
  

  

1Abstract— We consider a fixed control law on a well-
known underactuated dynamics, the cart-and-pendulum 
system. The contributory aspect of this research which is 
different from the traditional treatment is that, the 
feedback line is affected by multiple independent time 
delays. It is known that time-delayed LTI systems may 
exhibit multiple stable operating zones (pockets) in the 
space of delays. But finding these pockets analytically 
and demonstrating them experimentally are complex 
and challenging problems. The main aim of this effort is 
to accomplish a successful trajectory tracking on a 
practical, underactuated mechanical system under the 
presence of multiple time delays. First, we model the 
system as precisely as we can and over this model we use 
a powerful methodology for handling the delays. This 
method is called cluster treatment of characteristic roots 
(CTCR) which reveals the stability pockets in the delay 
space. Then, we experimentally verify the analytical 
findings of CTCR. As a novel contribution to the 
controls area, this study shows that underactuated 
systems with multiple delays may exhibit better 
performance (such as faster disturbance rejection 
capability) for larger delay values when they are 
properly selected. This is a counter-intuitive outcome of 
the study, and it enables us to utilize ‘delay scheduling’ 
procedure. In delay scheduling, we declare the set of 
larger delays (than those that are present) for which the 
control routine performs better. This procedure offers to 
the control system designer a powerful tool. 
 

Nomenclature 
x Cart position (m) n Gear box ratio 
θ Pendulum angle from the 

upright position (rad)  
R Motor armature resistance 

(Ω)  

xd Desired trajectory for x (m) r Driver pinion radius (m) 

θd Desired trajectory for the 
pendulum angle (rad) 

M Mass of the cart (kg) 
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Vin Voltage applied to the DC 
motor of the cart (V) 

I Pendulum moment of inertia 
about its center of gravity 
(kgm2) 

F Force applied to the cart (N) m Mass of the pendulum (kg) 
b Equivalent viscous friction 

constant for the cart (Ns/m) 
l Half length of the pendulum 

(m) 
b0 Equivalent coulomb friction 

force on the cart (N) 
g Gravitational acceleration 

(m/s2) 

Ffric 
Nonlinear frictional force on 
the cart (N) 

c Viscous friction constant for 
the pendulum hub (Nms/rad) 

Ke 
Motor back-emf constant (Vs) c0 Coulomb frictional torque on 

the pendulum hub (Nm) 

Kt 
Motor torque constant 
(Nm/A) 

Tfric Nonlinear frictional torque on 
the pendulum hub (Nm) 

 
I. INTRODUCTION 

tabilization of underactuated cart-pendulum systems has 
been an important and popular problem in controls area 

for several decades [1, 2, 7, 8, 15, 17]. In this paper, we deal 
with the problem from a novel perspective. The novelty is in 
the introduction of multiple feedback delays within the 
controlled dynamics and the ‘scheduling’ of these delays for 
improved system performance. The main objective is to 
analyze and verify the effect of time delays on the tracking 
performance of the cart-and-pendulum dynamics. We claim 
a smart ‘delay scheduling’ methodology, which proposes 
adding appropriate amounts of artificial delays to the 
feedback line in order to improve the performance. 

Underactuated systems are the control systems with fewer 
actuators than the number of degrees-of-freedom. Examples 
of this kind of systems can be found in many applications 
such as biology, flexible-link robots, mobile robots, cars, 
aircrafts, helicopters, satellites, and underwater vehicles. As 
a specific and popular example, the cart-and-pendulum 
system is a simple underactuated robotic structure with a 
two degree-of-freedom dynamics as shown in Fig. 1. The 
cart has a control force that is applied by a DC servo motor, 
while the pendulum reacts to the motion of the cart. The 
motor is driven within a high-speed digital control loop 
using a PD controller. The pendulum is made of a simple 
slender rod and it is mounted on the cart. The position of the 
cart is monitored by an optical encoder (Encoder A in Fig.1) 
attached to the geared wheel of the cart. The angular 
position of the pendulum is also measured via another 
optical encoder (Encoder B in Fig. 1). The velocities of the 
cart and the pendulum are calculated numerically from these 
encoder signals utilizing a noise reduction filter.
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Most of the control treatments for the cart-and-pendulum 

