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Abstract— The importance of quality control and manage-
ment has long been demonstrated, with quality being shown
to be as important as manufacturing productivity. The goal
of this paper is to propose an accurate stochastic model
that can represent quality data for supervisory control of
manufacturing lines. In this paper, we develop a new application
of the stochastic-flow modeling (SFM) approach to model the
quality behavior of a manufacturing system. This work extends
the basic one-product, one-station SFM to that of a multi-
product, multi-station manufacturing system. The quality SFM-
based model provides aggregation by machine, product, and
operational shift. Bernoulli-type rejects, persistent rejects, and
quality-loop rejects are addressed in the modeling. Following a
presentation of the application physical system, results are given
for different examples where the effectiveness of the SFM model
is shown.

I. INTRODUCTION

In manufacturing systems, quality is one of the most

important measures of system performance. Quality met-

rics pervade all manufacturing-related activities beginning

with design, development, production, installation, and on

to servicing of the product in the field. However, after

a product has been designed, the control of final quality

becomes the responsibility of manufacturing. Though key

design changes to improve product quality are always pos-

sible, such decisions require longer feedback times. At the

other end of the spectrum, local machine control provides

the most immediate feedback and improvement in quality

performance. Such quality improvement can be seen as itera-

tive processes described by the Shewhart [1] cycle (Plan-Do-

Check-Act) popularized by the Total Quality Management

(TQM) approach where the ultimate objective is to obtain

perfect quality throughout the system.

Other approaches attempt to effect control at a higher

system level where management is more involved in decision

making. These approaches include Quality Circles [2], Zero

Defects, Statistical Quality Control [3] , Six Sigma [4],

or quality management awards and organizations (Malcolm

Baldridge National Quality Award, JD Power, etc.). Though

these various approaches have been successful, there still

remains a gap for controlling quality between the manage-

ment and local process control levels. This level may be

thought of as the multi-machine, or production line. This

intermediate system level is particularly important because of

the dependencies or interactions present between processes

or machines. Local, process-based control is ineffective at

improving quality when variations or problems occur in

multiple, but related machines.

Different problems can cause a decrease in quality that

cannot be solved by decisions at a single machine controller.

For example degradation of material handling fixtures, hu-

man interactions with assemblies, delays between required

maintenance activities, etc. Furthermore, in a manufacturing

line, products are inspected and analyzed at different points

along the entire line, leading to more control delay in the

identification of nonconforming products (usually termed re-

jects or failures). When quality failures occur, such defective

products are isolated from the production line to be repaired

if possible.

Having a quality model along with specific knowledge

of the performance behavior of a given manufacturing line

can aid the resolution of complex quality failures. A system

quality model can provide decision-making insight and an-

ticipate expected quality performance. It is difficult to predict

quality with deterministic approaches due to the random

nature of reject occurrences. In serial manufacturing lines,

two main types of rejects exist defined as Bernoulli-type

quality failures and as persistent-type quality failures [5],

[6]. The first type of failure is random with variations in

quality being independent of a station. The second type, as

its name implies, are consecutive, persistent rejects linked

to a problem at a specific station. A third failure type may

be considered if the manufacturing line has quality loops

(also known as rework loops). This type may be described

as cyclic quality failures associated with rejects occurring

various times originating at different stations. The actual

failure is identified with a specific product at a station in

the quality loop (control and repairing stations).

Manufacturing system operations can be primarily mod-

eled as finite state machines (e.g., Discrete Event Systems

(DES), Petri Nets, etc... ). This class of system represen-

tations is widely recognized in queuing systems [7]. The

DES model formulation can be complemented to incorporate

the real-time behavior of manufacturing systems by use of

timed-DES (TDES) models [8]. A timed-DES model is a

DES in which the occurrence of each event is marked by a

time variable counter. Although the TDES formulation can be

derived easily for simple systems, the complex, multi-scale

nature of large manufacturing systems limits its applicability

in most realistic applications.

