
Decentralized Reactive Collision Avoidance for Multiple Unicycle-Type

Vehicles

Emmett Lalish, Kristi A. Morgansen and Takashi Tsukamaki

Abstract— This paper addresses a novel approach to the n-
vehicle collision avoidance problem. The vehicle model used
is a planar constant-speed unicycle, chosen for its wide ap-
plicability to ground, sea, and air vehicles. An algorithm
is developed which guarantees all vehicles remain free of
collisions while attempting to attain their trajectory goals (given
certain restrictions on their initial conditions). This controller
is reactive and decentralized, making it well suited for real
time applications, and explicitly accounts for actuation limits.
Results are demonstrated in simulation.

I. INTRODUCTION

As multi-vehicle autonomous systems are studied and

implemented, the issue of conflict resolution becomes an

increasingly important point. From mobile robots performing

a cooperative search to air traffic control for unmanned aerial

vehicles (UAVs), collision avoidance is of utmost importance

for safety.

In order to capture the essential dynamics of a wide

range of vehicles, the unicycle model was chosen for this

work. That choice allows this collision avoidance algorithm

to function on surface vehicles, underwater vehicles, ships

and aircraft. Aircraft are the primary goal of this research,

and so a constant speed model was chosen as many aircraft

(especially UAVs) have such a restricted flight envelope that

their range of acceptable speeds is quite small. Additionally,

because turning does not change the vehicle’s kinetic energy,

this type of control does not tend to require as much effort

as changing speed, even for surface vehicles.

The work presented here is planar for applicability to the

widest range of systems. Even aircraft are often restricted to

a fixed altitude for air traffic control. In addition altitude

changes, like speed changes, require a change in energy

which places more load on the actuation system. Finally,

adding a third dimension actually makes the deconfliction

problem easier because it adds another degree of freedom for

re-routing. Therefore this work can be fairly easily extended

to three dimensions.

The algorithm presented here makes use of the collision

cone concept, which is common in the deconfliction literature

[1], [2], [3]. This method involves a first order look ahead

for detecting conflicts. Therefore, an implicit assumption is

that no antagonistic vehicles are present in the system; either

This work supported in part by NSF grant CMS-0234861 and in part by
a grant from the Boeing Company.

E. Lalish and K. A. Morgansen are with the Department of Aeronautics
and Astronautics, University of Washington, Box 352400, Seattle, WA
98195-2400. {lalish, morgansen}@aa.washington.edu.

T. Tsukamaki is with Boeing Phantom Works, Seattle, WA.
takashi.tsukamaki@boeing.com.

all vehicles are trying to avoid conflicts, or at worst some

are maintaining a constant heading.

A useful overview of the papers on aircraft deconfliction

can be found in [4]. The authors divide autonomous conflict

resolution methods into three categories: prescribed, opti-

mized, and force field.

Prescribed maneuvers include approaches like [5], [6], [7],

where all vehicles follow a set protocol, not unlike the rules

of the road. While this approach can lead to easy proofs,

it also tends to be less flexible with respect to changing

conditions.

Optimization schemes are also quite common [3], [8], [9],

but suffer in real time applications from non-deterministic

computation time. Additionally, these approaches tend to

be centralized, which often limit their applicability in real

systems.

The approach presented here fits most closely into the

force field category, though it differs widely from most

other algorithms which use force fields or potential functions.

Most force field approaches treat each vehicle as a charged

particle that repels all the other vehicles, based primarily on

position information (a zeroth order look ahead) [10], [11],

[12]. The force field defined in the work here differs in that

it relies primarily on velocity information, and is defined

on a different metric. Therefore this approach can take the

restrictions of a unicycle model into account directly.

The authors of [4] also make a distinction between pair-

wise and global conflict resolution maneuvers. While the

collision cone is fundamentally a pairwise conflict detection

scheme, the algorithm presented here takes into account all

of the other vehicles in order to compute the control, making

it a global approach.

