

Abstract— This paper proposes a formal framework for

reconfigurable control, based on model checking. This

framework first generates a flexible model (i.e., an execution

structure) according to the diagnosis, then defines a temporal

specification language to deal with the problems due to infinite

execution cycles and non-determinism, and finally provides the

algorithms that will automatically verify whether the updated

model satisfies the desired specification.

I. INTRODUCTION

ynamic reconfigurable control is a field of fault

tolerant control that has emerged over the past decade

[1]. The reconfigurability is defined as the possibilities the

system has, despite the occurrence of faults, to fulfill its

missions without (unbearable) loss of performance. A first

class of approaches has been devoted to the design of

reconfigurable systems, e.g., [2], [3], [4] and [5] and is in

the most of cases limited to the selection or the redesign of

the input vector, the output vector, the control law and the

set-point, making them inappropriate in the case of a

complete loss of an actuator. So a second class of

approaches has been developed to analyze system’s

reconfigurability from the system’s functional redundancies

[6], [7]. However these approaches do not allow the

reconfigurability calculation by the system itself.

That’s the reason why, we propose in this paper, a

framework to automatically calculate reconfigurability

qualitatively. This framework rests on three elements: 1) an

appropriate formulation of the system's proprieties allowing

the system to update its description when faults occur, 2) a

specification language for describing the system’s

objectives, 3) a verification method to establish whether the

current system description satisfies the specification.

The authors are members of Laboratoire d’Automatique, Génie

Informatique & Signal, UPRESA CNRS 8021, Université des Sciences et

Technologies de Lille. Address: Bat. Poly-Tech Lille, Cité Scientifique,

59655 Villeneuve D’Ascq Cedex, France. Email: {He-

Xuan.Hu@polytech-lille.net, Anne-Lise.Gehin@polytech-lille.fr,

mireille.bayart@univ-lille1.fr }

The present research work has been supported by Science and

Technology for Safety in Trans-portation, and founded by the European

Union, the Délégation Régionale à la Recherche et à la Technologie, the

Ministère Délégué à l’Enseignement Supérieur et à la Recherche, the

Région Nord Pas de Calais and the Centre National de la Recherche

Scientifique.

Figure 1 shows the architecture of the proposed method

for reconfigurable control. For a given series of

observations and diagnoses, if there are faults in system,

then a revised system model is constructed flexibly,

according to the diagnoses, observations and available

system descriptions. Next, model checking is applied to

verify whether or not the current system model satisfies the

desired objectives. This automatic reconfigurability

calculation is one of the most important steps in our

framework. If the given control objectives are achievable,

the system will run according to the observations and

current system model. Otherwise, the reconfiguration is

considered as failed.

The paper is organized as follows. In section II, the

framework for flexibly generating current system model is

described. The temporal logic used for describing extended

goals is introduced in section III. The model checking

method used to automatically calculate reconfigurability is

presented in section IV. Section V illustrates the approach

on an example. Section VI summarizes the work done and

discusses directions for future research.

II. FLEXIBLE SYSTEM MODELLING

The faults considered in this paper are faults which

totally change the system’s physical structure, such as the

complete loss of an actuator or the complete loss of a system

component. The system model is no longer valid in this

case. This is the reason why we propose a flexible system

A formal framework of reconfigurable control based on model

checking

He-xuan Hu, Anne-lise Gehin, and Mireille Bayart

D
Observations Diagnoses

Revised

System Model

Have faults?

If satisfied?

Model Checking

Run as the updated model

Objectives /

Revised Objectives

Domain Priorities

N

Y

Y

N

Fig. 1. The reconfigurable control architecture

Failed

Descriptions

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

FrBI02.3

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 4324

modeling mechanism to automatically update the system

model when faults occur. The mechanism rests on two parts:

a database containing basic knowledge about the system,

and an algorithm for constructing a system model based on

that knowledge.

