
 

 

 

  

Abstract— This paper proposes a formal framework for 

reconfigurable control, based on model checking. This 

framework first generates a flexible model (i.e., an execution 

structure) according to the diagnosis, then defines a temporal 

specification language to deal with the problems due to infinite 

execution cycles and non-determinism, and finally provides the 

algorithms that will automatically verify whether the updated 

model satisfies the desired specification. 

I. INTRODUCTION 

ynamic reconfigurable control is a field of fault 

tolerant control that has emerged over the past decade 

[1].  The reconfigurability is defined as the possibilities the 

system has, despite the occurrence of faults, to fulfill its 

missions without (unbearable) loss of performance. A first 

class of approaches has been devoted to the design of 

reconfigurable systems, e.g., [2], [3], [4] and [5] and is in 

the most of cases limited to the selection or the redesign of 

the input vector, the output vector, the control law and the 

set-point, making them inappropriate in the case of a 

complete loss of an actuator. So a second class of 

approaches has been developed to analyze system’s 

reconfigurability from the system’s functional redundancies 

[6], [7]. However these approaches do not allow the 

reconfigurability calculation by the system itself. 

That’s the reason why, we propose in this paper, a 

framework to automatically calculate reconfigurability 

qualitatively. This framework rests on three elements: 1) an 

appropriate formulation of the system's proprieties allowing 

the system to update its description when faults occur, 2) a 

specification language for describing the system’s 

objectives, 3) a verification method to establish whether the 

current system description satisfies the specification. 
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Figure 1 shows the architecture of the proposed method 

for reconfigurable control. For a given series of 

observations and diagnoses, if there are faults in system, 

then a revised system model is constructed flexibly, 

according to the diagnoses, observations and available 

system descriptions. Next, model checking is applied to 

verify whether or not the current system model satisfies the 

desired objectives. This automatic reconfigurability 

calculation is one of the most important steps in our 

framework. If the given control objectives are achievable, 

the system will run according to the observations and 

current system model. Otherwise, the reconfiguration is 

considered as failed. 

 
The paper is organized as follows. In section II, the 

framework for flexibly generating current system model is 

described. The temporal logic used for describing extended 

goals is introduced in section III. The model checking 

method used to automatically calculate reconfigurability is 

presented in section IV. Section V illustrates the approach 

on an example. Section VI summarizes the work done and 

discusses directions for future research. 

II. FLEXIBLE SYSTEM MODELLING 

The faults considered in this paper are faults which 

totally change the system’s physical structure, such as the 

complete loss of an actuator or the complete loss of a system 

component. The system model is no longer valid in this 

case. This is the reason why we propose a flexible system 
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modeling mechanism to automatically update the system 

model when faults occur. The mechanism rests on two parts: 

a database containing basic knowledge about the system, 

and an algorithm for constructing a system model based on 

that knowledge. 

A. System Knowledge 

The basic system knowledge of the system corresponds to 

the first block at the top of the chart in figure 1 (i.e.: 

observations, diagnoses, description). These elements refer 

to three different kinds of knowledge: variable knowledge, 

semi-variable knowledge, and fixed knowledge. The first 

includes such information as observations, which vary 

according to the execution of control commands and 

environmental changes; the second includes such 

information as diagnoses, which only change if the system 

moves from the normal to faulty operation mode and vice 

versa, and the last includes such information as system 

descriptions and domain priorities, the non-changing 

information that expresses the intrinsic system properties as 

intended by the designers. Domain priorities allow 

expressing the possibility to achieve “degraded” or non-

nominal objectives in faulty modes.  

To formalize the system’s knowledge, we propose to use 

a state transition representation STRIPS (STanford 

Research Institute Problem Solver) [18] where it provides 

information about the event's pre-conditions and effects. 

The system knowledge is represented as logical atoms 

derived from first-order logic. Each state corresponds then 

to a set of logical atoms (e.g., observations, diagnoses and 

system descriptions) that are either true or false within a 

certain degree of interpretation, the transitions are the 

control actions that change the truth values of these atoms. 

