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Abstract— This paper presents a linear matrix inequality (LMI)

approach to solve the robust fault-tolerant control (FTC) problem

with actuator failures. According to an equivalent transformation, fault

effect factors can be put in linear fractional transformation (LFT)

form. Then, based on the information from the fault detection and

diagnosis (FDI) mechanism, the fault-tolerant control problem can be

solved with a well-recognized design approach in robust control area

called gain-scheduling control theory, and a fault-tolerant controller

which provided with adaptive function can be developed for satisfactory

performance. Also based on the LFT framework, the case of error

estimation is considered in this paper with applying µ-theory for

guaranteeing the closed-loop system’s stability and performance. The

proposed design technique is finally evaluated in the light of a simulation

example.

I. INTRODUCTION

In most practical control systems, a components’ failure (in-

cluding sensors, actuators and even the plant itself) may occur at

uncertain time and the size of faults is also unknown. The fault may

leads to performance deterioration or even instability of the system.

Therefore, fault-tolerant control (FTC) system design, which can

make the system operates in safety and with proper performance

whenever components are healthy or faulted, has received signifi-

cant attention over the past two decades. There broadly classified

into two type approaches for design the fault-tolerant controller,

namely passive approach [9, 10, 11, 12, 19, 22] and active approach

[4, 5, 6, 7, 8, 13, 15, 20]. In the passive approach, using robust

control techniques, a fixed controller is designed to guarantee

system’s stability and performance in fault case as well as in normal

case. Recently, several approaches have been developed, such as

ARE-based approach [9, 10, 12]; LMI-based approach [11, 19];

Pole region assignment technique [22], etc. The passive approach

is relatively easy to design the controller for the presumed faults

because they are not rely on on-line controller adjusting. However,

it has also a very limited fault tolerant capability because as the

number of possible failures and the degree of system redundancy

increase, the controller design becomes more conservative and

attainable control performances may not be satisfactory. On the

other hand, a fault-tolerant control system based on active approach
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can compensate for faults either by selecting a pre-computed control

law or by synthesizing a new control strategy on-line. There are

primary two typical approaches for fault compensations in active

fault-tolerant, such as fault detection and isolation (FDI) [4, 5, 20]

and adaptive approach [7, 8, 13, 15]. Since the active FTC system

offers the flexibility to select different controllers, the most suitable

controller can be chosen for the situation and the better performance

can be obtained than the passive FTC system.

As faults are unknown, many researchers have focused on the

development of methodologies to estimate faults [5, 6, 7, 14, 20], so

that measures could be taken to accommodate their effects in FTC

systems. Although the fault effect factors are estimated as accurately

as possible, there are always exist inaccuracies of estimation in

most of applications. In this paper, all inaccuracies are considered

as parametric uncertainties which is convenient to be described

in LFT forms. And we assume the upper and lower bounds of

inaccuracies are known according to the FDI mechanism’s self-

characteristic. Then, the estimation inaccuracies can be defined as

a convex polytopic uncertain domain in terms of the upper and

lower bounds of inaccuracies, and the FDI scheme is considered

availably if the inaccuracy values within that domain.

In this paper, we consider the robust FTC problem for a linear

discrete-time system, and put the state-space model in LFT form

so that the system depends on the estimate of control effectiveness

where comes from FDI mechanism. Then, the controller which

also depends on the same values can be designed using the gain-

scheduling technique, which is similar to design controller in

linear parameter-varying (LPV) systems introduced in [1, 2, 18],

to guarantee the closed-loop system safety and performance. Due

to the adaptive nature, the fault-tolerant controller has adaptive

robust characteristic. However, as a result of the controller designed

based on the estimated values, the closed-loop system may have bad

performances or even be unstable when some estimated values are

absolutely wrong. For this case of FDI failures, µ-theory which

can measure the minimum values of uncertainties which make the

system unstable is utilized to guarantee the stability of closed-

loop system. In other words, if we consider estimation errors as

uncertainties, the maximum size of allowed uncertainties can be

expressed by the structured singular value µ of the feedback system.