A. System Knowledge

The basic system knowledge of the system corresponds to

the first block at the top of the chart in figure 1 (i.e.:

observations, diagnoses, description). These elements refer

to three different kinds of knowledge: variable knowledge,

semi-variable knowledge, and fixed knowledge. The first

includes such information as observations, which vary

according to the execution of control commands and

environmental changes; the second includes such

information as diagnoses, which only change if the system

moves from the normal to faulty operation mode and vice

versa, and the last includes such information as system

descriptions and domain priorities, the non-changing

information that expresses the intrinsic system properties as

intended by the designers. Domain priorities allow

expressing the possibility to achieve “degraded” or non-

nominal objectives in faulty modes.

To formalize the system’s knowledge, we propose to use

a state transition representation STRIPS (STanford

Research Institute Problem Solver) [18] where it provides

information about the event's pre-conditions and effects.

The system knowledge is represented as logical atoms

derived from first-order logic. Each state corresponds then

to a set of logical atoms (e.g., observations, diagnoses and

system descriptions) that are either true or false within a

certain degree of interpretation, the transitions are the

control actions that change the truth values of these atoms.

Definition 1 (The system model): Let L = {P1, P2, … Pn}

be a finite set of logical atoms. With this set, a system can

be represented as a state-transition system. Formally, it is a

3-tuple Σ = (S, A, γ), where:

(1) S = {s1, s2…}⊆ 2
L
 is a finite or recursively

enumerable set of states. Each state s is a subset of L.

Intuitively, s tells us which logical atoms currently hold true.

If p∈ s, then p holds true in the state represented by s, and if

p∉ s, then p does not hold true in the state represented by s.

(2) A = {a1, a2…} is a finite or recursively enumerable

set of control actions. Each control action a∈A is a multiple

of subsets of L, which can be expressed as a =

(preconditions, determin-effects, nondetermin-effects). As

the term suggests, the set of preconditions is called the

preconditions of a, and the set of determin-effects

(nondetermin-effects) represents the deterministic (resp.

non-deterministic) effects of a. Non-deterministic effects

represent an unknown, since it is not known which of them

will actually take place. We assume that for any a, any

nondeterministic effect is consistent with the deterministic

effects (i.e., no single atom and its negation exist

simultaneously in the effect sets of a).

(3) γ: S × A → 2
S
 is a state-transition function. γ(s, a) =

determin-effects(a)U nondetermin-effects(a) if a∈A is

applicable to s∈S, otherwise, γ(s, a) is undefined. In other

words, whenever an action is applied to a state, it produces

another state. This is useful information because once A is

known, S can be specified by giving just a few of its states.

This model allows describing actions in terms of their

preconditions and effects and describes the states as

conjunctions of positive literals. The precondition states

what must be true in a state before an action can be

executed. The effect describes how the state changes when

the action is executed. An action is ‘applicable’ in any state

that satisfies the precondition; otherwise, the action has no

effect. It should be noted that γ is defined for one action but

the action is defined non-deterministically as above. In other

words, when an action is applied to a state, it produces one

or several follow-up states. That is the reason why γ(s, a) is

introduced as a set in the definition of the model.

The list of the possible states can be generated from the

Cartesian product of the diagnosis atoms, the control-

command atoms and the observation atoms. The initial state

is one of these possible states and is captured by the

diagnoser and the observer at the moment that the fault

report is received. The interesting succeeding states are

generated automatically by the algorithm presented in the

next section.

B. System modeling Algorithm

From an initial state identified by the diagnoser and the

observer, the proposed algorithm returns an automaton (S,

Algorithm 3.1: Expand (S, A, T, s0)

1 S ← s0; Old ← s0; T ← Ø; j = 0;

2 While Old ≠ Ø

3 { New = Ø;

4 Repeat

5 { Non-deterministically choose a state

 sold of Old;

6 sold∈ Old; Old = Old – sold;

7 Com←{a∈A | preconditon (a) ⊆ sold};

8 Reach = {sr | sr∈ γ(sold, Com)};

9 For each sr
10 { if sr∉S then

11 { sj+1 = sr; S = S+ sj+1;

12 tj+1 = (sold, a, sj+1); T = T+ tj+1;

13 New = New + sj+1; j= j+1;}

 }

14 Until Old = Ø}

15 Old = New;}

16 End.

4325

A, T, s0) as the updated model, where S is the set of states, A

is the set of available control commands, T is the automata's

transition set, and s0 is the initial state. The algorithm

performs a procedure close to iterative deepening,

discovering at each step of iteration, a new part of the state

space. In the algorithm, t is a element of T; Old is the set of

states that are checked at the current iteration, while New is

the state set for next iteration; Com is the set of acceptable

control commands whose preconditions belong to the

current checked state sold (line 7). A set of states that can be

reached from the state sold is found (line 8) by applying the

commands Com. Then, each of these reachable states is

checked to see whether or not it is new to this automaton

(line 10). If it is, then it will be added to the set New for next

iteration (line 11-13). If there is no new state (line 2, 15),

then the algorithm terminates.