Definition 1 (The system model): Let L = {P1, P2, … Pn} 

be a finite set of logical atoms. With this set, a system can 

be represented as a state-transition system. Formally, it is a 

3-tuple Σ = (S, A, γ), where: 

(1) S = {s1, s2…}⊆ 2
L
 is a finite or recursively 

enumerable set of states. Each state s is a subset of L. 

Intuitively, s tells us which logical atoms currently hold true. 

If p∈ s, then p holds true in the state represented by s, and if 

p∉ s, then p does not hold true in the state represented by s. 

(2) A = {a1, a2…} is a finite or recursively enumerable 

set of control actions. Each control action a∈A is a multiple 

of subsets of L, which can be expressed as a = 

(preconditions, determin-effects, nondetermin-effects). As 

the term suggests, the set of preconditions is called the 

preconditions of a, and the set of determin-effects 

(nondetermin-effects) represents the deterministic (resp. 

non-deterministic) effects of a. Non-deterministic effects 

represent an unknown, since it is not known which of them 

will actually take place. We assume that for any a, any 

nondeterministic effect is consistent with the deterministic 

effects (i.e., no single atom and its negation exist 

simultaneously in the effect sets of a). 

(3) γ: S × A → 2
S
 is a state-transition function. γ(s, a) = 

determin-effects(a)U nondetermin-effects(a) if a∈A is 

applicable to s∈S, otherwise, γ(s, a) is undefined. In other 

words, whenever an action is applied to a state, it produces 

another state. This is useful information because once A is 

known, S can be specified by giving just a few of its states. 

This model allows describing actions in terms of their 

preconditions and effects and describes the states as 

conjunctions of positive literals. The precondition states 

what must be true in a state before an action can be 

executed. The effect describes how the state changes when 

the action is executed. An action is ‘applicable’ in any state 

that satisfies the precondition; otherwise, the action has no 

effect. It should be noted that γ is defined for one action but 

the action is defined non-deterministically as above. In other 

words, when an action is applied to a state, it produces one 

or several follow-up states. That is the reason why γ(s, a) is 

introduced as a set in the definition of the model.  

The list of the possible states can be generated from the 

Cartesian product of the diagnosis atoms, the control-

command atoms and the observation atoms.  The initial state 

is one of these possible states and is captured by the 

diagnoser and the observer at the moment that the fault 

report is received. The interesting succeeding states are 

generated automatically by the algorithm presented in the 

next section. 

B. System modeling Algorithm 

 
From an initial state identified by the diagnoser and the 

observer, the proposed algorithm returns an automaton (S, 

Algorithm 3.1: Expand (S, A, T, s0) 

1 S ← s0; Old ← s0; T ← Ø; j = 0; 

2 While Old ≠ Ø 

3     { New = Ø; 

4        Repeat  

5             { Non-deterministically choose a state 

                  sold of Old; 

6          sold∈ Old; Old = Old – sold; 

7                Com←{a∈A | preconditon (a) ⊆  sold}; 

8            Reach = {sr | sr∈ γ(sold, Com)}; 

9           For each sr 
10      { if sr∉S then 

11           { sj+1 = sr; S = S+ sj+1; 

12                tj+1 = (sold, a, sj+1); T = T+ tj+1; 

13                 New = New + sj+1; j= j+1;} 

        } 

14          Until Old = Ø} 

15       Old = New;} 

16 End. 
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A, T, s0) as the updated model, where S is the set of states, A 

is the set of available control commands, T is the automata's 

transition set, and s0 is the initial state. The algorithm 

performs a procedure close to iterative deepening, 

discovering at each step of iteration, a new part of the state 

space. In the algorithm, t is a element of T; Old is the set of 

states that are checked at the current iteration, while New is 

the state set for next iteration; Com is the set of acceptable 

control commands whose preconditions belong to the 

current checked state sold (line 7). A set of states that can be 

reached from the state sold is found (line 8) by applying the 

commands Com. Then, each of these reachable states is 

checked to see whether or not it is new to this automaton 

(line 10). If it is, then it will be added to the set New for next 

iteration (line 11-13). If there is no new state (line 2, 15), 

then the algorithm terminates. 

