integrating action in iteration while viewing

the integrator as part of the plant. Note that the first two

admit the possibility of CITE while the last case does not.

A. Case 1 – No integrating action (in iteration)

In this case we apply the Youla parameterization directly

to Fig. 3, resulting in

• A possible non-zero error from Yd to E, due to the fact

that the l1 optimization solution does not necessarily

produce a controller with an integrating action. We

remind the reader that the l1 optimization problem

is about minimizing the maximum error, which may

amount to trading off good transient behavior against

small asymptotic error.

• An arbitrary controller that will generically include a

current cycle feedback component.

• A stable plant H used when carrying out the Youla

parameterization. The resulting system equation to be

used for design is Y (w) = HU(w) + HD(w).
• A controller given by (for any stable, rational matrix

Q(w) such that I − HQ(w) 6= 0 and is biproper)

C(w) = Q(w)(I − HQ(w))−1

2Because this is a unity feedback system, we can equivalently work with
the influence of the disturbance on the output or on the error. In this paper
we choose to consider the output.

3883

• A closed-loop map from the disturbance to the output

defined by

TY D(w) = H − HQ(w)H (4)

B. Case 2 – Including an integrating action (in iteration) as

part of the controller

To get zero steady-state error we need to include inte-

grating action in the open-loop transfer function. We can do

this directly by following the results in [10], which gives

a parameterization of all stabilizing integrating controllers.

To do this we apply the Youla parameterization to Fig. 4,

resulting in

• A zero steady-state error from Yd to E.

• An integrating controller that will generically include a

current cycle feedback component.

• A stable plant H used when carrying out the Youla

parameterization. The resulting system equation to be

used for design is Y (w) = HU(w) + HD(w).
• A controller given by (for any stable, rational matrix

Q(w) such that I − Q(w)H 6= 0 and is biproper, and

any stabilizing ILC gain Γ3)

C(w) = (I − Q(w)H)−1(Q(w) +
1

w − 1
Γ)

which, if we use Γ = H−1, becomes4

C(w) = (I − Q(w)H)−1(Q(w) +
1

w − 1
H−1)

• A closed-loop map from the disturbance to the output

defined by

TY D(w) =
w − 1

w
H −

w − 1

w
HQ(w)H (5)

cc ND
w

wC
1

)1(

1
)(

�

�

 H

-

)(wD

dY)(wY)(wU)(wE

Fig. 4. l1 problem framework using an integrating controller.

3When forcing an integrating action in iteration, we are effectively using
a controller Uk+1 = Uk + ΓEk , or U(w) = 1

(w−1)
ΓE(w). Thus, as per

[10], the condition on Γ is that the controller C(w) = 1
(w−1)

Γ should

stabilize H .
4Note that because the Youla parameterization gives all stabilizing con-

trollers for any Γ that stabilizes the plant, there is no loss of generality due
to any specific choice of Γ.

C. Case 3 – Including an integrating action (in iteration) as

part of the plant

Another approach to getting the desired zero steady-state

error is to define the “plant” to include the integrator that will

actually be implemented in the controller and then design

the remaining part of the controller to compensate for the

resulting integrating plant. This approach, depicted in Fig.

5, results in

• A zero steady-state error from Yd to E.

• An integrating controller that will not include a current

cycle feedback component.

• An unstable plant H/(w−1) used when carrying out the

Youla parameterization. The resulting system equation

to be used for design is Y (w) = 1
w−1HU(w)+HD(w).

• A controller given by (for any stable, rational matrix

Q(w) such that I − HQ(w) 6= 0)5

C(w) = ((1 − α)H−1 +
(w − 1)

(w − α)
Q(w))

·(I −
1

(w − α)
HQ(w))−1

which, for α = 0, is

C(w) = (wH−1 + (w − 1)Q(w))(wI − HQ(w))−1

• A closed-loop map from the disturbance to the output

defined by (again, for α = 0)

TY D(w) =
(w − 1)

w
H −

(w − 1)

w2
HQ(w)H (6)

)1(

1

�w H

-

)(wD

dY)(wY)(wU)(wE
)(wC

tionimplementafor)(wC

designfor)(wH

Fig. 5. l1 problem framework using an integrating plant.