In previous research [9], the addition of continuous-time

dynamics to DES models using a hybrid control approach

was shown to provide a greater flexibility by simplifying the

modeling. In this type of dynamical system approach, each

event can be characterized by specific dynamical properties

such as process delay and process dynamics. This formula-

tion can be used to introduce real-time information such as

product demand changes, personnel changes, etc... , along

with all the dynamically relevant variables that may influence
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real-time decision making processes.

Recently, a class of models called Continuous Flow Mod-

els (CFM) [10] has been proposed for the analysis of man-

ufacturing systems. For each work station, the continuous

flow models monitor the ability of a station to do work, its

capacity and its product outflow. CFM’s provide an elegant

way to develop event-based, continuous-time models that are

suitable for decision-making in the control of manufacturing

systems. Successful applications of the CFM paradigm have

led to new approaches for throughput optimization in man-

ufacturing systems [11], [12], real-time scheduling [13] and

optimal resource allocation [14], among others. Continuous-

flow models provide the modeling capabilities of the Finite

State Machines (FSM) representation of DES. Moreover, the

DES formulation requires intensive search algorithms to find

suboptimal solutions, whereas it is relatively easy to use

CFM in the development of optimal algorithms [15]. For

non-deterministic analysis, Stochastic Flow Models (SFM)

have also been proposed to take into account the random

nature of process operations [16], [17], [18].

In this paper, the flexibility of hybrid systems modeled by

SFM is described and applied to the estimation of quality

for multiple stations in manufacturing lines. In section II, a

complete modeling of quality for an entire manufacturing

line is provided where Bernoulli type rejects, persistent

rejects and quality-loop rejects are modeled. Section III is

devoted to a simulation case study along with a discussion

of model computation. In section IV, results of the quality

simulation are given and compared to the quality expected

value.

II. SYSTEM MODEL

A. Single-Product Type SFM Model

Fig. 1. Single-station Stochastic Flow Model.

In this work, the development of a dynamic model of

manufacturing system quality is based on a stochastic flow

model for each station of a product assembly line. The model

uses information about the probability of the occurrences of

reject codes for a defined product type and a production shift

to compute the number of rejects on the line for any given

period of time. A representation is given in Figure 1 of a

single-station SFM.

In Figure 1, the rate of parts entering the station, u(t),
is a function of production planning and scheduling, the

rate at which the station produces parts, v(t), is a more

complex function of processing conditions. Note that the

station switches between two states, 0 (OFF) or 1 (ON), such

that:

s(t) =

{

1 machine working

0 otherwise
(1)

where s(t) is the operational state of the system. The working

and non-working states are triggered by random events that

cause the station to change its current state. More elaborate

logical statements may also be considered in practice. A

simple rule-based operational constraint for the output rate

could be easily formulated as follows:

v(t) =

{

0 if s(t) = 0 or xb(t) = 0

ρ(t) otherwise
(2)

where the buffer content xb(t) is determined by the following

ordinary differential equation:

ẋb(t) = u(t)− v(t) (3)

When a product exits the station, it may either be con-

forming (acceptable quality) or nonconforming (defective

quality). If there exists a problem with the product, the

product will be given a reject status thus identifying it for

repair (as explained in the next section). The total number of

rejects is calculated using the following ordinary differential

equation:

ẋr(t) = ∆(t)δ (t) (4)

where xr is the number of rejects (with initial conditions

xr(0) = 0), ∆(t) a decision function, δ (t) a unit impulse.

Before defining the function ∆(t), some definitions must

be introduced. First, a parameter called λ > 1 is introduced

to represent the average rate of produced parts between

two rejects. Historical data in this work fit an exponential

distribution E (λ ) which has a density function fE (λ )(t) =

λe−λ t . Based on this assumption, a maximum likelihood

estimate of λ is obtained for various plant conditions.