III. CTL* FOR GOAL FORMULATION 

Once the revised system model is obtained, the next step 

will consist in checking whether the revised model satisfies 

the system’s goals. For the formulation of the system’s 

goals, two conditions have to be taken into account: 1) many 

systems are designed not to terminate, such as the cycle 

execution; 2) systems present a non-determinist part in the 

sense where the effects of a control action are linked to the 

actual state of the system and to the dynamic of the system.  

Taking account of these two conditions, the computation 

tree logic CTL* [8] seems to be an appropriate tool for the 

system’s goal formulation. In CTL*, time is not mentioned 

explicitly, the present time instant corresponds to the current 

state and next time instant corresponds to the state following 

immediately after. CTL* uses ‘temporal operators’ and 

‘path quantifiers’ to generate formulae taking the cycle 

execution and non-determinism into account. 

• Path quantifiers are used in a given state to specify that 

all or some of the paths starting at that state have certain 

properties. Here, a path is an infinite sequence of states. 

Two types of path quantifiers, ‘A’ and ‘E’, are possible: 

 (1) ‘A’ is a universal path quantifier, meaning that certain 

properties hold true on all paths starting from a given state.  

 (2) ‘E’ is an existential path quantifier, meaning that 

certain properties hold true on some paths starting from a 

given state. 

• Temporal operators describe path properties. There are 

five basic types of operators: 

 (1) ‘X’ (next time) requires that a property hold true in 

the path's second state. 

(2) ‘F’ (eventually or in the future) is used to affirm that a 

property will hold true at some state on the path. 

(3) ‘G’ (always or globally) specifies that a property 

holds true at every state on the path. 

(4) ‘U’ (until) holds true if there is a state on the path in 

which the second property holds true, and if the first 

property holds true at every previous state on the path. 

(5) ‘R’ (release) requires that the second property holds 

true along the path, up to and including the first state where 

the first property holds, although the first property is not 

required to hold true in the future. 

Definition 2 (CTL*): There are two types of formulae in 

CTL*: state formulae, which are true in a specific state, and 

path formulae, which are true along a specific path. Let AP 

be the set of atomic propositions. The goal language CTL* 

is defined by the following rules: 

(1) If p∈AP, then p is a state formula. 

(2) If f and g are state formulae, then ¬f, f ∧  g and f ∨  g 

are state formulae. 

(3) If f is a state formula, then f is also a path formula. 

(4) If f is a path formula, then E (f) and A (f) are state 

formulae. 

(5) If f and g are path formulae, then ¬f, f ∧  g, f ∨  g, X 

(f), F (f), G (f), f U g and f R g are path formulae. 

CTL* formulae allow to specify different system’s 

requirements expressed, for example as: (1) reachability 

goals, such as EF (g), which requires that the system may be 

able to reach desired states where g holds true and AF(g), 

which requires that the system will be guaranteed to reach 

those desired states; (2) safety goals, such as AG (¬g), 

which means g must absolutely be avoided and EG (¬g), 

which means that an attempt must be made to avoid g; and 

(3) maintainability goals, such as AG (g), which means g 

must be maintained and AF (AG (g)), which means that the 

system will always reach some future state from which g can 

be permanently maintained. 

As shown in figure 1, automatic reconfiguration is a 

complex procedure during which the goals can be changed 

at the moment that the fault report is received. For a desired 

property g, the temporal goal should be AG (g) (i.e., g 

always holds true) in the normal operating mode. If there is 

a fault that causes g to deviate from its desired value, then 

the reconfiguration will correct this deviation and will keep 

g within its desired value range. But in a non-deterministic 

system, a control action sent by the reconfiguration 

procedure cannot be guaranteed to produce the desired 

effects (i.e., the original goal cannot be guaranteed). This 

situation can be described as EF (AG (g)), which means that 

g will eventually be accomplished at some future state from 

which g will be permanently maintained. However, this does 

not satisfy the requirements of some high security system. 