The algorithm presented here is also decentralized, in that

no communication or agreement is required between the

vehicles. Each vehicle does require the states of every other

vehicle, but this information can come equally from sensing

(e.g. radar) as from communication. If communication is

the chosen route, the required n to n topology is relatively

easy to implement through a broadcast. The effect of limited

sensor or communication range on this system is a subject

of current research and is beyond the scope of this paper.

This paper is organized as follows. Section II gives the

problem statement. Definitions related to the collision cone

and conflict detection are given in Section III. The collision

avoidance algorithm is described in Section IV. Section V

demonstrates the algorithm in simulation. Conclusions and

future work are in Section VI.

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

FrC09.4

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 5055

II. PROBLEM STATEMENT

This paper presents a method for deconflicting a homo-

geneous group of n constant-speed unicycle vehicles. The

dynamics of the ith vehicle are:

d

dt





xi

yi

ψi



 =





v cos(ψi)
v sin(ψi)

ui



 , (1)

where v is the constant speed (identical for all vehicles), and

the only input is u, the heading rate. The input is restricted

as follows:

−umax ≤ ui ≤ umax. (2)

Each vehicle also has a desired control input, ud(t), which

comes from an arbitrary outer-loop controller. This controller

causes the vehicle to perform a desired task, which could

be anything, e.g. target tracking, waypoint navigation, area

searching, etc. The goal of the algorithm developed in this

paper is to adjust the control input on each vehicle to

guarantee collision avoidance while simultaneously staying

as close to the desired control input as possible (keeping in

mind that this desired control will change with time, as it

also comes from a feedback control law).

Additional definitions used in this paper are as follows.

The position vector of vehicle i is

~ri ≡

[

xi

yi

]

, (3)

and similarly the velocity vector is

~vi ≡
d~ri

dt
=

[

v cos(ψi)
v sin(ψi)

]

. (4)

The relative position vector from vehicle i to vehicle j is

defined as

~rij ≡ ~rj − ~ri, (5)

while the relative velocity vector is defined in the opposite

sense:

~vij ≡ ~vi − ~vj . (6)

Note that these definitions imply the following:

d~rij

dt
= −~vij . (7)

For constant ~vij (i.e. ui = uj = 0), ~rij(t) evolves as

~rij(t) = −

∫ t

0

~vijdt = ~rij(0) − ~vijt, (8)

where t = 0 means the current time. To simplify the notation

in the rest of this paper, t = 0 will be assumed and the

ij subscripts will be dropped (for example, ~rij(0) will be

written as ~r).

III. CONFLICTS & COLLISIONS

In order to avoid collisions, first a strict definition of

collision is necessary. These vehicles are modeled as non-

holonomic point masses, however real vehicles have finite

size. Therefore in order to collide, the vehicles do not have to

attain the same position in space at the same time, but rather

come within a minimum allowed distance of each other at

some point in time. This minimum distance could be, for

example, the five nautical mile separation between aircraft

required by the FAA or the sum of the radii of two mobile

robots.

Definition 1 (Collision): A collision occurs between two

vehicles when

‖~r‖ < dsep, (9)

where dsep is the minimum allowed separation distance

between the vehicles’ centers.

For two vehicles not in a collision, the next question is

whether they will collide if they remain on their present

headings. This situation will be called a conflict.

Definition 2 (Conflict): A conflict occurs between two

vehicles (i and j) if they are not currently in a collision,

but with zero control input (ui = uj = 0), will at some

future point in time enter a collision:

min
t>0

‖~r(t)‖ < dsep. (10)

Lemma 1: A necessary and sufficient condition for there

to be no conflict is

|β| ≥ α, (11)

where

β = ∠~v − ∠~r, (12)

and

α = arcsin

(

dsep

‖~r‖

)

. (13)

Proof: The minimum distance between the vehicles

occurs at time tc, when the derivative of that distance is

zero:

d

dt
‖~r(t)‖

2
= −2~vT~r(t)

0 = ~vT~r(tc).
(14)

To find tc, multiply ~vT to both sides of (8) with t = tc:

~vT~r(tc) = ~vT~r − ~vT~vtc

0 = ‖~v‖ ‖~r‖ cos β − ‖~v‖
2
tc

tc =
‖~r‖

‖~v‖
cos β.