From the property of density function, the integral of

fE (λ )(t) from 0 to ∞ is equal to 1 (100%) but there is

also 100
λ % that corresponds to the reject rate and thus

(

100− 100
λ

)

% for the non-reject rate. The boundary between

these two modes (reject and non-reject) is defined by the

threshold th. In other words, this threshold, deduced from

the exponential distribution E (λ ), is defined such that:
∫ th

0 fE (λ )(t)dt = 1
λ , with λ > 1 and where the solution of

this equation gives the expression of th:

th = −
1

λ
ln

(

λ −1

λ

)

(5)

From the exponential distribution E (λ ), a random sample,

called tλ , is extracted for each product exiting the station.

This sample is compared to the reject threshold th defined

above. If the sample tλ is under the threshold when the

product exits the station, then a reject flag is given to the

product. The function ∆(t) is given by:

∆(t) =

{

0 if v(t) = 0

1 if v(t) 6= 0 and tλ ≤ th
(6)
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This type of model can be used to provide high-level

abstractions of discrete event systems (DES) models. In a

DES (or a timed-DES), the ability to monitor single parts is

limited since each action taken on each part must be tracked.

B. Five Station Manufacturing System

As the manufacturing system grows in size, it becomes

more complex and modifications to the model are required.

Before focusing on another example, some definitions need

to be given about categories of stations. It is obvious that

each station will have its own properties and so the manu-

facturing line may be divided into different sets, where the

definition of these sets provides better understanding of the

manufacturing line modeling.

First, a set I is defined which corresponds to the set of all

stations of the manufacturing line. As shown in Figure 2, I

can be divided in subsets IP (set of processing stations), IC

(set of control stations) and IQ (set of quality stations). The

set IC is decomposed in two parts ID and its complement

IC\ID, where ID corresponds to the set of decision stations,

stations in that set take the decision to send the product to

the next section or the quality loop. The set I is also divided

as NΣ subsets (called sections) IΣq (q=1,...,NΣ) (see Figure 2),

in that way I =
⋃NΣ

q=1 IΣq and IΣq = IP
Σq

⋃

IC
Σq

⋃

I
Q
Σq

. Moreover,

sets IP, IC, ID or IQ can be divided in the same way as NΣ

subsets, e.g.: IP =
⋃NΣ

q=1 IP
Σq

.

Fig. 2. Station set definition scheme.

In order to illustrate these definitions, a slightly more

complex five station system is examined (Figure 3), the

modeling is the same as previously seen. Each station is

indexed by i(i∈{1,2,...,5}).

The link between the definitions of sets and figures 2 and 3

can be easily made now. In Figure 3, I is defined by stations

Si (i=1,...,5), stations S1 to S4 belong to the first section: IΣ1

and S5 belongs to the second section: IΣ2
. Stations S1 and

S5 are defined as processing stations: IP, stations S2 and S3

are control stations and belong to IC, station S3 is a decision

station and belongs to ID and finally, station S4 is a quality

station Q1 and belongs to IQ. Products can move from one

station to the next (for example, from S1 to S2). But, in some

instances, as at the exit of station S3, two paths are possible.

From S3, products can be directed to S4 or station S5. If

the product has not triggered a quality rejects before station

S3, this product goes to station S5. If a reject has occurred,

the product must be repaired, and is therefore sent to station

S4. In station S4, the problem identified at station S3 on the

product is repaired. The product then returns to station S2 to

be processed and diagnosed a second time.

To complete the model, new definitions are required to

generalize equations (1) to (6). Now, a set Li is defined as

the set of all stations linked with the input of station i, for

example in Figure 3, L2 = {S1,S4}. The input ui of the station

i can be defined as:

ui(t) = ∑
l∈Li

bl,i(t)vl(t) (7)

where bl,i is a boolean function (with the property ∑i bl,i = 1)

that determines in which line the product is produced from

station l to station i. In Figure 3, after station S3 two choices

exist, if for example the product must be repaired than

b3,4(t) = 1 and also b3,5(t) = 0.