IV. l1 OPTIMIZATION

Based on the analysis in the previous section, we now

consider the problem:

min
Q(w)

‖TY D‖l1

5To develop the Youla parameterization for this case, we pick α, |α| < 1,
and define the plant H(w) = ND−1 = D̄−1N̄ , where D = D̄ =
(w−1)
(w−α)

I , and N = N̄ = 1
(w−α)

H . One solution to the corresponding

Bezout equation X(w − 1) + Y H = (w − α)I is given by X = I ,
Y = (1 − α)H−1, resulting in the controller indicated. Note that the
choice of the Youla parameters is immaterial with respect to the synthesis
problem considered here.

3884

The three different parameterizations, (4), (5), and (6), re-

peated here and shown with a subscript for convenience, are:

TY D1
(w) = H − HQ(w)H

TY D2
(w) =

w − 1

w
H −

w − 1

w
HQ(w)H

TY D3
(w) =

(w − 1)

w
H −

(w − 1)

w2
HQ(w)H

Note that by using the Youla parameterization, we have

ensured closed-loop stability. Our interest then is to minimize

the effect of an unknown but bounded disturbance. It would

initially be tempting to think that we can solve the problem

for all three cases by simply letting Q(w) = H−1, which

would give TY D(w) = 0. However, in this case the Youla

parameterization requirement that (I − Q(w)H) is biproper

would be violated.

A. Case 1 – No integrating action (in iteration)

Though we might turn to the more sophisticated machinery

of [4], it turns out that this is not necessary initially. Without

loss of generality, let Q(w) be given as

Q(w) = Q0 + Q1w
−1 + Q2w

−2 + . . .

. Then ‖H − HQ(w)H‖l1 becomes

‖TY D1
(w)‖l1 = ‖H − H(Q0 + Q1w

−1 + . . .)H‖l1

= ‖H − HQ0H‖l1 +
∞
∑

i=1

‖HQiH‖l1

Clearly, to minimize this, we want to make all the terms in

the sum zero or as close to zero as possible without violating

the constraint (I − Q(w)H) biproper (the only way it can

be zero is if Q(w) = H−1, clearly not a viable choice).

There is more than one way to do this (there is not a unique

solution), so we chose the one that will give the lowest-order

controller. Specifically, let Qi = 0 for i > 0 and set

Q0 = H−1 − γH−2

where γ > 0. Then we get ‖TY D1
(w)‖l1 = γ, which can be

made arbitrarily small6. It is also interesting to compute the

resulting controller, which becomes:

C(w) =
1

γ
I − H−1

and the resulting output signal, including the reference:

Y = (I − γH−1)Yd + γD(w)

Thus we see that this controller allows us make the error arbi-

trarily small, at the cost of a using a high-gain controller (the
1
γ

in the controller equation). Also note that the controller

is independent of iteration. That is, in a worst-case sense,

ILC does nothing to improve the rejection of an unknown,

bounded disturbance.

6As pointed out by a reviewer, making ‖TY D1
(w)‖l1

arbitrarily small
means that in the limit (I − Q(w)H) will violate the requirement to be
biproper. However, the biproper condition is satisfied for any finite γ. In this
sense the result is no less meaningful than any typical high-gain feedback
result in adaptive control.

Note that alternate choices of Q(w) are possible. When

we have forced the higher-order terms in Q(w) to zero, the

alternate choices of Q0 seem to always produce a high gain

controller. It is interesting to ask if we can get the same

performance with a lower-gain controller if we allow higher-

order terms.