Then we can adjust the bound of inaccuracies, reconstruct the

controller and let the estimation error be in the minimum range,

so that the new controller may tolerant the faults of FDI.

The rest of the paper is organized as follows. The FTC prob-

lem formulation and a system interpretation for this problem are

described in Section 2. In Section 3, LMI synthesis conditions are

presented, and the linear time-invariant control structure for FTC

problem is also designed. Section 4 introduces µ-theory application

for the case of FDI scheme be fail. Section 5 gives an example and

simulation. Finally, conclusion is given in Section 6.
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II. PRELIMINARIES AND PROBLEM STATEMENT

We now introduce our notation and gather some elementary facts.

R denotes the set of real numbers; C denotes the set of complex

numbers. For real symmetric matrices M, the notation M > 0(<
0) stands for positive (negative) definite and means that all the

eigenvalues of M are positive (negative). For M > 0, M1/2 denotes

the unique positive definite square root. For an arbitrary matrix P,

ker(P) stands for the null space of the linear operator associated with

P. Given numbers ρk,k = 1, . . . ,n, the notation diagk[ρk] denotes the

diagonal matrix with ρk along the diagonal.

Linear fractional transformation (LFT) is used extensively in

control domain. For appropriately dimensioned matrices K and

E =

[

E1 E2

E3 E4

]

assuming the inverses exist, the lower and upper LFT are defined

as
Fl(E,K) = E1 +E2K(I −E4K)−1E3

Fu(E,K) = E4 +E3K(I −E1K)−1E2,

respectively. For a stable real-rational transfer function matrix G,

the H∞ norm is defined in the usual way for discrete time systems:

‖G(z)‖∞ = sup
θ∈[0,2π]

σ̄(G(e jθ ))

where σ̄(G) stands for the largest singular value of a matrix G.

Consider a linear time-invariant discrete-time model described by

x(k +1) = Ax(k)+B1w(k)+B2u(k)
z(k) = C1x(k)+D12u(k)
y(k) = C2x(k)+D21w(k)

(1)

where x(k) ∈ Rn is the state, u(k) ∈ Rm is the control input, and

y(k) ∈ Rp is the measured output, z(k) ∈ Rq is the regulated output

and w(k)∈ Rs is an exogenous disturbance in L2[0,∞], respectively.

All system matrices are known constant matrices of appropriate

dimensions.

In this paper, we consider a general actuator fault model. Let

uF
ih(k) represent the signal from the ith actuator that has failed in

the hth faulty mode. Then we denote the fault model

uF
ih(k) = (1−σh

i )ui(k), 0 ≤ σh
i ≤ σh

i ≤ σ̄h
i ≤ 1

where i = 1 . . .m, h = 1 . . .L, σh
i is an unknown actuator efficiency

factor, the index h denotes the hth faulty mode and L is the total

faulty modes. let σh
i and σ̄h

i represent the lower and upper bounds

of σh
i , respectively. Note the practical case, when σ̄h

i = σh
i = 0,

there is no fault for the ith actuator ui. when σ̄h
i = σh

i = 1, the ith

actuator ui is outage. when 0 < σh
i ≤ σ̄h

i < 1, that means the type

of actuator faults is loss of effectiveness.

Denote

uF
h (k) = [uF

1h(k),u
F
2h(k), · · · ,u

F
mh(k)]

T = (I −σh)u(k)

where σh = diag[σh
1 ,σh

2 , · · · ,σh
m], σh

i ∈ [σh
i , σ̄

h
i ]. Then a set of

operator with above structure is defined by

∆σ h = {σh : σh = diagi[σ
h
i ],σh

i ∈ [σh
i , σ̄

h
i ], i = 1,2, . . . ,m}. (2)

Letting σ̂i stand for the estimate of σi, we define a set as

∆σ̂ =

{

σ̂ : σ̂ = diagi[σ̂i], σ̂i ∈ [min
h
{σh

i },max
h

{σ̄h
i }]

}

. (3)