Thus, EF (AG (g)) must be changed into a strong solution, 

such as AF (AG (g)). If the execution structure satisfies the 

goal AF (AG (g)), then the reconfiguration will be successful 

in spite of non-determinism. All that remains to be done is 

to verify whether an execution structure satisfies the 

temporal goal, and next section explains how this can be 

done. 
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IV. THE MODEL CHECKING 

Model checking aims to verify whether the revised 

system’s model satisfies the system’s objectives. System’s 

objectives are expressed by CTL* formulae. System’s 

model is given by the execution structure (S, L, T, s0) which 

is an extension of the automaton Σ = (S, A, γ) obtained as a 

result of the algorithm 2.1. In this new structure A is 

replaced by L, a finite set of logical atoms, T is the state 

transition function and s0 is the initial state. Each state is 

labelled with a set of atomic propositions L(s), which 

contains all atoms true in that state. The model checking 

task is then, to determine which states in S satisfy the goal 

formula ψ. 

The model checking rests on a labelling algorithm. The 

principle of this algorithm is given here [9]. Let M = (S, L, 

T, s0) be the execution structure for which we want to 

determine the states in S which satisfy the goal formula ψ. 

First, the goal formula ψ is pre-treated to be written in terms 

of the connectives ¬, ∧ , ⊥ , EX, EG, and EU using the 

following equivalences: 

(1) AX (f) = ¬ EX (¬ f) 

(2) EF (f) = E (True U f) 

(3) AG (f) = ¬ EF (¬ f) 

(4) AF (f) = ¬ EG (¬ f) 

(5) A [f U g] ≡ ¬E [¬g U (¬f ∧ ¬g)] ∧ ¬EG (¬g) 

(6) A [f R g] ≡ ¬E [¬f U ¬g] 

(7) E [f R g] ≡ ¬A [¬f U ¬g] 

Second, the states of M are labelled with the sub-formulae 

of ψ, starting with the smallest sub-formulae and working 

recursively towards ψ. The rules to perform the labelling are 

the following:  

If ψ is: 

(1)⊥ : then no states are labelled with⊥ ; 

(2) p: then label s with p if p∈L(s); 

(3) ψ1 ∧ ψ2: label s with ψ1 ∧ ψ2 if s is already labelled both 

with ψ1 and with ψ2; 

(4) ¬ψ1: label s with ¬ψ1 if s is not already labelled with ψ1; 

(5) EG (ψ1):  

— Label all the states with EG (ψ1); 

— If any state s is not labelled with ψ1, delete the label 

EG(ψ1); 

— Repeat: delete the label EG (ψ1) from any state if none 

of its successors is labelled with EG (ψ1); until there is 

no change. 

(6) E [ψ1 U ψ2]: 

— If any state s is labelled with ψ2, label it with E[ψ1U 

ψ2]; 

— Repeat: label any state with E [ψ1 U ψ2] if it is labelled 

with ψ1 and at least one of its successors is labelled with 

E [ψ1 U ψ2], until there is no change. 

(7) EX (ψ1): label any state with EX (ψ1) if one of its    

successors is labelled with ψ1. 

As AF (ψ1) is often used in practice, the following 

algorithm to deal with it directly. 

(8) AF (ψ1): 

— If any state s is labelled with ψ1, label it with AF (ψ1). 

— Repeat: label any state with AF (ψ1) if all successor 

states are labelled with AF (ψ1), until there is no 

change. 

V. THE TWO TANK EXAMPLE 

To illustrate the proposed approach, let’s take an 

example. The chosen example comprises a level regulation 

process involving two identical connected tanks (Fig. 2). 

The inflow Qp is provided by pump P1. The flow Qv 

between the two tanks is controlled by valve V1, with V2 as 

a backup valve that should always be closed during normal 

behaviour. The connecting pipe is at a level of 30 cm (resp. 

0 cm). The valve Vo, which is always open, is an outlet 

valve, located at the bottom of tank T2. In this example, it is 

assumed that all the valves are on/off valves, all the pipes 

have the same diameter, and the flow rate delivered by P1 is 

equal to the flow rate through V1 as the water level of tank 

T1 is 45 cm. 