C. Complete Manufacturing System Model

The previous section provides definitions for the modeling

of all controlling stations in the complete manufacturing line,

however, the product type and the shift is not taken into

account. Therefore, before giving a complete model of the

entire manufacturing line, further variables need to be defined

to represent the dynamics of the system.

A product is defined by a unique number p (such as a

unique serial number). This product number belongs to a

product type j defined by J(p) = j where J is a function

that gives the product type j of a product p. A production

shift is defined by a number k and defined by K(t) = k

where K is a function of time. In this section, the model

of the entire manufacturing line is developed for all possible

configurations (i, j,k), meaning for each station i ∈ I, for

each product type j ∈ J = {product type} and each shift

k ∈ K = {production shift}.

The same functions, as defined previously in equa-

tions (1) to (6), can be defined for all configurations

(i, j,k){i∈I, j∈J,k∈K}, functions si, j,k(t), vi, j,k(t), etc... are also

defined. In this paper, the SFM dynamics of the entire man-

ufacturing line are modeled as a hybrid stochastic system.

Note that only one engine and only one shift can be available

at station i at time t, therefore at a specific station i ∈ I:

si(t) = si, j,k(t)

=

{

1 if a product is made in station i

0 otherwise
(8)

vi(t) = vi, j,k(t)

=

{

0 if si(t) = 0 or xbi
(t) = 0

ρi, j,k(t) otherwise
(9)

The buffer dynamic is modeled in the same way as in (3)

by the difference between the input and the output flow:

ẋbi
(t) = ui(t)− vi(t) (10)

where ui is the input of station i, defined by (7).

This first part gives the product flow evolution model.

Considering the quality index modeling on the manufacturing
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Fig. 3. Simple five-station SFM quality system

line, (4) should be defined as a hybrid flow model and reject

functions Rp and rp should be introduced, but also functions

NC and NM . NC corresponds to the reject number of product

p at station i. When a product exits the station and when a

Bernoulli-type reject occurs, NC equals 1, but quality-loop

rejects could also appear, and the product will loop pλ̃i, j,k
-

times at a station i ∈ I \ IP in the specific section.

NC(p, i) =























0 initial value

1 if a1 and a2,∀i ∈ IP

pλ̃i, j,k
if a1 and a2,∀i ∈ I \ IP

max(0,NC(p, i)−1) if a1 and not(a2)
NC(p, i) otherwise

where a1 := {vi(t) 6= 0}, a2 :=
{

tλi, j,k
≤ thi, j,k

}

, the random

number pλ̃i, j,k
follows a Poisson distribution law P(λ̃i, j,k),

tλi, j,k
follows a exponential distribution E (λi, j,k), thi, j,k is

calculated using (5), parameters λ̃i, j,k and λi, j,k are estimated

from recorded data using the maximum likelihood for each

configuration (i, j,k).

NM represents the number of consecutive or persistent-

type rejects at station i. These rejects are associated with a

temporary reject problem located at station i and independent

of the product type j and the shift k. Then pµ̃i
consecutive

rejects could happen at this station independently to j or k.

NM(p, i) =















0 initial value

pµ̃i
if a1 and tµi

≤ thi

max(0,NM(p−1, i)−1) if a1 and tµi
> thi

NM(p∗, i) otherwise

where the random number pµ̃i
follows a Poisson distribution

law P(µ̃i) tµi
follows an exponential distribution E (µi), thi

is calculated using (5), parameters µ̃i and µi are estimated

from recorded data using the maximum likelihood for each

station i and p∗ corresponding to the product number at

previous time instant in station i (p∗ equals p or p−1).