system include geometric nonlinear control, as well as 
methods based on passivity and energy for stabilization and 
swinging up the pendulum [1, 2, 15]. Also fixed point 
backstepping method is used on the stabilization of inverted 
pendulum as an example to the special class of cascaded 
underactuated nonlinear systems [8]. In this paper, we deal 
with the trajectory tracking control for the cart while 
maintaining the pendulum in the upright position (θ = 0)  
using a full state feedback law. The operation is considered 
successful if the position of the cart follows a defined 
trajectory while keeping the angle of the pendulum as close 
to zero as possible. The treatment here starts from the initial 
equilibrium configuration with the pendulum is in the 
upright position. The fixed control law to achieve this is 
designed based on the non-delayed linear system using the 
LQR optimum control design methodology. We perform a 
componentwise system identification effort on the setup and 
obtain a relatively accurate model. This model also gives a 
reasonable simulation environment for comparison studies 
against the experimental results.   

As the crucial novelty in this study, we consider the 
feedback information with multiple time delays. Some 
earlier studies on this problem include single time delay in 
the feedback line [3, 5, 7]. The effects of a PD controller and 
a delayed P controller on the stability performance are 
compared in [3]. And in [7], the critical delay value which 
leads to the marginal stability condition is found 
experimentally. In another study, the destabilizing effect of 
time delay (which is treated as a communication delay) is 
compensated by using state estimators [5]. It’s a very 
challenging problem to determine the stability disposition of 
the delayed control of the cart-and-pendulum system when 
there are multiple delays, which are fixed but uncertain. We 
follow a recent methodology of our group, which is called 
the cluster treatment of characteristic roots (CTCR) [10, 
13, 14]. We briefly explain the key propositions of CTCR. 
Then, we verify the analytically obtained stability map on 
the cart-and-pendulum experimental setup. An interesting 
outcome of this work appears as, we observe that the 
dynamics may exhibit better performance with larger time 
delays for a fixed control logic. The contributory points of 
this paper are the stability robustness declaration in the 
domain of uncertain multiple delays, determination of the  
optimum delay values for the best tracking performance and  

the ‘scheduling of the delays’. 
The outline of the paper is as follows: In Part 2, the full 

mathematical model and the componentwise identification 
of the cart-and-pendulum system are described. Then, the 
controller for the non-delayed feedback structure is designed 
and effect of the delays on the stability is analyzed by 
utilizing CTCR in Part 3. In Part 4, the claims of this paper 
are verified experimentally on the setup with trajectory 
tracking and disturbance rejection tests. 

I. DYNAMIC  MODEL AND COMPONENTWISE SYSTEM 
IDENTIFICATION 

The nonlinear mathematical model of the cart-and-
pendulum system is adapted from [6] as: 

fricFmmxmMF +−++= θθθθ sincos)( 2�A��A��  (1) 

θθθ sincos)( 2 A��A��A mgxmTmI fric =+++  (2) 

where 
2

3
AmI =  and all the terms are described in the 

nomenclature. Considering small angular excursions for the 
pendulum, equations (1) and (2) are linearized as: 

fricFmxmMF +++= θ��A��)(  (3) 

θθ A��A��A mgxmTmI fric =+++ )( 2  (4) 

The feedback control force, F, stabilizes the pendulum at the 
upright configuration )0( =θ , which is an unstable 
equilibrium for the uncontrolled system [8]. The force (F) 
which is generated by the motor on the cart, is modeled 
considering the back-emf and the armature voltage ( inV ) as: 

xV
Rr

xnKK
Rr

nKV
F in

ettin �
�

βα −=−=
2

2
 (5) 

where α  and β  are self evident constants. 

A. Componentwise System Identification 
Motor parameters, nonlinear friction characteristics of the 

rack-pinion drive and the pendulum hub friction are 
carefully studied for a good representation of the system and 
a meaningful simulation effort. We review this study next.  