B. Case 2 – Including an integrating action (in iteration) as

part of the controller

Next, consider the problem

min
Q(w)

‖TY D2
(w)‖l1

where

TY D2
(w) =

w − 1

w
H −

w − 1

w
HQ(w)H

In this case it is tempting to use

Q(w) =
1

(w − 1)
(Q0w − H−1)

where Q0 is the solution given in Case 1 above. Such a

choice makes TY D2
(w) = TY D1

(w) = γI , the same solution

as in Case 1. Unfortunately, this is not an allowable Q(w),
because it is not stable (due to the integrator that appears in

Q(w)) and indeed, a computation of the resulting controller

gives the same controller as in Case 1, C(w) = (1/γ)I −
H−1, which clearly does not contain an integrating action.

To proceed we cannot directly apply the standard l1-

optimization machinery from [4], because our problem in-

troduces interpolation constraints on the stability boundary

(zeros at w = 1). However, a result from [4] does tell us that

even if we cannot obtain the optimal, we can get arbitrarily

close with an FIR solution (that is, by making TY D2
(w)

FIR). Exploiting this result, let us use the exact same Q(w)
as in Case 1:

Q(w) = Q0 = H−1 − γH−2

which results in ‖TY D2
(w)‖l1 = ‖γ (w−1)

w
I‖l1 = 2γ, with a

resulting controller

C(w) =
1

(w − 1)

[

(
1

γ
I − H−1)w + H−1

]

and closed-loop output signal

Y = (I − γ
(w − 1)

w
H−1)Yd + γ

(w − 1)

w
D(w)

Here we clearly see that the integrator makes the steady-

state error zero between the desired (constant) signal Yd and

the output Y (to see this, let Yd be a step and then apply

the final value theorem), while allowing the error due to the

disturbance to be pushed arbitrarily small. Of course, we

again see that the controller has a high-gain characteristic as

in Case 1. Also, as in Case 1, the ILC action does nothing,

in a worst-case sense, to improve the performance relative

to the disturbance. But, by adding the ILC feature, we gain

the benefit of making the error with respect to the reference

go to zero. We can also observe that

3885

1) The price we pay for forcing an integrator in the system

(Case 2) to get asymptotic convergence (in iteration)

with respect to the reference signal is a higher gain

from the l∞ disturbance to the output than when the

integrator is not used (Case 1).

2) The best possible l∞ disturbance rejection for the case

of an integrator with the possibility of CITE (Case 2)

is the same as that for CITE alone (Case 1).

C. Case 3 – Including an integrating action (in iteration) as

part of the plant

Finally we consider the problem

min
Q(w)

‖TY D3
(w)‖l1

where

TY D3
(w) =

w − 1

w
H −

w − 1

w2
HQ(w)H

As in Case 2, we cannot choose a Q(w) that contains an

integrator and because of the interpolation constraints, we

seek to make TY D3
(w) FIR. Assuming

Q(w) = Q0 + Q1w
−1 + Q2w

−2 + . . .

gives

TY D3
(w) = H − (H + HQ0H)w−1

−H(Q1 − Q0)Hw−2 − . . .

so that

‖TY D3
(w)‖l1 = ‖H‖l1 + ‖H + HQ0H‖l1

+‖H(Q1 − Q0)H‖l1 + . . .

≥ 2‖H‖l1

The minimum l1 gain occurs when Q(w) = 0,7 which results

in a controller C(w) = H−1 and a closed-loop response

given by

Y =
(w − 1)

w
Yd +

(w − 1)

w
HD(w)

Thus, we see that when we use a non-CITE ILC algorithm

the best we can do is use a standard Arimoto-style update

law, with the learning gain chosen to be the system inverse.

Further, such an algorithm will always be worse than a CITE-

based algorithm. This means that ILC cannot help in the case

of a system subject to unknown, bounded inputs.