III. CTL* FOR GOAL FORMULATION

Once the revised system model is obtained, the next step

will consist in checking whether the revised model satisfies

the system’s goals. For the formulation of the system’s

goals, two conditions have to be taken into account: 1) many

systems are designed not to terminate, such as the cycle

execution; 2) systems present a non-determinist part in the

sense where the effects of a control action are linked to the

actual state of the system and to the dynamic of the system.

Taking account of these two conditions, the computation

tree logic CTL* [8] seems to be an appropriate tool for the

system’s goal formulation. In CTL*, time is not mentioned

explicitly, the present time instant corresponds to the current

state and next time instant corresponds to the state following

immediately after. CTL* uses ‘temporal operators’ and

‘path quantifiers’ to generate formulae taking the cycle

execution and non-determinism into account.

• Path quantifiers are used in a given state to specify that

all or some of the paths starting at that state have certain

properties. Here, a path is an infinite sequence of states.

Two types of path quantifiers, ‘A’ and ‘E’, are possible:

 (1) ‘A’ is a universal path quantifier, meaning that certain

properties hold true on all paths starting from a given state.

 (2) ‘E’ is an existential path quantifier, meaning that

certain properties hold true on some paths starting from a

given state.

• Temporal operators describe path properties. There are

five basic types of operators:

 (1) ‘X’ (next time) requires that a property hold true in

the path's second state.

(2) ‘F’ (eventually or in the future) is used to affirm that a

property will hold true at some state on the path.

(3) ‘G’ (always or globally) specifies that a property

holds true at every state on the path.

(4) ‘U’ (until) holds true if there is a state on the path in

which the second property holds true, and if the first

property holds true at every previous state on the path.

(5) ‘R’ (release) requires that the second property holds

true along the path, up to and including the first state where

the first property holds, although the first property is not

required to hold true in the future.

Definition 2 (CTL*): There are two types of formulae in

CTL*: state formulae, which are true in a specific state, and

path formulae, which are true along a specific path. Let AP

be the set of atomic propositions. The goal language CTL*

is defined by the following rules:

(1) If p∈AP, then p is a state formula.

(2) If f and g are state formulae, then ¬f, f ∧ g and f ∨ g

are state formulae.

(3) If f is a state formula, then f is also a path formula.

(4) If f is a path formula, then E (f) and A (f) are state

formulae.

(5) If f and g are path formulae, then ¬f, f ∧ g, f ∨ g, X

(f), F (f), G (f), f U g and f R g are path formulae.

CTL* formulae allow to specify different system’s

requirements expressed, for example as: (1) reachability

goals, such as EF (g), which requires that the system may be

able to reach desired states where g holds true and AF(g),

which requires that the system will be guaranteed to reach

those desired states; (2) safety goals, such as AG (¬g),

which means g must absolutely be avoided and EG (¬g),

which means that an attempt must be made to avoid g; and

(3) maintainability goals, such as AG (g), which means g

must be maintained and AF (AG (g)), which means that the

system will always reach some future state from which g can

be permanently maintained.

As shown in figure 1, automatic reconfiguration is a

complex procedure during which the goals can be changed

at the moment that the fault report is received. For a desired

property g, the temporal goal should be AG (g) (i.e., g

always holds true) in the normal operating mode. If there is

a fault that causes g to deviate from its desired value, then

the reconfiguration will correct this deviation and will keep

g within its desired value range. But in a non-deterministic

system, a control action sent by the reconfiguration

procedure cannot be guaranteed to produce the desired

effects (i.e., the original goal cannot be guaranteed). This

situation can be described as EF (AG (g)), which means that

g will eventually be accomplished at some future state from

which g will be permanently maintained. However, this does

not satisfy the requirements of some high security system.