Friction between the rack and pinion is modeled as a 
combination of viscous and coulomb frictions as follows:  

cfric FxbF += �  
where Fc is the nonlinear dry friction force and it is 
defined as: 

 
(6)   

⎩
⎨
⎧

=
F

xb
Fc

)sgn(0 �
0 ,
0 ,

=
≠

x
x
�
� , Coulomb friction

,  Static friction (stiction)
 (7) 

In order to investigate the friction, we first remove the 
pendulum from the cart. The equation (3) reduces to: 

fricFxMF += ��  (8) 
Then, we apply a ramp voltage until the cart starts to move. 
At the instant the cart begins to move (i.e. 1<<= εx� ), we 
evaluate the coulomb friction force using (5) and it is equal 
to 0b .   That is,   

Fig. 1. Experimental setup. 
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0b
Rr

nKV
F

x

tin
xc ==

=
=

ε
ε

�
�  (9) 

Three additional sets of experiments are conducted on this 
setup where we apply higher F to overcome stiction while 
we are monitoring x and evaluating x� , x�� : (i) The cart pushes 
against a force transducer which is held fixed by a 
mechanical stop (thus 0=== xxx ��� ). This effort produces 
the torque constant (Kt), from (5). (ii) To determine the 
back-emf constant (Ke) and armature resistance (R), we use 
the following relation:  

Rr
nKx

R
V

I ein
m

�
−=  (10) 

where the motor current (Im), the armature voltage (Vin) and 
the cart velocity ( x� ) are measured quantities.  Ke and R are 
evaluated via the pursuant regression analysis. (iii) Several 
step function type Vin  are deployed and the cart motion is 
monitored. This exercise produces the best estimate of 
viscous friction constant (b).  

The frictional torque on the pendulum hub is modeled in a 
similar fashion to equation (6), as: 

cfric TcT += θ�  (11) 
where the coulomb friction torque, Tc, is defined 
as:  

)sgn(0 θ�cTc = , 0≠θ�  (12) 
Note that due to frictionless bearings and lubrication at the 
hub there is no discernible stiction torque. To determine c 
and c0, we lock the cart on the rack (i.e. 0=== xxx ��� ) 
while the pendulum is in the downward position (θ = π ). 
Equation (2) when linearized around πθ = reduces to: 

0~)~sgn(~
3

~4
0

2
=+++ θθθθ A����A mgccm   where  

˜ θ = θ − π  

(13) 

The equilibrium of θ = π  ( ˜ θ = 0 ) is disrupted by an 
impulsive force on the pendulum and the pendulum’s 
response is recorded. Using only the oscillation frequencies, 
damped natural frequency ( ωd ) is numerically obtained. 
The natural frequency ( ωn ) of the pendulum and the 
equivalent viscous friction constant (c) are calculated 
utilizing the following equations:  

  
ωn =

3g
4A

,     ωd = ωn 1− ς 2 ,    
  
8ωnζmA2

3
= c  (14) 

Then, the coulomb frictional torque (c0) is determined 
applying an iterative numerical tool which compares the 
actual and simulated angular motions. 
 The Table 1 displays all the dynamic parameters obtained 
for the experimental setup used for the tests. 
 

TABLE I 
SYSTEM  PARAMETER VALUES 

M 0.911 kg b0 0.16 N 

m 0.231 kg n 3.7 

l 0.32 m R 2.87 Ω 

Kt 0.00567 Nm/A r 0.55 cm 

Ke 0.00622 Vs I 0.00788 kgm2 

b 8.4 Ns/m g 9.8 m/s2 

c 0.0006 Nms/rad c0 0.0003 Nm 
 

In order to validate these parameters, we apply an 
impulsive voltage to the DC motor, and record the 
uncontrolled pendulum response starting from the 
equilibrium of pendulum at downward position, θ = π . We 
compare these recordings with the simulated behavior for 
the pendulum motion (Fig. 2). The correspondence between 
the experimental data and the simulation is very good. 