(15)

From (8), the minimum distance between the vehicles is

‖~r(tc)‖ =
√

(~r − ~vtc)T~r(tc). (16)

Using (14) and again substituting (8) results in

‖~r(tc)‖ =
√

~rT (~r − ~vtc) (17)

5056

Substituting (15) and reducing algebraically yields

‖~r(tc)‖ =

√

‖~r‖
2
− ‖~v‖ ‖~r‖ cos β

(

‖~r‖

‖~v‖
cos β

)

=

√

‖~r‖
2
(1 − cos2 β)

= ‖~r‖ |sin β| .

(18)

If there is to be no conflict, then (10) must be reversed:

dsep ≤ min
t>0

‖~r(t)‖

= ‖~r(tc)‖

= ‖~r‖ |sin β| .

(19)

Therefore, to remain free of conflict:

|β| ≥ arcsin

(

dsep

‖~r‖

)

= α, (20)

which is depicted in Fig. 1. The angle α represents the half-

width of the collision cone ([1], [2], [3]).

Likewise, if |β| ≥ α, then (20) and (19) still hold, thus

implying that there is no conflict.

The collision cone becomes more useful to this algorithm

when it is defined in a different reference frame. Rather

than determining allowed directions for the relative velocity

vector, a more useful tool is the set of conflict-free headings

for vehicle i relative to vehicle j. Fig. 2 shows graphically

how to convert from one collision cone frame to the other.

The new collision cone is defined by the angles of its two

edges, ψ+ and ψ−, which are:

ψ± = π − ψj + 2(∠~r ± α), (21)

for

|∠~r ± α − ψj | <
π

2
. (22)

This condition is equivalent to the circle intersecting that side

of the collision cone (see Fig. 2). If that condition is not met

then (21) takes on its limiting value corresponding to (22)

attaining equality:

ψ± = ψj . (23)

If both ψ+ and ψ− fail condition (22), then no collision cone

exists (i.e. no matter which way vehicle i turns it can never

collide with vehicle j). In this case ψ+ and ψ− do not exist.

The following definition provides a useful metric to deter-

mine the nearness to a conflict.

γ±

ij ≡ ±ψi ∓ ψ±. (24)

These angle metrics are depicted in Fig. 2. To make the

signs meaningful, γ+ and γ− are wrapped to the domain

(−2π, 2π) such that they are positive when the vehicles are

not in conflict and negative otherwise.

dsep

~rij

Vehicle i

Vehicle j

~vij

βij

αij

αij
dsep

Fig. 1. Geometric definition of the collision cone. The area between the
two dotted lines is the collision cone; a conflict occurs when the relative
velocity vector, ~vij , lies within this area.

Vehicle i

γ−
ij

−~vj

~vij

~vi γ+

ij

Fig. 2. Collision cone in different coordinates. The dotted lines represent
the collision cone from Fig. 1. The circle denotes the entire range of
headings for vehicle i. The shaded area represents the collision cone relative

to the heading of vehicle i. γ+

ij denotes the most vehicle can turn to the

right and γ−

ij denotes the most it can turn to the left.

IV. AVOIDANCE ALGORITHM

The concept behind this algorithm is for each vehicle to

adjust its heading until there are no conflicts between any of

the n vehicles. At that point, each vehicle can use its desired

control input unless that input would cause it to come into

conflict with another vehicle. Transition regions are created

around the boundaries of the collision cone so that the control

can transition smoothly (finite gain).