Thus, EF (AG (g)) must be changed into a strong solution,

such as AF (AG (g)). If the execution structure satisfies the

goal AF (AG (g)), then the reconfiguration will be successful

in spite of non-determinism. All that remains to be done is

to verify whether an execution structure satisfies the

temporal goal, and next section explains how this can be

done.

4326

IV. THE MODEL CHECKING

Model checking aims to verify whether the revised

system’s model satisfies the system’s objectives. System’s

objectives are expressed by CTL* formulae. System’s

model is given by the execution structure (S, L, T, s0) which

is an extension of the automaton Σ = (S, A, γ) obtained as a

result of the algorithm 2.1. In this new structure A is

replaced by L, a finite set of logical atoms, T is the state

transition function and s0 is the initial state. Each state is

labelled with a set of atomic propositions L(s), which

contains all atoms true in that state. The model checking

task is then, to determine which states in S satisfy the goal

formula ψ.

The model checking rests on a labelling algorithm. The

principle of this algorithm is given here [9]. Let M = (S, L,

T, s0) be the execution structure for which we want to

determine the states in S which satisfy the goal formula ψ.

First, the goal formula ψ is pre-treated to be written in terms

of the connectives ¬, ∧ , ⊥ , EX, EG, and EU using the

following equivalences:

(1) AX (f) = ¬ EX (¬ f)

(2) EF (f) = E (True U f)

(3) AG (f) = ¬ EF (¬ f)

(4) AF (f) = ¬ EG (¬ f)

(5) A [f U g] ≡ ¬E [¬g U (¬f ∧ ¬g)] ∧ ¬EG (¬g)

(6) A [f R g] ≡ ¬E [¬f U ¬g]

(7) E [f R g] ≡ ¬A [¬f U ¬g]

Second, the states of M are labelled with the sub-formulae

of ψ, starting with the smallest sub-formulae and working

recursively towards ψ. The rules to perform the labelling are

the following:

If ψ is:

(1)⊥ : then no states are labelled with⊥ ;

(2) p: then label s with p if p∈L(s);

(3) ψ1 ∧ ψ2: label s with ψ1 ∧ ψ2 if s is already labelled both

with ψ1 and with ψ2;

(4) ¬ψ1: label s with ¬ψ1 if s is not already labelled with ψ1;

(5) EG (ψ1):

— Label all the states with EG (ψ1);

— If any state s is not labelled with ψ1, delete the label

EG(ψ1);

— Repeat: delete the label EG (ψ1) from any state if none

of its successors is labelled with EG (ψ1); until there is

no change.

(6) E [ψ1 U ψ2]:

— If any state s is labelled with ψ2, label it with E[ψ1U

ψ2];

— Repeat: label any state with E [ψ1 U ψ2] if it is labelled

with ψ1 and at least one of its successors is labelled with

E [ψ1 U ψ2], until there is no change.

(7) EX (ψ1): label any state with EX (ψ1) if one of its

successors is labelled with ψ1.

As AF (ψ1) is often used in practice, the following

algorithm to deal with it directly.

(8) AF (ψ1):

— If any state s is labelled with ψ1, label it with AF (ψ1).

— Repeat: label any state with AF (ψ1) if all successor

states are labelled with AF (ψ1), until there is no

change.

V. THE TWO TANK EXAMPLE

To illustrate the proposed approach, let’s take an

example. The chosen example comprises a level regulation

process involving two identical connected tanks (Fig. 2).

The inflow Qp is provided by pump P1. The flow Qv

between the two tanks is controlled by valve V1, with V2 as

a backup valve that should always be closed during normal

behaviour. The connecting pipe is at a level of 30 cm (resp.

0 cm). The valve Vo, which is always open, is an outlet

valve, located at the bottom of tank T2. In this example, it is

assumed that all the valves are on/off valves, all the pipes

have the same diameter, and the flow rate delivered by P1 is

equal to the flow rate through V1 as the water level of tank

T1 is 45 cm.