 
 

II. CONTROLLER DESIGN 
Combining equations (3,4 and 5) and considering the 

desired trajectories, xd and θd , one can obtain the state-
space representation of the error dynamics as: 

EBAee ++= inV�  (15) 

where 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
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⎣
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−
−
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θθ

��
��

d

d

d

d

xx
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e  state vector in error domain.  
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0 0 1 0
0 0 0 1
0 −3mg
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0
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A
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A

�

�
A

�

θ

θ
E  is the 

disturbance (friction) term. 

 

This is the SISO model ( Vin vs. x  or Vin vs.θ ), that we 
wish to deploy for the design of a feedback control law 
using linear quadratic regulator (LQR) optimal control 

Fig. 2. Impulse response the angle of the pendulum obtained from the 
experiment (blue) and the simulation (red). 
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method. This technique determines the feedback gain matrix 
that minimizes a linear quadratic cost function J. 

J = (eTQe + Vin
T RVin )dt

0

∞

∫  (16) 

where Q is a positive-definite real matrix and R ∈ ℜ + . The 
Q and R terms determine the relative importance of the error 
and the expenditure of the control energy, respectively. We 
make the following arbitrary selections for this study: 

Q =

4500 0 0 0
0 3000 0 0
0 0 30 0
0 0 0 30

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

 , 1=R  (17) 

Using these weighting values, the optimum state feedback 
gain vector is found from LQR as: 

K = [−67.08 −162.16 −57.87 −31.96] (18) 
with which the full state feedback control law forms as 
Vin = Ke . The practical implementation of any control law 
must also account for the actuator saturation possibility. 
Therefore, the desired trajectories xd and θd  must be 
selected within the limitations of the existing actuator. We 
perform a simulation study prior to the experiments and 
assure that this condition is satisfied. 

III. TIME DELAY EFFECT IN THE FEEDBACK  
The control gain in (18) is based on a non-delayed 

feedback setting. When the delays appear in the feedback 
loop, the trajectory tracking ability of the system is directly 
influenced. Since the controlled dynamics has to be stable in 
order to achieve a desirable tracking, we query the stability 
of the system with respect to the delays. In our system, we 
consider a delay, τ1, in the feedback line of x , x�  and another 
delay, τ2, forθ ,θ� . We rewrite the error dynamics of the 
delayed feedback system from (15) excluding the 
disturbance term E: 

)()( 21 ττ −+−+= tt eBKeBKAee 21�  (19) 
where the control law is 

Vin = K1e(t −τ1) + K 2e(t −τ 2) . 
Equation (19) represents a general class of linear-time 
invariant (LTI) multiple time delayed system (MTDS). The 
feedback gain K is separated into two segments, K1 and K2, 
as: 

K1 = [−67.08 0 −57.87 0] 
K 2 = [0 −162.16 0 −31.96] 

components of which are selected from (18). The 
characteristic equation of the dynamics in equation (19) 
becomes: 

0det),,(
2

1
21 =

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−= ∑

=

−

j

sjessCE τττ jKBAI  (20) 

Considering the presence of multiple delays, we further 
broaden the aim of this study to manipulate the time delays 
and ensure the stability. Since we can not shorten the 
existing delays due to the causality principle, ‘manipulating’ 
means to add artificial delays to the inherent delays in the 

system. This manipulation is in fact a ‘scheduling’ activity 
on the delays. For a successful delay scheduling, we need to 
determine all delay pairs which ensure the stability of the 
system. This complex problem is handled by a recent 
procedure, called the Cluster Treatment of Characteristic 
Roots (CTCR). Here, we will give only the key propositions 
of CTCR paradigm and refer the interested reader to [10, 13, 
14]. 