First, the distance to the nearest conflict on the right (γ+

i)

and to the nearest conflict on the left (γ−

i) are defined by

γ+

i = min
j

{

γ+

ij

∣

∣

∣βij ≥ 0
}

γ−

i = min
j

{

γ−

ij

∣

∣

∣
βij < 0

}

.
(25)

The control input is found using the control function, F :

ui = F (γ+

i , γ−

i). (26)

The control function chosen for this algorithm is

piecewise-linear, defined by the following ordered triples of

5057

−0.2

−0.1

0

0.1

0.2

−0.2

−0.1

0

0.1

0.2

−1

−0.5

0

0.5

1

γ
+
 (rad)

γ
−
 (rad)

u
 (

ra
d
/s

)

Fig. 3. Example of the control function, F . In this case, ud = 0.5 rad/s,
umax = 1 rad/s, and ǫ = 0.1 rad.

the form (γ+

i , γ−

i , ui):

(ǫ, ǫ, ud) (0, ǫ, umax) (ǫ, 0,−umax)
(2π, ǫ, ud) (0, 2π, umax) (2π, 0,−umax)
(ǫ, 2π, ud) (− ǫ

2
, ǫ

2
, umax) (ǫ

2
,− ǫ

2
,−umax).

(27)

Because F is a function of the desired control, ud must be

saturated such that

|ud| ≤ umax. (28)

An example of this control function is shown in Fig. 3.

The intuition behind the choice of control function is as

follows. First, if the vehicle is in conflict with another vehicle

(i.e. γ±

i < 0), then that vehicle should exert maximum

control authority to get out of the conflict. If the vehicle is

sufficiently far from a conflict (γ±

i > ǫ), it should be allowed

to use its desired control, ud. The parameter ǫ defines the

size of the transition region, or effectively the gain of the

controller. The rest of the function must connect these areas

in a continuous fashion so that the control input will also be

continuous.

Any γ±

i which does not exist can be replaced by π (any

value greater than ǫ can be used because any value greater

than ǫ is effectively ignored by the control function).

When vehicle i starts in conflict with more than one other

vehicle the collision cones must all be considered at once,

rather than individually. Therefore all overlapping cones must

be united into a single collision cone. This step ensures that

each vehicle can determine the nearest conflict-free heading

in a global sense. γ±

i is still found from (25), but now

using only the γ±

ij s which define the edges of the united

cone. Because any other collision cones that are left must be

disjoint from the united cone, γ±

i must satisfy:

γ+

i + γ−

i ≥ 0. (29)

Therefore the control function need only be defined over

the domain defined by (29). The edge of this domain is

represented in Fig. 3 by the black line.

A. Staying Out of Conflict

Theorem 1: The algorithm described above, when imple-

mented on n vehicles with dynamics (1) and input con-

strained by (2), will keep the system collision free for all

time if the system starts conflict-free.

Proof: For the case when (22) holds, γ±

i can be found

from (25) and (21):

γ±

i = ±ψi ± ψj ∓ 2∠~r − 2α, (30)

which has derivative,

dγ±

i

dt
= ±ui ± uj ∓ 2

d∠~r

dt
− 2

dα

dt
. (31)

For the case when (22) is not satisfied, the derivative is

dγ±

i

dt
= ±ui ∓ uj . (32)

From the geometry,

d∠~r

dt
= −

‖~v‖

‖~r‖
sin β. (33)

The derivative of α is somewhat less straight-forward:

dα

dt
=

d

dt

(

arcsin

(

dsep

‖~r‖

))

=
d

dt

(

dsep

‖~r‖

)

(

1 −

(

dsep

‖~r‖

)2
)−1/2

=
dsep ‖~v‖ cos β

‖~r‖
2





‖~r‖
√

‖~r‖
2
− d2

sep





=
‖~v‖

‖~r‖
cos β tanα.

(34)

Now (31) becomes

dγ±

i

dt
= ±ui ± uj + 2

‖~v‖

‖~r‖
(± sin β − cos β tanα). (35)

The definition of γ±

i constrains the sign of β (25), so (35)

is equivalently

dγ±

i

dt
= ±ui ± uj + 2

‖~v‖

‖~r‖
(|sin β| − cos β tanα) . (36)

Recalling Lemma 1, for the system to be conflict-free, |β| ≥
α. Therefore |tanβ| ≥ tanα, and so

|sin β| − cos β tanα ≥ 0. (37)

Any continuous control function that ensures

γ+

i = 0 =⇒ ui ≥ 0

γ−

i = 0 =⇒ ui ≤ 0,
(38)

also ensures that

dγ±

i

dt
≥ 0 ∀ γ±

i = 0, (39)

which means the system cannot enter a conflicted state. The

reason uj cannot change this fact is because every vehicle

was assumed either to use this algorithm, or at worst have

5058

zero control input. Because a conflict is symmetric (the

vehicles always agree on whether a conflict exists between

them), the sign of uj must be such that both
dγ±

j

dt ≥ 0 and
dγ±

i

dt ≥ 0.