Tank T1 is equipped with a continuous level sensor and 

an on/off controller to regulate the level of water, keeping it 

between 45 cm and 50 cm (25 cm and 30 cm in the event of 

a fault in tank T1). The controller turns on the pump when 

the water level is at 45 cm (25 cm) and turns it off when 

level reaches 50 cm (30 cm). Tank T2 is also equipped with 

a continuous level sensor. Water is fed into tank T2 from 

tank T1 via valve V1 (V2 in the faulty case). The controller 

turns on the valve (V1 or V2) if the level falls below 9 cm 

and turns it off when level rises above 11 cm. 

 
Though this example is small, its behaviour is not simple. 

For example, the flow between tank T1 and T2 varies 

according to the different water levels in each tank. Thus, 

during the regulation process, the same valve action results 

in different water level changes in each tank. This is a non-

deterministic property. This regulation process is designed 

not to terminate, and its desired goals are temporally 

extended. 

Using the formalism proposed in section II, a possible 

representation of the basic system knowledge is: 

L = {*Diagnosis atoms: 

Normal (x): the component x is normal; 

¬Normal (x): the component x is abnormal, as is the 

diagnosis; 

Pump P 

Fig. 2: The two-tanks system 
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Block-on (x): the component x is blocked in the ‘on’ 

position (i.e., can not be closed). 

Block-off (x): the component x is blocked in the ‘off’ 

position (i.e., can not be opened). 

*Observation atoms: 

On (x): the component x (e.g., a valve) is opened; 

Off (x): the component x (e.g., a valve) is closed; 

L1, L1(x), L1(x: y): the level of tank1 is x or between x 

and y; 

L2, L2(x), L2(x: y): defined as L1 

Rise (Li) / Fall (Li): increase or decrease current Li to 

the limits; 

Static (Li): Li does not change; 

*The system priorities: 

(1)  if Normal (V1) and Normal (V2), then Goal (L1 

(45:50));  

(2) if ¬Normal (V1) and Normal (V2), then Goal (L1 

(25:30)); 

Goal (Li(x)/Li(x:y)): goal of Li is x or between x and y;  

S = {s0, s1, …sn}, where: for example, 

s0 = {L1(30: 50), L2(0: 9), Off (V2), On(P1), 

¬Normal(V1), Normal(V2, T1, T2, P1)}… 

The list of the possible states can be generated from the 

Cartesian product of the diagnosis atoms, the control-

command atoms and the observation atoms.   

A = {Open (V1), Close (V1), Open (V2), Close (V2), 

Open (P1), Close (P1)}, Where: for example, 

Open (V2) { 

Preconditions: ¬Normal (V1) ∧ Normal (V2) ∧  Off (V2) 

∧ (L2 ≤ 9); 

Determin-effects: On (V2) 

Nondermin-Effects:  

if (L1-L2)>L2 then Rise(L2) else Fall (L2); 

if Off (P1) then Fall (L1) 

            else in case {(L1-L2)<15 then Rise (L1); 

              (L1-L2)=15 then Static (L1); 

             (L1-L2)>15 then Fall (L1)};} 

The other commands are not given here due to space 

limitations.  

The model generated from the previous description is 

shown in figure 3. The goal of the normal operating mode is 

to maintain the level of tank T2 between 9 cm and 11 cm 

and to try to maintain the level of tank T1 between 45 cm 

and 50 cm. This temporal goal can be described as AG (9 ≤ 

L2 ≤11) ∧ EG (45 ≤ L1 ≤ 50). The fault scenario is that the 

valve V1 is blocked in the closed position, thus L1 will be 

below 9 cm and the goal of tank T1 will be changed into EG 

(25 ≤ L1 ≤ 30) according to the system priorities. The goal 

of the reconfiguration can be expressed as AF (AG (9 ≤ L2 

≤11) ∧  EG (25 ≤ L1 ≤ 30)). As valve V1 is supposed to be 

blocked in the closed position, the control actions associated 

with valve V1, such as Open(V1) and Close(V1), are 

removed and be made unavailable for generating the revised 

model. An illustration, shown in figure 4, explains the first 

step of the model generation. The acceptable control actions 

are Close (P1) and Open (V2). Applying the acceptable 

control actions (i.e., Close (P1) and Open (V2)), the 

reachable states from initial state 1 are states 2, 3, 4 and 5. 