Tank T1 is equipped with a continuous level sensor and

an on/off controller to regulate the level of water, keeping it

between 45 cm and 50 cm (25 cm and 30 cm in the event of

a fault in tank T1). The controller turns on the pump when

the water level is at 45 cm (25 cm) and turns it off when

level reaches 50 cm (30 cm). Tank T2 is also equipped with

a continuous level sensor. Water is fed into tank T2 from

tank T1 via valve V1 (V2 in the faulty case). The controller

turns on the valve (V1 or V2) if the level falls below 9 cm

and turns it off when level rises above 11 cm.

Though this example is small, its behaviour is not simple.

For example, the flow between tank T1 and T2 varies

according to the different water levels in each tank. Thus,

during the regulation process, the same valve action results

in different water level changes in each tank. This is a non-

deterministic property. This regulation process is designed

not to terminate, and its desired goals are temporally

extended.

Using the formalism proposed in section II, a possible

representation of the basic system knowledge is:

L = {*Diagnosis atoms:

Normal (x): the component x is normal;

¬Normal (x): the component x is abnormal, as is the

diagnosis;

Pump P

Fig. 2: The two-tanks system

Tank_2

2
5
~
3
0
 c
m

Valve 2

Valve out

Pump
Controller

C1
Tank_1

3
0
 c
m

Valve 1

4
5
~
5
0
 c
m

Valve
Controller C2

4327

Block-on (x): the component x is blocked in the ‘on’

position (i.e., can not be closed).

Block-off (x): the component x is blocked in the ‘off’

position (i.e., can not be opened).

*Observation atoms:

On (x): the component x (e.g., a valve) is opened;

Off (x): the component x (e.g., a valve) is closed;

L1, L1(x), L1(x: y): the level of tank1 is x or between x

and y;

L2, L2(x), L2(x: y): defined as L1

Rise (Li) / Fall (Li): increase or decrease current Li to

the limits;

Static (Li): Li does not change;

*The system priorities:

(1) if Normal (V1) and Normal (V2), then Goal (L1

(45:50));

(2) if ¬Normal (V1) and Normal (V2), then Goal (L1

(25:30));

Goal (Li(x)/Li(x:y)): goal of Li is x or between x and y;

S = {s0, s1, …sn}, where: for example,

s0 = {L1(30: 50), L2(0: 9), Off (V2), On(P1),

¬Normal(V1), Normal(V2, T1, T2, P1)}…

The list of the possible states can be generated from the

Cartesian product of the diagnosis atoms, the control-

command atoms and the observation atoms.

A = {Open (V1), Close (V1), Open (V2), Close (V2),

Open (P1), Close (P1)}, Where: for example,

Open (V2) {

Preconditions: ¬Normal (V1) ∧ Normal (V2) ∧ Off (V2)

∧ (L2 ≤ 9);

Determin-effects: On (V2)

Nondermin-Effects:

if (L1-L2)>L2 then Rise(L2) else Fall (L2);

if Off (P1) then Fall (L1)

 else in case {(L1-L2)<15 then Rise (L1);

 (L1-L2)=15 then Static (L1);

 (L1-L2)>15 then Fall (L1)};}

The other commands are not given here due to space

limitations.

The model generated from the previous description is

shown in figure 3. The goal of the normal operating mode is

to maintain the level of tank T2 between 9 cm and 11 cm

and to try to maintain the level of tank T1 between 45 cm

and 50 cm. This temporal goal can be described as AG (9 ≤

L2 ≤11) ∧ EG (45 ≤ L1 ≤ 50). The fault scenario is that the

valve V1 is blocked in the closed position, thus L1 will be

below 9 cm and the goal of tank T1 will be changed into EG

(25 ≤ L1 ≤ 30) according to the system priorities. The goal

of the reconfiguration can be expressed as AF (AG (9 ≤ L2

≤11) ∧ EG (25 ≤ L1 ≤ 30)). As valve V1 is supposed to be

blocked in the closed position, the control actions associated

with valve V1, such as Open(V1) and Close(V1), are

removed and be made unavailable for generating the revised

model. An illustration, shown in figure 4, explains the first

step of the model generation. The acceptable control actions

are Close (P1) and Open (V2). Applying the acceptable

control actions (i.e., Close (P1) and Open (V2)), the

reachable states from initial state 1 are states 2, 3, 4 and 5.