The control function used in this algorithm (27) satisfies

(38) and so this algorithm will cause the n-vehicle system

to remain conflict-free for all time, assuming it started that

way. Note this result holds for arbitrary (even time varying)

ud and umax, so long as umax ≥ 0 and |ud| ≤ umax at

every instant.

B. Conflict Resolution

The previous proof uses the assumption that the system

starts conflict-free, which might seem to defeat the purpose

of deconfliction. After all, why bother with a deconfliction

algorithm if the vehicles are not in conflict in the first

place? The first answer is that this algorithm allows changing

desires to be integrated into the solution while maintaining

collision avoidance (desires which might otherwise cause

collisions). The second answer is that this algorithm also

attempts to resolve vehicles from an initially conflicted state.

Its performance in this task is good, but not proven. However,

if at any point in time this algorithm manages to bring the

system to a conflict-free state, then Theorem 1 applies and

the system will stay free of collisions from that time forward.

The reason actual deconfliction is difficult to prove is that

there exists a space of initial conditions for which deconflic-

tion is impossible. A trivial example is when vehicles start

less than dsep apart, but even if intervehicle separation is

larger than this, high speed (v) and low turning rate limit

(umax) can make it impossible to turn fast enough to avoid

a collision. For a two vehicle system, a reasonable bound

can be found for the acceptable initial conditions. However,

bounding the n-vehicle problem is much more difficult and

the feasibility of finding such a bound is still in question.

Theorem 2: The algorithm described above, when im-

plemented on two vehicles with dynamics (1) and input

constrained by (2), will ensure those vehicles never collide,

provided they are initially separated by at least:

dmin = dsep

√

4v

umaxdsep
+ 1. (40)

Proof: Taking the worst case scenario of the two

vehicles heading directly toward each other (with β = 0),

(25) shows that γ+

i will be negative and γ−

i will not exist

(and will be set to π by the algorithm) for both vehicles. The

control function (27) therefore will choose u1 = u2 = umax.

Note that β will be the same for both vehicles, and hence

whatever the sign of β, both vehicles will turn in the same

direction to avoid the conflict. Also note from (36) that

having like signs on the control inputs is the best way to

maximize
dγ±

i

dt , thus exiting from a state of conflict as quickly

as possible.

The radius of curvature for each vehicle’s path is v
umax

.

The minimum distance between two arcs is measured along

a line connecting their centers. Fig. 4 shows the geometry.

dmin

dsep Vehicle 2

Vehicle 1

v
umax

Fig. 4. Geometry of the worst case scenario for two vehicles.

The minimum allowed separation distance can be calculated

with the Pythagorean Theorem:

d2
min +

(

2v

umax

)2

=

(

2v

umax
+ dsep

)2

(41)

which is equivalent to (40).

C. Performance

The collision avoidance algorithm described above will

allow each vehicle to follow its desired control (ud) whenever

this action does not cause a conflict. Due to the construction

of (27), so long as a vehicle is at least ǫ away from a conflict

on either side then it is allowed to follow its desire exactly.

Most often, γ±

i satisfies (22), which from (36) implies that

the collision cone will recede from the vehicle, eventually

freeing it to follow its desired control. Likewise, once two

vehicles pass and start heading away from each other, their

collision cones will cease to exist. However, if γ±

i does not

satisfy (22), then (32) shows that the collision cone will not

recede. This situation happens when two vehicles are moving

nearly parallel to each other and their desired controls would

turn them toward each other. The algorithm will not allow

this to happen, but rather will cause both vehicles to turn

at the average of their two desired control inputs. This

maneuver will eventually cause the collision cone to vanish

for one vehicle and to satisfy the condition (22) for the other

vehicle, which will allow them to pass and then use their

desired control inputs.