Proposition 1 states that equation (20) can have an 
imaginary root at s = ±ωci  (where c denotes crossing) only 
along a bounded number of hypersurfaces τ1,τ 2( )∈ ℜ 2+ . 
These hypersurfaces (or simply ‘curves’ in 2-D space) are 
indeed offspring of a manageably small number of 
hypersurfaces which are called ‘kernel hypersurfaces’. And 
kernel hypersurfaces are defined as the locus of 

{ } { } { } +ℜ∈= 2
21201021 ,,,,min ττττττ ωω cc

 for all possible 

ωc. The notation τ1,τ 2{ }ωc
declares that τ1,τ 2{ } pair causes 

a root of ωci for (20). Every point { }τ  generated by (20) 
causes the same imaginary characteristic root ωci. That is, 

?{ }ω c
holds. The loci obtained from the kernel using the 

following transformation point-by-point are called the 
‘offspring’. 

{ }
⎭
⎬
⎫

⎩
⎨
⎧

++= kj
cc ω

πτ
ω
πττ 2,2

2010 , j = 1,2,... , k = 1,2,.... (21) 

The root tendencies of each purely imaginary characteristic 
root crossing, ωci, with respect to one of the time delays is 
defined as: 

Sτ j

s

s=ω c i
=

ds
dτ j s=ωc i

= −

∂CE
∂τ j

∂CE
∂s

s=ωc i

,  i = −1,  

j = 1,2  

(22) 

The corresponding root tendency with respect to one of the 
delays is given as: 

Root Tendency = RT s=ω c i
τ j = sgn Re Sτ j

s

s=ω c i

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  (23) 

Proposition 2 states that the root tendency at a crossing 
frequency, ωc, caused by a delay pair { }2010 ,ττ on the kernel 
hypersurface is invariant when one of the delays is fixed. 
That means, the imaginary root always crosses either to 
unstable right half plane (for RT = +1) or to the stable left 
half plane (for RT = −1), when one of the delays is kept 
fixed, and the other one skipped from one offspring to the 
next, regardless of the actual time delays as long as they are 
derived from the same kernel τ10,τ 20{ } point. These 
tendencies will give the complete stability switching regime 
for all the offspring curves. 
 Following the structured steps described in [13], we 
obtain the complete and exhaustive ‘stability map’ of the 
system within the 0 < τ1 < 180ms and 0 < τ 2 < 170ms 
region (see Fig. 3). The shaded regions are stable operating 
points.  
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IV. EXPERIMENTAL WORK 
The stability features of the system as depicted in Fig. 3 

are validated in this section. The digital control features are: 
sampling speed is 1 kHz, inherent delay within the system 
(from sensing to actuation) is 7 ms, that is, the control loop 
has a minimum 7 ms unavoidable delay. The resolution of 
the angular motion (θ) is 0.088° which is the capability 
obtained by a 4096 pulses/rev encoder. With another 
identical encoder, we obtain the cart position ( x ) with a 
resolution of 23 μm. A filtered differentiator whose 
bandwidth is much larger than the system bandwidth is 
utilized for the cart velocity ( x� ) and the pendulum angular 
velocity (θ� ) calculations. Note that the actuator is expected 
to remain within its linear range and without an occurrence 
of saturation for all experiments. 
We performed two sets of experiments on this system. 
 

A. Trajectory Tracking Tests 
The desired cart trajectory is taken as 

xd (t) = 10sin(0.1πt) cm  (24) 
while performing a regulation on θ (that is, θd = 0). The 
steady-state tracking performances are obtained for two 
stable test points T1 ( ms 7,ms 7 21 == ττ ) and T2 

( ms 48,ms 54 21 == ττ ) (see Fig. 3). The corresponding 
experimental results are shown in Fig. 4 for T1 and in Fig. 5 
for T2.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4a displays a very good tracking ability of the cart 

motion. Notice that at the peak points of the actual position 
trajectory, there are some small fluctuations due to stick-slip 
motion between the rack and the driver pinion. The pinion is 
sliding in a jerky fashion because of the stiction force. Fig. 
4b shows small angular errors within the bounds of ±2 times 
the resolution of the optical sensor. Figs. 5a, b are displaying 
the similar comparative picture between the evaluated and 
measured quantities but for much larger delays. These two 
cases represent the stable tracking, while a selection of 
(τ1,τ 2)  in an unstable region of Fig. 3 causes instability (not 
shown here).  