Functions NC and NM are useful for modeling reject

functions r and R which correspond respectively to the

label of a reject code on a product p for the complete

manufacturing line and for the usual section. The function r

is equal to 1 (for a defined product p) when this product has

a reject, and the value of r cannot be changed. The function

R has the same rules as function r but the value of R is set

to zero when the product is repaired.

r(p, t) =















0 initial value

r(p, t−) if a3

1 if not(a3) and a4

0 if not(a3) and not(a4)

(11)

a3:=
{

vi(t)=0 or r(p, t−)6=0
}

, a4:={NC(p, i)>0 or NM(p, i)>0},

not(a4) := {NC(p, i) = 0 and NM(p, i) = 0} and where t− stands

for the instant before the usual instant t when the update is

done (t− = limε→0,ε>0 t − ε).

R(p, t) =















0 initial value or i ∈ IQ

R(p, t−) if i /∈ IQ and a5

1 if i /∈ IQ and not(a5) and a4

0 if i /∈ IQ and not(a5) and not(a4)

(12)

where a5 := {vi(t) = 0 or R(p, t−) 6= 0}.

Now, a model should be given to the function bi,l (i ∈ IΣq )

associated to (7):

• if i ∈ IP
⋃

{

IC\ID
}

then l is the next station and

bi,l(t) =

{

1 if vi(t) 6= 0

0 if vi(t) = 0

• if i ∈ ID then

– if l ∈ IQ

bi,l(t) =

{

1 if vi(t) 6= 0 and R(p, t) 6= 0

0 otherwise

– if l ∈ IP
Σq+1

bi,l(t) =

{

1 if vi(t) 6= 0 and R(p, t) = 0

0 otherwise

• if i ∈ IQ then l ∈ IC (l is the first station of IC
Σq

) and

bi,l(t) =

{

1 if vi(t) 6= 0

0 otherwise

When the product p exits the last station of the entire

manufacturing line, the reject index function Xr(t) is updated:

Ẋr(t) =

{

δ (t) if rp(t) 6= 0

0 otherwise
(13)

with the initial condition Xr(0) = 0.
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D. Global quality index

Since the purpose of this work is to provide a control

scheme that can respond to fluctuations in quality in a

manufacturing line, a measurable output variable of system

quality needs to be defined. Quality in manufacturing lines is

usually monitored by elaborate sensor-based and/or person-

based fault detection controls. The accounting of rejects

provides an effective measure of the quality.

Therefore, a measure of quality is obtained using the

percentage of parts that exit the station without rejects. If

N +1 corresponds to the size of the set I and if the (N +1)-
th station is a quality station (as seen on Figure 4), the N-th

station is a decision station that represents the last station

of the entire manufacturing line, the measure called global

quality index (GQI) is given by the following equation:

GQI(t) =

∫ t
0 vN(τ)dτ −Xr(t)

∫ t
0 vN(t)dτ

×100 (14)

where
∫ t

0 vN(τ)dτ corresponds to the number of products

which have exited the line at time instant t and Xr the number

of rejects on the same time horizon.

III. MODEL COMPUTATION

A. Model description

The approach presented in section II stands for a global

modeling aspect for manufacturing lines, this new section

focuses on a manufacturing line illustrated in Figure 4 and

composed of 10 stations and 2 sections. Process stations

are represented by I = {S1,S2,S3,S7,S8}, control stations by

IC = {S4,S5,S9}, and quality stations by IQ = {S6,S10}.

Fig. 4. Layout of the manufacturing line.

Two product types are considered J = {P1,P2} and the

production shift is divided in three parts K = {T1,T2,T3} with

Tk = [8∗ (k−1),8∗ k] hours, k = 1,2,3.

B. Distribution parameter estimation

To simulate the entire manufacturing line and calculate

the global quality index as defined in (14), the estimation of

distribution parameters (λi, j,k, λ̃i, j,k, µi and µ̃i) is provided

by using the maximum likelihood estimation from recorded

data. In this paper, estimated values of these parameters are

given in order to strengthen the approach.