Let δ+
i and δ−

i as the upper and lower bounds of the estimate

inaccuracies δi, respectively, then the relationship of σ̂ and σh can

be described as:

σh = σ̂ −δ (4)

where δ = diag[δ1,δ2, · · · ,δm], δi ∈ [δ−
i ,δ+

i ], and a set is defined

by

∆δ = {δ : δ = diagi[δi],δi ∈ [δ−
i ,δ+

i ], i = 1,2, . . . ,m}. (5)

Here, we consider the estimate inaccuracies δ as a polytope of

m×m diagonal matrices N j. That is,

∆δ := Co(N j, j = 1,2, . . . ,2m) = {
2m

∑
j=1

α jN j : α j ≥ 0,
2m

∑
j=1

α j = 1}

where Co(·) denotes the convex hull, and every element of N j is

given by the corresponding extreme vertices of δi, i.e δ+
i or δ−

i .

For the convenience of description in the following sections, for

all possible faulty modes L, the following uniform actuator fault

model is exploited:

uF
i (t) = (I −σi)ui(t), σi ∈ {σ1

i · · ·σ
L
i }. (6)

Hence, from the above description, dynamics with actuator fault

(1) is described by

x(k +1) = Ax(k)+B2(I − σ̂ +δ )u(k)+B1w(k)
z(k) = C1x(k)+D12(I − σ̂ +δ )u(k)
y(k) = C2x(k)+D21w(k).

(7)

For the sake of fault effect factors can be of linear fractional

transformation (LFT) parameter dependence. A transformation be

introduced as:

I − σ̂ = Fu

([

E1 E2

E3 E4

]

, σ̂

)

(8)

where Ei = diag[Ei1,Ei2, · · · ,Eim], i = 1,2,3,4 are defined by the

equation, and one of suitable choices is E1 = 0m, E2 = Im, E3 =−Im,

E4 = Im, which satisfies (8).

In terms of (8), we denote the following transform equations as:

(I − σ̂)u(k) = E3wσ (k)+E4u(k)
zσ (k) = E1wσ (k)+E2u(k)

(9)

where the internal signals wσ (k) ∈ Rm and zσ (k) ∈ Rm.

Then (7) can be rewritten in the LFT form as follows:








x(k +1)
zσ (k)
z(k)
y(k)









=









A B1E3 B2 B1E4

0 E1 0 E2

C1 D12E3 0 D12E4

C2 0 D21 0

















x(k)
wσ (k)
w(k)
u(k)









(10)

where B1E4 = B1E4 +B1δ , D12E4 = D12E4 +D12δ , and

wσ (k) = σ̂zσ (k). (11)

Therefore, we get the plant’s LFT form. Due to the controller

for this LFT plant will also be parameter dependent, and will be

have a similar structure with the plant, the state-space model for

the controller can be describe as:




xK(k +1)
u(k)

zK
σ (k)



 =





AK BK
1 BK

2

CK
1 DK

11 DK
12

CK
2 DK

21 DK
22









xK(k)
y(k)

wK
σ (k)



 (12)

where

wK
σ (k) = σ̂zK

σ (k). (13)

Based on the above description, the FTC closed-loop system can

be drawn as in Fig.1. Note that the closed-loop system depend on

parameter σ̂ , hence define an operator:

∆σ⊕σ = {diag(σ̂ , σ̂) :

σ̂ = diagi[σ̂i], σ̂i ∈ [min
h
{σh

i },max
h

{σ̄h
i }] ⊆ [0,1]}

(14)
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Fig. 1. LFT plant and controller.

where i = 1,2, . . . ,m, h = 1,2, . . . ,L.

We modify block diagram for control design shows in Fig.2. The

block P
j

a ( j = 1,2, . . . ,2m) represents the augmented plant used for

control design. The twice-repeated block σ̂ represents parameter

time variations which will be viewed as the estimate of actuator

fault effect factors.

Note that we have collected all of the estimation parameters

(both from the plant and controller) together, and the P
j

LT I and

KLT I represent the linear time-invariant portions of the system, and

the LFT relationships are

P j = Fu(P
j

LT I , σ̂), K = Fl(KLT I , σ̂), j = 1,2, . . . ,2m.