The conclusion one can reach, is that if the feedback lines 
have some unavoidable delays, we can purposely increase 
them to bring the operating point to within the stable 
(shaded) zone of Fig. 3. This is what we call the ‘delay 
scheduling’ strategy [9, 11]. 

B. Disturbance Rejection Tests 
On this stability map, we also check the control performance 
variations. The dominant time constant γdominant of the system 
is directly related to the disturbance rejection speed:  

γ dominant =
1

ℜe(sdominant )
 

(25) 

where sdominant is the rightmost characteristic root of the 
system. A numerical code [16] is used to find the rightmost 
characteristic root for a given point in (τ1,τ 2)  space. For 
point T1 ( ms 7,ms 7 21 == ττ ), the real part of the rightmost 
pole is found at -2.75 while for point T2 

( ms 48,ms 54 21 == ττ ), it is at -3. This implies that for this 
delayed feedback structure; the settling time gets even better 
by increasing the delays from T1 to T2. Otherwise said, we 
can reschedule the delays to enhance the control 
performance without changing the control law. This is 
probably the most impressive utilization of CTCR in 
practice. 
 The trajectory tracking operation using the delays at point 
T2, is tested next, from the disturbance rejection perspective. 
For these tests, we disrupt the controlled tracking operation 
in two different ways:  

1st type of disturbance:  An impulsive torque is 
applied on the DC motor while it is following the desired 
trajectory.  

2nd type of disturbance: A small impulsive force is 
executed on the pendulum while the cart is following the 

Fig. 3.  The complete stability map of the multiple time-delayed 
 cart-pendulum system in the domain of the delays. 

Fig. 4. Experimental results for point T1 ( ms 7,ms 7 21 == ττ ). 

(b) Angle (θ) variation during 
the trajectory tracking. 

(a) The desired trajectory (blue), 
 actual trajectory (red) and the 

tracking error (green) of the cart. 

Fig. 5. Experimental results for point T2 ( ms 48,ms 54 21 == ττ ). 

(b) Angle (θ) variation during 
the trajectory tracking. 

(a) The desired trajectory (blue), 
 actual trajectory (red) and the 

tracking error (green) of the cart. 
T2 

T1 

τ1 = 7 ms 

 

τ2  = 7
 m

s 
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desired trajectory. In both cases, the settling times should be 
identical, since the rightmost poles remain unchanged. 
 
 

 
 
 
 
 
 
 

 
 

 
 
 
 
 
 

 
 
 
 
 
 
 δ1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

In Fig. 6, for ( ms 48,ms 54 21 == ττ ) delay pair, the 
disturbance rejection responses in angle and position are 
shown for both type of disturbances. For the 1st and 2nd 
disturbance types, the simulation results are also obtained 
and shown in Fig. 7. The behaviors match very closely, 
which again demonstrate the reliability of the model used. 
Note that, the steady state oscillations in the simulation 
responses are due to trajectory tracking and nonlinear 
friction model. 

V. CONCLUSION 
Trajectory tracking of an underactuated LTI-MTDS is 
studied. Multiple time delays are considered in the feedback 
line. First, the cart-and-pendulum system has been modeled 
and the relevant componentwise identification tests are 
carried out. Second, a stability analysis for the controlled 
system is done utilizing a recent procedure called CTCR. 
We show that the delays can be increased for an improved 
control performance based on the stability map obtained 
with CTCR in the domain of delays. The confidence with 
this claim and the fidelity of the mathematical model utilized 
are also shown experimentally. It’s observed that trajectory 
tracking can still be successful for some larger delays while 
improving the disturbance rejection capabilities of the 
system. 

REFERENCES 
[1] Angeli, D.: ‘Almost global stabilization of the inverted pendulum via 

continuous state feedback’, Automatica, 2001, Volume 37,  Issue 7, 
Pages 1103-1108.  