The effects of these two commands are Rise (L2) and Fall

(L1). Rise (L2) brings the level 2 to 11 cm and triggers other

commands in a new state. Fall (L1) decreases level 1 to

make it equal to the increase in level 2 triggered by Rise

(L2). According to the current L1 and its decrease, the new

level 1 could now possibly belong to four different zones

(i.e., 25, 25~30, 30 and 30~50).

To perform the model checking, each state is labelled

with the atomic propositions that are true in the state. The

verified goal formula AF (AG (9 ≤ L2 ≤11) ∧ EG (25 ≤ L1

≤ 30)) (here, f is used as the abbreviation for 9 ≤ L2 ≤11,

and g for 25 ≤ L1 ≤ 30) is written in terms of the basic

30~50 1

3

4

V2on V2on V2off V2off

P1off P1on

L1 L2

0~9

25~30 11

30

30~50

11

11 5

Fig. 4. An illustration of the first step of model generation

The acceptable commands:

Close (P1) and Open (V2)

The reachable states

2 25 11

30~50

30

25~30

1

3

6

7

4

V2on V2on V2off V2off

P1off P1on

L1

30~50

2

8

L2

0~9

9

9

9

25

30

9~11

9~11

25

25~30

11

11

30

30~50

11

11

9

10

12

13

11

14

5

Fig. 3. The model generated using the knowledge contained in Example

4328

connectives (i.e., ¬ EG (EF (¬ f) ∧ ¬ EG (g))). First, the

set of states that satisfy the atomic formulae are calculated,

followed by those for the more complicated sub-formulae.

Let S (ψ) denote the set of all states labelled with the sub-

formula ψ.

(1) S (¬ f) = {1}

(2) S (g) = {2, 3, 4, 6, 7, 9, 10, 11, 12, 13, 14}

(3) S (EF (¬ f)) = {1}

In order to calculate S (EG (g)), first, the states of S (g)

are labelled with EG (g) and then the label EG (g) is deleted

from any state if none of its successors is labelled with EG

(g). This deletion procedure is repeated until there is no

change. Thus the calculation terminates with:

(4) S (EG (g)) = {2, 3, 4, 6, 7, 9, 10, 11, 12, 13, 14}

(5) S (¬ EG (g)) = {1, 5, 8}

(6) S (EF (¬ f) ∧ ¬ EG (g)) = {1}

When computing S (EG (EF (¬ f) ∧ ¬ EG (g))), only

state 1 is labelled with EG (EF (¬ f) ∧ ¬ EG (g)) as was

done in the last step (6). Clearly, state 1 has no successor

labelled with EG (EF (¬ f) ∧ ¬ EG (g)). So, the model

verification continues:

 (7) S (EG (EF (¬ f) ∧ ¬ EG (g))) = {}

Finally, the converse of the transition relation is used to

label all states in S (EG (EF (¬ f) ∧ ¬ EG (g))). Step (7)

produces a result of Ø, thus implying that

(8) S (¬ EG (EF (¬ f) ∧ ¬ EG (g))) = {1, 2, 3, 4, 5, 6, 7,

8, 9, 10, 11, 12, 13, 14}

This result is very strong because it means that the

checked goal holds true along every path from any state in

the execution structure. For example, since the initial state 1

is contained in this set, it can be concluded that, in this

generated execution structure, the reconfigurable control

started at that initial moment and is guaranteed to achieve

the original goal (AG (9 ≤ L2 ≤11) ∧ EG (25 ≤ L1 ≤ 30)) at

some later time.

VI. CONCLUSION

In this paper, a formal framework for reconfigurable

control, based on model checking has been proposed. This

framework first generates a flexible model (i.e., an

execution structure) according to the diagnosis, then defines

a temporal specification language to deal with the problems

due to infinite execution cycles and non-determinism, and

finally provides the algorithms that will automatically verify

whether the updated model satisfies the desired

specification. An example is given to illustrate the entire

reconfiguration procedure. The results of this illustration

show that our framework is able to express reconfiguration

requirements very well and provides powerful qualitative

computation capabilities.