Now for the fault-tolerant control problem, our problem describe

as follows:

Construct an LFT control structure KLT I such that the closed-

loop system Tzw is internally stable and the H∞ norm of closed-loop

transfer function matrix satisfies

‖ Tzw(P
j

a ,KLT I , σ̂) ‖∞≤ 1 (15)

for all fault effect factors ‖ σ̂ ‖∞≤ 1.

Remark 1: The case of σ̂i = 1, i = 1,2, . . . ,m is accepted in

our design, since that just caused by the wrong estimation with

FDI scheme which will be discussed in section 4. Moreover, if all

actuators are outage, there are no input values to FDI mechanism,

and the mechanism has also no output values. Here, if σ̂i >
max

h
{σ̄h

i }, then we let σ̂i = max
h

{σ̄h
i }. Similarly, If σ̂i < min

h
{σh

i },

we let σ̂i = min
h
{σh

i }.

III. FAULT-TOLERANT CONTROL SYSTEM DESIGN

Since the plant and controller has same block structure and

depend on the same parameters, we consider the set of positive

definite similarity scalings associated with the structure σ̂ in (3)

Jσ := {J > 0 : Jσ̂ = σ̂J,∀σ̂ ∈ ∆σ̂} ⊂ Rm×m.

Using the small-gain theorem, we can easily have the following

lemma for system’s robust performance in the face of the fault

factors σ
⊕

σ , or equivalently for the existence of fault-tolerant

controllers to satisfy our objective. Define

Jσ⊕σ :=
{(

J11 J12

JT
12 J22

)(

σ̂ 0

0 σ̂

)

=

(

σ̂ 0

0 σ̂

)(

J11 J12

JT
12 J22

)}

(16)

where Ji f = diag[Ji f 1,Ji f 2, · · · ,Ji f m] > 0, i, f = {1,2}.

Lemma 1: Consider an uncertainty structure σ̂ and the associated

set of similarity scalings Jσ⊕σ . If there exists a scaling matrix

Fig. 2. Augmented LTI plant for fault-tolerant control design.

J ∈ Jσ⊕σ and an LTI control structure KLT I such that the nominal

closed-loop system Fl(P
j

a ,KLT I), j = 1,2, . . . ,2m is internally stable

and satisfies
∥

∥

∥

∥

[

J 0

0 Iq

]

Fl(P
j

a ,KLT I)

[

J−1 0

0 Is

]∥

∥

∥

∥

∞

≤ 1 (17)

then Fl(KLT I , σ̂) is a standard H∞ controller.

Proof: The proof is a straightforward application of the small

gain theorem. See [16], [23] for more details.

Consider the linear discrete time system (10) and controller (12),

The closed-loop system with state-space description is simply given

by:












x(k +1)
zσ (k)

xK(k +1)
zK

σ (k)
z(k)













:= M j













x(k)
wσ (k)
xK(k)
wK

σ (k)
w(k)













. (18)

Design J̄σ⊕σ as the set of invertible matrices with block diagonal

structure given as

J̄σ⊕σ :

=























J11o 0 J12o 0

0 J11 0 J12

J21o 0 J22o 0

0 J21 0 J22









: Ji f o ∈ Rn×n,Ji f ∈ Rm×m















.

(19)

Lemma 2[1]: The linear discrete-time system described in (10)

is internally exponentially stable, and there exists a

J ∈ Jσ⊕σ

such that
∥

∥

∥

∥

[

J 0

0 Iq

]

G j

[

J−1 0

0 Is

]∥

∥

∥

∥

∞

< 1

if and only if there exists a matrix

J̄ ∈ J̄σ⊕σ

such that

σ̄

([

J̄ 0

0 Iq

]

M j

[

J̄−1 0

0 Is

])

< 1

where G is the transfer function from [wσ (k) wK
σ (k) w(k)]T to

[zσ (k) zK
σ (k) z(k)]T .
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We express the state-space description of the dynamic system as

an LFT of the two constant matrices, S
j
P and SK :













x(k +1)
zσ (k)

xK(k +1)
zK

σ (k)
z(k)













:= Fl(S
j
p,SK)













x(k)
wσ (k)
xK(k)
wK

σ (k)
w(k)













Hence, the following statements are equivalent:

(1) there exists a matrix J ∈ Jσ⊕σ , and a time-invariant controller

KLT I such that
∥

∥

∥

∥

[

J 0

0 Iq

]

Fl(P
j

a ,KLT I)

[

J−1 0

0 Is

]∥

∥

∥

∥

∞

< 1.