[2] Astrom, K.J., Furuta, K.:  ‘Swinging up a pendulum by energy 
control’, Automatica, 2000, 36 287-295. 

[3] Atay, F.M.: ‘Balancing the inverted pendulum using position 
feedback’, Applied Mathematics Letters, 1999, 12, 51-56. 

[4] Brock, S.: ‘Identification of the parameters in inverted pendulum 
model’, 7th International Workshop on Advanced Moion Control; 
proceedings, 2002. 

[5] Casavola, A., Mosca, E., Papini, M.: ‘Predictive teleoperation of 
constrained dynamic systems via internet-like systems’, IEEE 
Transactions on Control Systems Technology, 2006, 14 (4), pp. 
681-694. 

[6] Franklin, G.F., Powell, J.D., Naeni, A.E.: ‘Feedback control of 
dynamic systems’ (Prentice Hall, 2002, 3rd edn.). 

[7] Landry, M., Campbell, S.A., Morris, K., Aguilar, C.O.: ‘Dynamics 
of inverted pendulum with delayed feedback control’, SIAM 
Journal of Applied Dynamical Systems, 2005, Vol. 4, No.2, pp.333-
351. 

[8] Olfati-Saber, R.: ‘Fixed Point Controllers and Stabilization of the 
Cart-pole System and the Rotating Pendulum’, Proceedings of the 
IEEE Conference on Decision and Control 2, 1999, p 1174-1181.  

[9] Olgac, N., Ergenc, A.F., Sipahi, R.: ‘ ‘Delay scheduling’: a new 
concept for stabilization in multiple delay systems’, Journal of 
Vibration and Control, 2005,     v 11, n 9, p 1159-72. 

[10] Olgac, N., Sipahi, R.: ‘An exact method for the stability analysis of 
time-delayed LTI systems’, IEEE Transactions on Automatic 
Control, 2002, 47(5), 793-797. 

[11] Olgac, N., Sipahi, R., Ergenc, A.F.: ‘'Delay scheduling', an 
unconventional use of time delay for trajectory tracking’, 
Mechatronics, 2007, 17 (4-5), pp. 199-206.   

[12] Rao, S.S.: ‘Mechanical Vibrations’, (Addison-Wesley, 1995, 3rd 
edn.)  

[13] Sipahi, R., Olgac, N.: ‘Complete stability robustness of third-order 
LTI multiple time-delay systems’, Automatica, 2005, v 41, n 8, p 
1413-22. 

[14] Sipahi, R., Olgac, N.:  ‘A unique methodology for the stability 
robustness of multiple time delay systems’, Systems & Control 
Letters, 2006, (55) 819 – 825. 

[15] Spong, M.W.: ‘Energy based control of a class of underactuated 
mechanical systems’, Proceedings of the 13th World Congress, 
International Federation of Automatic Control. Vol.F. Nonlinear 
Systems II, 1997, 431-5. 

[16] Vyhlídal, T. and Zítek, P.: ‘Quasipolynomial mapping based 
rootfinder for analysis of time delay systems’, Proc IFAC 
Workshop on Time-Delay Systems, TDS’03, 2003. 

[17] Zhao Jun, and Spong, M.W.: ‘Hybrid control for global stabilization 
of the cart-pendulum system’, Automatica, 2001, 37(12):1941-
1951. 

 

(a) (b) 

(c) (d) 
Fig. 6. For point T2 ( ms 48,ms 54 21 == ττ ) 

Experimental response of (a) angle and (b) tracking error for the 1st type of 
disturbance (δ1). 

Experimental response of (c) angle and (d) tracking error for the 2nd type of 
disturbance (δ2). 

(a) (b) 

(c) (d) 
Fig. 7. For point T2 ( ms 48,ms 54 21 == ττ ) 

Simulation response of (a) angle and (b) tracking error for the 1st type of 
disturbance (δ1). 

Simulation response of (c) angle and (d) tracking error for the 2nd type of 
disturbance (δ2). 
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