However, a problem can occur when the situation just

described happens but the vehicles have equal and opposite

desired controls (generally implying they are both saturated).

Then the average turning rate is zero, and the vehicles will

simply move parallel to each other forever, never attaining

their desired control inputs. A simple change to the saturation

function can be used to break this symmetry. Adjusting (28)

to
−umax

2
≤ ud ≤ umax (42)

removes the symmetry, and thus vehicles in the situation

just described will favor turning to the left. This adjustment

comes at some expense of performance, since now the

vehicles cannot use their full control authority in turning

to the right (unless they are in conflict). The ratio of the

asymmetry is arbitrary and hence can be used to tradeoff

between these two aspects of performance.

While this algorithm generally causes the vehicles to

eventually return to their desired controls, this behavior

5059

cannot be assured. For instance, in the case of conflicting

desired controls (e.g. two vehicles heading for the same

waypoint), collision avoidance takes precedence and the

vehicles may never reach their goals. Likewise, it is possible

to design a feedback desired controller that acts to stabilize

an otherwise unstable equilibrium (such as that discussed in

the previous paragraph), thus making the vehicles block each

other from their goals. These issues should be considered

when designing a desired controller for this algorithm.

Additionally, because this algorithm couples the vehicles

there is a possibility for instabilities to develop, especially in

the presence of delays. A full stability analysis is beyond the

scope of this paper, but the idea is that the coupling gain can

be lowered by increasing ǫ, thus slowing the response and

increasing the robustness to delays and other disturbances.

V. SIMULATIONS

For the sake of demonstrating how this algorithm causes

the n-vehicle system to avoid conflicts, remain collision-free

and still follow desired control input, another controller must

be employed to create a desired control input. For these

simulations, the vehicles are performing path following. Each

vehicle’s desired path is defined as a straight line emanating

from its initial position, oriented along its initial heading,

ψ(0). A simple path-following algorithm is used to compute

a desired control:

ud = k2

(

ψ − ψ(0) − arctan

(

d

k1

))

, (43)

where d is the perpendicular distance between the vehicle

and the path. The parameters used for these simulations are:

v = 1 unit/s, dsep = 2 units, umax = 1 rad/s, ǫ = 0.1 rad,

k1 = 1 unit, k2 = 5 Hz.

The first simulation included here is of a symmetric

conflict scenario. Six vehicles are arranged evenly around

a circle of radius 8 units, all pointed directly toward the

center. The results of running this algorithm on each of the

vehicles is shown in Fig. 5 and corresponding control inputs

are shown in Fig. 6. Each of the vehicles is initially in

conflict with every other vehicle, so they begin by turning at

maximum rate. After only a quarter-second all of the vehicles

have attained a conflict-free state. At this point the guarantees

of Theorem 1 apply, and indeed the vehicles remain conflict

and collision-free for the rest of the simulation. One can

see the effect of the receding collision cones in Fig. 6 at

about 8 seconds when the control is allowed to rise. Once

the desired control changes sign, it is no longer pushing the

vehicles toward a conflict, so they are allowed to follow it.

The second simulation (shown in Fig. 7) is similar to

the first, but with randomized initial conditions. The control

inputs of all the vehicles are shown in Fig. 8. The vehicles

again start in conflict with all the other vehicles, but within

one second all conflicts have been resolved. From that point

on the vehicles are attempting to return to their desired paths,

but can only do so as they pass other vehicles. Figure 9

shows how the collision cones change with time from the

point of view of the cyan vehicle. Once a conflict-free state is

Fig. 5. Symmetric 6-vehicle collision avoidance simulation. Vehicles start
8 units from the center and have a size of radius 1 unit (depicted by the
circles), representing a minimum approach distance, dsep, of 2 units. The
dotted lines respresent the desired paths.

0 5 10 15

−1

−0.5

0

0.5

1

Time (s)

u
 (

ra
d

/s
)

Actual

Desired

Fig. 6. Control input, u, and desired control, ud, for the simulation shown
in Fig. 5. For this symmetric case all vehicles have identical control inputs.

achieved the controller causes a quasi-steady-state to develop

that keeps γ±

i ≈ ǫ
2

until the collision cones recede and

eventually vanish.