(2) There exists a matrix Y ∈ J̄σ⊕σ and a constant matrix SK

such that

σ̄

([

Y 1/2 0

0 Iq

]

Fl(S
j
p,SK)

[

Y−1/2 0

0 Is

])

< 1. (20)

Therefore, if there exist a matrix KLT I and Y ∈ J̄σ⊕σ , Y =Y T > 0,

satisfy (20), we can achieve the H∞ controller that provided with

fault-tolerant function.

For the sake of solve the problem, we reformulate it into a finite-

dimensional convex feasibility program using following Lemma.

Lemma 3: Let R j ∈ F l×l , U j ∈ F l×m, and V j ∈ F p×l , j =

1,2, . . . ,2m, Suppose the columns of U
j
⊥ ∈ F l×(l−m) and V

j
⊥ ∈

F(l−p)×l be bases for the null space of UT
j and V T

j such that

[U j U
j
⊥], [V T

j V
jT
⊥ ]T are both invertible, and that UT

j U
j
⊥ = 0,

V jV
jT
⊥ = 0. Let NZ ⊂ F l×l be a given set of positive matrices. Then

there exists a Q such that

σ̄ [Z1/2(R j +U jQV j)Z
−1/2] < 1

if and only if there is a Z ∈ NZ such that

V
j
⊥(RT

j ZR j −Z)V
jT
⊥ < 0

U
jT
⊥ (R jZRT

j −Z−1)U
j
⊥ < 0.

(21)

The above lemma can be proved using standard matrix dilations

arguments [1] or Schur complement arguments [21] when Z is

positive definite.

Using the above lemma, we can turn fault-tolerant problem into

solve the Affine matrix inequality (AMIs) (21). Divide S
j
P into

S
j
P =

[

R j U j

V j 0

]

with

R j =





M
j
11 0 M

j
12

0 0 0

M
j
21 0 M

j
22



 ,U j =





M
j
13 0

0 I

M
j
23 0



 ,

V j =

[

M
j
31 0 M

j
32

0 I 0

]

.

Note that by Lemma 3, and the properties of J̄σ⊕σ , the LFT

synthesis problem becomes whether the following form:

σ̄ [Z1/2(R j +U jQV j)Z
−1/2] < 1

has a feasible solution of Q with the above R j, U j, V j?

As we can see, the conditions in (21) are matrix inequalities, one

in Z, and the other in Z−1. Due to the structure of Pa, however,

only portions of Z and Z−1 appear in the matrix inequalities. As

is demonstrated in [l], this allows one to express the two matrix

inequalities in terms of variables X and Y , where both X and Y

are conformal with σ̂ and are in set Z, and additional coupling

conditions between the subblocks of X and Y . In particular, for

each i, there must exist X2i and X3i = XT
3i such that

[

Xi X2i

XT
2i X3i

]−1

=

[

Yi ∗
∗ ∗

]

(22)

and in addition, the following must be satisfied as well:
[

Xi I

I Yi

]

≥ 0.

Lemma 4: There always exist X2i and X3i = XT
3i such that the

condition in (22) satisfied.

Proof: The proof may be found in [1].