V. CONCLUSION

In this paper we have studied the design of iterative learn-

ing controllers for plants subject to unknown but bounded

disturbances. We have shown that when CITE ILC algo-

rithms are used, the best case l∞ disturbance attenuation

is better than when non-CITE algorithms are used. Fur-

ther, when CITE is employed, there is a trade-off between

asymptotic convergence (due to the use of an integrating

action in iteration) and l∞ disturbance attenuation, with

7This is not the only choice of Q(w) that achieves the minimum. For
instance, it is also attained when Q(w) = −H−1

better disturbance rejection achieved when the controller

does not use an explicit integrating action. However, in both

the case of no integrating action and integrating action, the

disturbance attenuation can be made arbitrarily small, but at

the cost of a high gain controller. We also point out that in all

three cases considered, the resulting ILC algorithm is always

first order. This corresponds to many of the results presented

in a special session devoted to higher-order ILC at the 2002

IFAC World Congress (see [11]). As a final comment, we

note that in [12] and [13] we have taken a state-space based

algebraic approach to the robust ILC problem when there are

l2 disturbances, which is equivalent to the problem:

min
C(w)

‖TY D(w)‖H∞

In our future research we will reconsider this problem using

a model-matching approach.

REFERENCES

[1] Douglas A. Bristow Marina Tharayil and Andrew G. Alleyne, “A
survey of iterative learning control: A learning-based method for high-
performance tracking control,” IEEE Control Systems Magazine, vol.
26, no. 3, pp. 96–114, 2006.

[2] Ahn H.-S. Chen Y.-Q. and Moore K.L., “Iterative learning control:
Brief survey and categorization,” IEEE Transactions on Systems, Man,

and Cybernetics, Part-C, vol. 37, 2007.
[3] Ahn H.-S. Moore K.L. and Chen Y.-Q., Iterative Learning Con-

trol: Robustness and Monotonic Convergence for Interval Systems,
Springer-Verlag, London, 2007.

[4] Dahleh M. and Diaz-Bobillo I. J., Control of Uncertain Systems: A

Linear Programming Approach, Prentice Hall, New Jersey, 1995.
[5] K. L. Moore, “A matrix fraction appraoch to higher-order iterative

learning control: 2-D dynamics through repetition-domain filtering,”
in Proceedings of the Second International Workshop on Multidimen-

sional (ND) Systems, Czocha Castle, Poland, June 27 - 30 2000, pp.
99–104.

[6] Kevin L. Moore, “Multi-loop control approach to designing iterative
learning controllers,” in Proceedings of the 37th IEEE Conference on

Decision and Control, Tampa, Florida, USA, 1998, pp. 666–671.
[7] J. J. Hatonen D. H. Owens and K. L. Moore, “An algebraic approach

to iterative learning control,” International Journal of Control, vol.
77, no. 1, pp. 45–54, 2004.

[8] D. H. Owens, E. Rogers, and K. L. Moore, “Analysis of linear
iterative learning control schemes using repetitive process theory,”
Asian Journal of Control, Special Issue on ILC, vol. 4, no. 1, pp.
90–98, March 2002.

[9] Verwoerd M. Meinsma G and de Vries T., “On admissible pairs
and equivalent feedbackyoula parameterization in iterative learning
control,” Automatica, vol. 42, no. 12, pp. 2079–2089, 2006.

[10] Gundes A. N. and Kabuli M. G., “Parameterization of stabilizing
controllers with integral action,” IEEE Transaction on Automatic

Control, vol. 44, no. 1, pp. 116–119, 1999.
[11] K. L. Moore and YangQuan Chen, “On monotonic convergence of high

order iterative learning update laws,” in Invited Session on High-order
Iterative Learning Control at The 15-th IFAC Congress, Barcelona,
Spain, July 21-26 2002, IFAC.

[12] Moore K.L. Ahn H.-S. and Chen Y.-Q., “Iteration-domain h-infinity
iterative learning controller design,” International Journal of Robust

and Nonlinear Control, accepted to appear 2008.
[13] Moore K.L. Ahn H.-S. and Chen Y.-Q., “Algebraic h-infinity design of

higher-order iterative learning controllers,” in Proceedings 2005 IEEE

International Symposium on Intelligent Control, Cyprus, Greece, June
2005.

3886