VI. CONCLUSION

This work has developed a decentralized control algorithm

for deconflicting n unicycle-type vehicles. This algorithm is

reactive and so can easily be implemented real time on a

wide variety of vehicles, including aircraft, ships, submarines

and cars. Collision avoidance is guaranteed for a general n-

vehicle system once a conflict-free state is reached, even in

the case of arbitrarily small control authority. A lower bound

was found for the initial separation distance between two

vehicles such that collision avoidance is assured even when

starting in conflict. Finally, this algorithm allows the vehicles

to follow changing desired controls so long as safety is not

sacrificed.

Many extensions are possible for this work. First is to

make the vehicle group heterogeneous (different speeds and

turning rate limits). Next will be to allow speed variations

and use this as another degree of freedom for avoiding col-

lisions (especially important for mobile robot applications).

For applications to aircraft and submarines, extending this

concept to three dimensions will again add a degree of

5060

Fig. 7. Random 6-vehicle collision avoidance simulation. The dotted lines
respresent the desired paths.

0 5 10 15 20

−1

−0.5

0

0.5

1

Time (s)

u
 (

ra
d
/s

)

Fig. 8. Control input, ui, for the simulation shown in Fig. 7.

freedom and hence increase the performance of the system.

Finally, this algorithm shows promise for evading adversar-

ial pursuers, and may lead to interesting results regarding

pursuit/evasion games. These areas are all currently under

investigation.

Fig. 9. Collision cones from the point of view of the cyan vehicle for the
simulation shown in Fig. 7. The line is the cyan vehicle’s heading, while
the shaded regions represent the set of headings of the cyan vehicle that
would result in conflict.

REFERENCES

[1] C. Carbone, U. Ciniglio, F. Corraro, and L. Luongo, “A novel 3d
geometric algorithm for aircraft autonomous collision avoidance,”
IEEE Conference on Decision and Control, 2006.

[2] A. Chakravarthy and D. Ghose, “Obstacle avoidance in a dynamic
environment: A collision cone approach,” IEEE Transactions on

Systems, Man, and Cybernetics, 1998.
[3] E. Frazzoli, Z. Mao, J. Oh, and E. Feron, “Resolution of conflicts

involving many aircraft via semidefinite programming,” AIAA Journal

of Guidance, Control, and Dynamics, 2001.
[4] J. Kuchar and L. Yang, “A review of conflict detection and resolution

modeling methods,” IEEE Transactions on Intellingent Transportation

Systems, 2000.
[5] I. Hwang and C. Tomlin, “Protocol-based conflict resolution for air

traffic control,” Stanford University, Tech. Rep. SUDAAR-762, 2002.
[6] K. Bilimoria, B. Sridhar, and G. Chatterji, “Effects of conflict detection

methods for air traffic management,” AIAA Guidance, Navigation, and

Control Conference, 1996.
[7] FAA, “Precision runway monitor demonstration report, Tech. Rep.

DOT/FAA/RD-91/5, Feb. 1991.
[8] C. Tomlin, G. Pappas, and S. Sastry, “Conflict resolution for air

traffic management: a study in multiagent hybrid systems,” IEEE

Transactions on Automatic Control, 1998.
[9] J. Andrews, “A relative motion analysis of horizontal collision avoid-

ance,” SAFE Journal, vol. 8, 1978.
[10] M. Eby and W. Kelly, “Free flight separation assurance using dis-

tributed algorithms,” IEEE Aerospace Conference, pp. 429–441, 1999.
[11] J. Kosecka, C. Tomlin, G. Pappas, and S. Sastry, “Generation of

conflict resolution maneuvers for air traffic management,” Int. Conf.

Intell. Robot. Syst., pp. 1598–1603, 1997.
[12] K. Zeghal, “A review of different approaches based on force fields for

airborne conflict resolution,” AIAA Guidance, Navigation, and Control

Conference, pp. 818–827, 1998.

5061