This yields the following LMI synthesis condition:

Theorem 1: There exists a Q and Z such that the inequalities in

(21) are satisfied if and only if there exists X and Y in NZ, where

X and Y are conformal to σ , such that

Ṽ
jT
⊥

(

R̃T
j Y R̃ j −Y

)

Ṽ
j
⊥ < 0

Ũ
jT
⊥

(

R̃ jXR̃T
j −X

)

Ũ
j
⊥ < 0

[

Xi I

I Yi

]

≥ 0

(23)

where i = 1,2, . . . ,m, j = 1,2, . . . ,2m,

R̃ j =

[

M
j
11 M

j
12

M
j
21 M

j
22

]

and the columns of Ũ
j
⊥ and Ṽ

j
⊥ form bases for the null space of

[M
jT
13 M

jT
23 ]T and [M

j
31 M

j
32]

T .

Following the above theorem, we can get the linear time-invariant

control structure KLT I such that the nominal closed-loop system

Fl(P
j

a ,KLT I) is internally stable and let (15) come into existence.

Clearly, although KLT I can be obtained in terms of system’s

structure, but fault factors with the initial condition σ̂(0) = 0 are

estimated on-line. So, the controller is reconstructed on-line when

the value of σ̂ is changed.

The H∞ controller Fl(KLT I , σ̂) has fault-tolerant function when

fault effect factors σ have been estimated accurately. But when

some estimates are absolutely wrong, the wrong controller may

lead to performance deterioration or even instability of the closed-

loop system. The next section will introduce how to solve the case

of FDI failures, and maintain the system’s stability.

IV. µ -THEORY APPLICATION FOR ERROR ESTIMATION

In this section, we apply the µ-theory to avoid the system become

unstable when the case of error estimation occurs, which results

from the FDI mechanism failures.

Let ∆ stand for the estimation error of fault effect factors, and

∆ = diag[∆1,∆2, . . . ,∆m], where ∆i ∈ [∆−
i ,∆+

i ], ∆−
i and ∆+

i represent

the low and upper bounds of ∆i, respectively, and the set is denoted

by ∆∆ = {∆ : ∆ = diagi[∆i],∆i ∈ [∆−
i ,∆+

i ], i = 1,2, . . . ,m}, then σh =
σ̂ −∆.

For convenience of description as exploited (12), the closed-loop

system can be described as:

x(k +1) = Ax(k)+B1(I − σ̂ +∆)u(k)+B2w(k)
z(k) = C1x(k)+D12(I − σ̂ +∆)u(k)
y(k) = C2x(k)+D21w(k).

(24)

In terms of section 3, if ∆∆ ⊆ ∆δ , the designed controller is

suitable for the FTC problem. But for the other cases, σ ∈ ∆
′

σ ,

where ∆
′

σ := {σ : σ = diagi[σi],σi ∈ [σ̂i + δ+
i , σ̂i + ∆+

i ] or σi ∈
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[σ̂i + ∆−
i , σ̂i + δ−

i ], i = 1,2, . . . ,m}, the wrong controller may lead

to performance deterioration or even instability of the closed-loop

system.

Define uncertainties set:

N∆u
= {∆u : ∆u = diagi[∆ui],∆ui ∈ {∆ui, ∆̄ui},

∆̄ui ∈ [0,∆+
i −δ+

i ],∆ui ∈ [∆−
i −δ−

i ,0]}.
(25)

Consider the transform such as (8), we let E2 = E3 = Im and

E1 = E4 = 0m, then the transform equation can be written as:

∆u(k) = E3w∆(k), z∆(k) = E2u(k) (26)

Hence, we can get the closed-loop system with the controller

(12) in the LFT form:




xcl(k +1)
z(k)

z∆(k)



 =





Acl B1
cl B2

cl

C1
cl D11

cl D12
cl

C2
cl D21

cl 0









xcl(x)
w(k)

w∆(k)



 (27)

where

w∆(k) = ∆uz∆(k) (28)

and xcl := (x, xK).