The parameter µi (reject rate when consecutive rejects

occur) is equal to 15000 when i ∈ IP, 16000 when i ∈ IC

and 23000 when i ∈ IQ, for all product type j ∈ J and all

shift k ∈ K. Parameter λ̃i, j,k is equally defined by 1.074 for

all configurations (i ∈ I \ IP). Parameter µ̃i is also defined

constant for all configurations with the value 2.656.

TABLE I

NUMBERS OF PRODUCTS BETWEEN TWO REJECTS - INVERSE OF THE

REJECT RATE λi, j,k

Product type j = 1 j = 2

Shift k = 1 k = 2 k = 1 k = 3
k = 3 k = 2

i ∈ IP 500 100 50 200

λi, j,k i ∈ IC 100 200 10 20

i ∈ IQ 20 150 250 200

C. Simulation description

To start the simulation, products are sent to the first

station of the entire line. When a product p associated to

a product type j exits a station i at time t (corresponding to

a shift k), functions NC(p, i) and NM(p, i) are updated. Their

values can change if a reject occurs or in other words if

the random samples tλi, j,k
and tµi

are under the thresholds

thi, j,k and thi. If the random sample is associated to a

reject, the product is labeled with a reject flag otherwise

no flag is exhibited. When a consecutive reject occurs at

station i occurs (tµi
≤ thi), the number of rejects pµ̃i

is

computed and given to NM(p, i). When a reject associated

to NC (tλi, j,k
≤ thi, j,k) occurs, the number of rejects p ˜λi, j,k

equals 1 if a process station is concerned (i ∈ IP), otherwise

p ˜λi, j,k
follows a Poisson distribution with the parameter λ̃i, j,k

(i ∈ I \ IP). Functions r and R are updated.

When a product p exits a decision station (i ∈ ID), if

R(p, t) = 0, no reject rejects occurred in the current section

then the product is sent to next section or exits the line and

(14) is updated, otherwise (R 6= 0) the product goes to quality

station (IQ) and R is set to 0 when the product is repaired.

IV. RESULTS: GQI SIMULATION

This section addresses the accuracy of the SFM approach

to estimate manufacturing line quality. In the first set of

results, validation of quality estimations is determined over

shift transitions for products P1 and P2, shown respectively

in figures 5 and 6. These figures show a set of simulations

over one day with error bounds associated to an error of 1%

and 5% around the expected value. Several results prove the

accuracy of the SFM approach demonstrated with stochastic

estimations that are not scattered by more than 5% around

the expected value after 5 hours of simulation. The error,

shown on figure 5, is less than 1% with the first product

type, proving the high accuracy of this approach.

In a second set of results shown in Figure 7, the complete

hybrid components are combined. Shift transitions occur at

8h and 16h, product type switches occur at t = 4h (P1 to

P2), t = 12h (P2 to P1), and t = 20h (P1 to P2). The results

presented in figure 7 show the high accuracy of the SFM

approach, results are confined in the 5% error bounds. The

results for all simulations are really closed to the expected

value.

V. CONCLUSION AND PERSPECTIVES

In this paper, a manufacturing system model for quality

control is developed considering Bernoulli-type rejects, per-

sistent rejects and quality-loop rejects. This model includes
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hybrid control aspects with different discrete states and

also represents decision-making associated to the transfer of

rejected products into rework quality loops. The formulation

of the model takes also into account the non-stationary

behavior of model parameters and a maximum likelihood

estimation technique is used for the parameter estimation.

The results of the study is focused on a specific case but

the global and generic aspect is deduced from the model

description. The results demonstrate that the SFM model

provides an accurate tool for dynamic modeling of a quality

performance metric such as the GQI introduced here. Finally,

this model can improve decision-making in quality prediction

since an accurate quality indicator is available for an entire

manufacturing line. Future work includes a closed-loop es-

timation of parameters, a modeling of machine degradation

linked to maintenances in order to maximize the quality with

a minimum maintenance cost.
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