In future research, it would be interesting to attempt to

reduce the impact of the state explosion problem. There

have been several noteworthy works [10], [11], [12] and

[13] which could inspire us to deal with this problem,

including attempts to exploit abstractions, symmetries and

compositionalities. Another interesting work is about the

fault detection phase. It is noted that this modelling

methodology includes enough knowledge to build the

diagnoser as the discrete event systems, since it includes the

specification of the possible effects of an action. We think

that it can be used as starting point for fault detection

procedures in discrete event systems framework [14], [15],

[16] and [17].

REFERENCES

[1] R. J. Patton, “Fault – Tolerant Control Systems: the 1997 Situation,”

IFAC Symposium on Fault Detection Supervision and Safety for

Technical Processes, Vol. 3, pp. 1033-1054, Kingston Upon Hull,

UK, 26-28 August 1997.

[2] Z. Gao , P. J. Antsaklis, “Stability of the pseudo-inverse method for

reconfigurable control systems,” Int. J. of Control, Vol. 53, No.3, pp.

717-729, 1991.

[3] J. Lunze, T. Steffen, “Control reconfiguration by means of a virtual

actuator,” in IFAC Safeprocess 2003, Washington, USA, 2003.

[4] W. D. Morse, K. A. Ossman, "Model-following reconfigurable flight

control system for the AFTI/F-16," J. Guid., Con. & Dyn., Vol.13,

No.6, pp. 969-976, 1990.

[5] Y. Ochi, K. Kanai, “Design of restructurable flight control systems

using feedback linearization,” J. of Guid.,Contr. & Dyn., Vol. 14,

No.5, pp. 903-911, 1991.

[6] H. X. Hu, A.-L. Gehin , M. Bayart, “Model Aggregation for

Reconfigurable Control Based on Generic Component Model,” in

ICSSSM’06, Troyes, France, 2006.

[7] M. Staroswiecki M., A.-L. Gehin, “Analysis of System

Reconfigurability using Generic Component Models,” in Control'98,

Swansea, UK, 1998.

[8] E. A. Emerson, “Temporal and Modal Logic,” Handbook of

theoretical computer science (vol. B): formal models and semantics.

pp. 995 – 1072. The MIT Press, 1991.

[9] E. M. Clarke, J. O. Grumberg,, A. Doron , A. Peled, Model

Checking. The MIT Press, 2000.

[10] D. E. Long, “Model Checking, Abstraction, and Compositional

Verification,” PhD thesis, School of Computer Science, Carnegie

Mellon University, July 1983.

[11] D. R. Dams, “Abstract Interpretation and Partition Refinement for

Model Checking,” PhD thesis, Institute for Programming Research

and Algorithmics. Eindhoven University of Techonology, July, 1996.

[12] E. M. Clarke, O. Grumberg, D.E. Long, “Model Checking and

Abstraction,” ACM Transactions on Programming Languages and

Systems, Vol. 16, no. 5, pp. 1512-1542, September 1994.

[13] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, L. J. Hwang,

“Symbolic Model Checking: 1020 States and Beyond,” Information

and Computation (Special issue for the best papers from LICS’90),

Vol. 98, no. 2, pp. 142-170, June, 1992.

[14] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen ,

D. Teneketzis, “Diagnosability of discrete-event systems,” IEEE

Trans. Automatic Control, Vol. 40, No. 9, pp. 1555–1575, 1995.

[15] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, K.,

D. Teneketzis, “Failure diagnosis using discrete-event models,” IEEE

Trans. Contr. Syst. Technol., Vol. 4, No. 2, pp. 105–124, 1996

[16] G. Lamperti, M. Zanella Diagnosis of Active Systems, Kluwer

Academic Publis, 2003.

[17] S. Zad, H. Raymond, H. Kwong, W. M. Wonham, “Fault diagnosis

in discrete-event systems: Framework and model reduction,” IEEE

Trans. Automatic Control, Vol. 48, No. 7, pp. 1199–1212, 2003.

[18] Richard E. Fikes and Nils J. Nilsson, “STRIPS: A new approach to

the application of theorem proving to problem solving,” Artificial

Intelligence, Vol. 2, Issues 3-4, pp. 189-208, Winter, 1971.

4329