Define two augmented block structures, N∆N
, N∆S

as

N∆N
:=

{

diag[τIm, ∆2] : τ ∈C, ∆2 ∈Cq×q
}

N∆S
:=

{

diag[∆N , ∆u] : ∆N ∈ N∆N
, ∆u ∈ N∆u

}

.
(29)

where τ stands for the Z transform variable in the discrete-time

context, and ∆2 viewed as a norm bounded perturbation from an

allowable perturbation class.

we rewrite (27) as a simply form:
[

x∆N
(k +1)

z∆(k)

]

=

[

M11 M12

M21 M22

][

x∆N
(k)

w∆(k)

]

:= M

[

x∆N
(k)

w∆(k)

]

(30)

where x∆N
:= (xcl , z). Then the feedback connection can be describe

as Fig.3.

Following the µ theory, if the estimation error ∆u be in some

range, which is the smallest structured ∆u that causes instability

of the feedback system, the closed-loop system will not became

unstable. Therefore, we can enlarge the bound of inaccuracies δ+
i

or δ−
i for extending the stability region, and let the estimation error

be in that range, then the controller has designed in section 3 can

tolerant the FDI failures. We can define the following set:

N
∆

j
u
= {∆

j
u : ∆

j
u = diagi[∆ui],∆ui ∈ {∆+

i −δ+
i ,∆−

i −δ−
i }} (31)

where i = 1 . . .m, j = 1 . . .2m. Then there are 2m modes for the

estimation errors.

Lemma 5 (Main loop theorem):

µ∆S
(M) < 1 ⇔

{

µ∆u
(M22) < 1

max
∆u∈N∆u

µ∆N
(Fl(M,∆u)) < 1. (32)

Proof: The proof can be found in [3].

Consider the following structure:
[

A j B j

C j D j

]

=

[

Acl B1
cl

C1
cl D11

cl

]

+

[

B2
cl

D12
cl

]

∆
j
u

[

C2
cl D21

cl

]

.

Hence, the uncertain system’s output signal z(k) is driven by the

input disturbance w(k), and the state equations are given as

[

x
j
cl
(k +1)
z j(k)

]

=

[

A j B j

C j D j

][

x
j
cl
(k)

w j(k)

]

. (33)

Fig. 3. Feedback Connection with M-∆S.

Theorem 2: The closed-loop system (27) is well-posed, stable,

and strictly contractive if there exist symmetric matrix X j > 0, such

that:
[

A j B j

C j D j

]T [

X j 0

0 I

][

A j B j

C j D j

]

−

[

X j 0

0 I

]

< 0. (34)

Proof: In terms of the µ-theory, if the estimation error ∆u

satisfy µ∆S
(M) < 1, then the closed-loop system is internally stable.

Following Lemma 5, the condition is equality with the right side

of (32). Since M22 ≡ 0, then the first condition is always satisfied.

For the second condition, the proof can be found in [3, 24].

Remark 2: In virtue of σi ∈ [min
h
{σh

i },max
h

{σ̄h
i }] ⊆ [0,1], the

estimation error satisfies |∆ui| ≤ 1 and also ‖∆ui‖∞ ≤ 1. Therefore,

the worst case of FDI failure is the estimation equate to min
h
{σh

i } or

max
h

{σ̄h
i }. In other words, if we design controller in the jth error

mode for the case: ∆
j
u = diagi[∆̄ui], ∆̄ui ∈ {min

h
{σh

i }− (1− σ̂i)−

δ−
i ,max

h
{σ̄h

i }− (1− σ̂i)−δ+
i }, i = 1, . . . ,m. Then the closed-loop

system will be stable for any estimation in that mode.

V. SIMULATION EXAMPLE

In this section, an example of fault-tolerant control system design

is given to demonstrate the proposed method. We consider a

randomly generated discrete-time system:

x(k +1) =

[

−0.01 0.57

−0.19 −0.63

]

x(k)

+

[

0.12 −1.19

0.06 −0.18

]

u(k)+

[

0.48 0.53

0.52 0.19

]

w(k)

z(k) =

[

−0.18 −0.71

0.35 −0.05

]

x(k)+

[

−0.28 0.29

−0.73 0.01

]

u(k)

y(k) =

[

0.22 −0.11

0.89 0.35

]

x(k)+

[

−0.27 −0.17

−0.43 −0.61

]

w(k).