The effects of these two commands are Rise (L2) and Fall 

(L1). Rise (L2) brings the level 2 to 11 cm and triggers other 

commands in a new state. Fall (L1) decreases level 1 to 

make it equal to the increase in level 2 triggered by Rise 

(L2). According to the current L1 and its decrease, the new 

level 1 could now possibly belong to four different zones 

(i.e., 25, 25~30, 30 and 30~50). 

 
 

 
To perform the model checking, each state is labelled 

with the atomic propositions that are true in the state. The 

verified goal formula AF (AG (9 ≤ L2 ≤11) ∧  EG (25 ≤ L1 

≤ 30)) (here, f is used as the abbreviation for 9 ≤ L2 ≤11, 

and g for 25 ≤ L1 ≤ 30) is written in terms of the basic 
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connectives (i.e.,  ¬ EG (EF (¬ f) ∧ ¬ EG (g))). First, the 

set of states that satisfy the atomic formulae are calculated, 

followed by those for the more complicated sub-formulae. 

Let S (ψ) denote the set of all states labelled with the sub-

formula ψ. 

(1) S (¬ f) = {1} 

(2) S (g) = {2, 3, 4, 6, 7, 9, 10, 11, 12, 13, 14} 

(3) S (EF (¬ f)) = {1} 

In order to calculate S (EG (g)), first, the states of S (g) 

are labelled with EG (g) and then the label EG (g) is deleted 

from any state if none of its successors is labelled with EG 

(g). This deletion procedure is repeated until there is no 

change. Thus the calculation terminates with: 

(4) S (EG (g)) = {2, 3, 4, 6, 7, 9, 10, 11, 12, 13, 14} 

(5) S (¬ EG (g)) = {1, 5, 8} 

(6) S (EF (¬ f) ∧ ¬ EG (g)) = {1} 

When computing S (EG (EF (¬ f) ∧ ¬ EG (g))), only 

state 1 is labelled with EG (EF (¬ f) ∧ ¬ EG (g)) as was 

done in the last step (6). Clearly, state 1 has no successor 

labelled with EG (EF (¬ f) ∧ ¬ EG (g)). So, the model 

verification continues: 

 (7) S (EG (EF (¬ f) ∧ ¬ EG (g))) = {} 

Finally, the converse of the transition relation is used to 

label all states in S (EG (EF (¬ f) ∧ ¬ EG (g))). Step (7) 

produces a result of Ø, thus implying that 

(8) S (¬ EG (EF (¬ f) ∧ ¬ EG (g))) = {1, 2, 3, 4, 5, 6, 7, 

8, 9, 10, 11, 12, 13, 14} 

This result is very strong because it means that the 

checked goal holds true along every path from any state in 

the execution structure. For example, since the initial state 1 

is contained in this set, it can be concluded that, in this 

generated execution structure, the reconfigurable control 

started at that initial moment and is guaranteed to achieve 

the original goal (AG (9 ≤ L2 ≤11) ∧  EG (25 ≤ L1 ≤ 30)) at 

some later time. 

VI. CONCLUSION  

In this paper, a formal framework for reconfigurable 

control, based on model checking has been proposed. This 

framework first generates a flexible model (i.e., an 

execution structure) according to the diagnosis, then defines 

a temporal specification language to deal with the problems 

due to infinite execution cycles and non-determinism, and 

finally provides the algorithms that will automatically verify 

whether the updated model satisfies the desired 

specification. An example is given to illustrate the entire 

reconfiguration procedure. The results of this illustration 

show that our framework is able to express reconfiguration 

requirements very well and provides powerful qualitative 

computation capabilities.  

In future research, it would be interesting to attempt to 

reduce the impact of the state explosion problem. There 

have been several noteworthy works [10], [11], [12] and 

[13] which could inspire us to deal with this problem, 

including attempts to exploit abstractions, symmetries and 

compositionalities. Another interesting work is about the 

fault detection phase. It is noted that this modelling 

methodology includes enough knowledge to build the 

diagnoser as the discrete event systems, since it includes the 

specification of the possible effects of an action. We think 

that it can be used as starting point for fault detection 

procedures in discrete event systems framework [14], [15], 

[16] and [17]. 
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