(35)

There are two outputs signals from the controller using two

actuators in the system. To verify the effectiveness of the proposed

method, We consider the FDI estimation accuracy grade is ±0.05

for every actuators, namely, δi ∈ [δ+
i ,δ−

i ], where δ+
i = 0.05 and

δ−
i = −0.05 for i = 1,2.

Here, we consider the following three possible faulty modes:

Normal mode 1: Both of the two actuators are normal, that is,

σ1
1 = σ1

2 = 0.
Fault mode 2: The first actuator is outage or loss of effectiveness

and the second actuator may be normal or loss of effectiveness,

described by a1 ≤ σ2
1 ≤ 1,0 ≤ σ2

2 ≤ a2,a1 = 0.8,a2 = 0.3 which

denotes the maximum loss of effectiveness for the first actuator

and the second actuator, respectively.

Fault mode 3: The second actuator is outage or loss of effectiveness

and the first actuator may be normal or loss of effectiveness, that

is, 0 ≤ σ3
1 ≤ b1,b2 ≤ σ3

2 ≤ 1,b1 = 0.3,b2 = 0.8 which denotes the

maximum loss of effectiveness for the first actuator and the second

actuator, respectively.

Clearly, max
h

{σ̄h
i }= 1, min

h
{σh

i }= 0 for h = 1,2,3. We let E1 =

02, E2 = I2, E3 = −I2, E4 = I2, which satisfying (8).
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Fig. 4. Response curve of the first state x1 in there cases with LFT
controllers.

Using the process described in the third section, a control

structure can be developed, and we consider the following three

possible faulty cases:

Case 1: Both of the two actuators are normal, that is, σ1 = σ2 = 0.

Case 2: The first actuator loss 30% control effectiveness, the second

actuator loss 80% control effectiveness, and the FDI scheme can

estimate the faults accurately.

Case 3: With the same faults of case 2, the FDI scheme fail to

estimate faults correctly and it gets the estimation σ̂1 = 0 and

σ̂2 = 0, respectively.

Fig.4. shows the simulation result of the above fault cases.

we assume that the closed-loop system is operate without faults

within the first 4 seconds, and the disturbances w(k) = [0.1, 0.3×
sin(0.5t)]T enter into the system in 4 ≤ t ≤ 5(s). The solid curves

of Fig.4. describes the first state x1 in normal case with LFT output

feedback controller depended on the fault factors σ1 = σ2 = 0. The

dot curves corresponding to the case 2, where the LTI controller

structure is designed via the polytopic method with vertices δ1 ∈
{0.05, −0.05}, δ2 ∈ {0.05, −0.05}, and σ̂1 = 0.3, σ̂2 = 0.8.

When the FDI scheme failed to estimate the faults, the closed-

loop system may be unstable since using the wrong controller. The

response curves (dash) is drawn with the case that the FDI get

σ̂1 = 0 and σ̂2 = 0 rather than σ1 = 0.3 and σ2 = 0.8. If we adjust

to δ+
2 = 0.2 and other bound remains, the response curve (dash-

dot) illuminate that the new controller can tolerant that faults. In

other words, the uncertainties ∆u = diag[0.25,0.6] will not make

the system unstable.

Through computing, we obtain that the LFT H∞ performances

of the closed-loop system are 0.0834, 0.1563, 0.3267 in the case

1, case 2 and case 3 with bounds adjust, respectively. It is easy to

see that the proposed method is work for the above cases of FTC

problem.

VI. CONCLUSIONS

In this paper, an LMI method for FTC system design via linear

fractional transformations is proposed. Based on the information of

control effectiveness from FDI mechanism, the plant and controller

can depend on the same estimated values of fault factors to build

the closed-loop systems. Then, the LFT controller can be designed

using gain-scheduling control approach introduced in [1, 2, 18].

When the fault occurs, for both cases of enough accuracy and

failure estimate of fault effect factors, the LFT controller recon-

structed on-line to guarantee stability, robustness and satisfactory

H∞ performances for using the µ-theory in the case of fail FDI

scheme. The simulation results of the example indicate that the

performance has been achieved using this method.
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