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Abstract— This paper investigates development of Fault De-
tection and Isolation (FDI) filters for neutral time-delay systems.
A bank of residual generators is designed such that each
residual is affected by one fault and is decoupled from the
others while the H∞ norm of the transfer function between the
disturbance and the residual signals are less that a prespecified
value. Simulation results presented in the paper demonstrate
the effectiveness of our proposed FDI algorithm.
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I. INTRODUCTION

Modern control systems are becoming increasingly more

complex and issues of availability, efficiency, reliability,

operating safety, and environmental protection concerns are

receiving more attention. This requires a fault diagnosis

system that is capable of reliably detecting plant, actuator

and sensor faults when they occur, and of identifying and

isolating the faulty component in the system. In the past

three decades, a number of fundamental results on fault

detection and isolation (FDI) have been developed [1]–[14].

However, limited results exist on designing FDI strategies for

time-delay systems. Time-delay is an inherent characteristic

of many physical systems, such as rolling mills, chemical

processes, water resources, biological, economical and traffic

control systems, to name a few. In this paper, we investigate

development and design of a fault detection and isolation

scheme for neutral time-delay systems.

In recent years, only a few results on FDI of time-delay

systems have been developed. In [15], [16], an unknown

input observer (UIO) is designed for FDI and [17] pro-

posed a robust UIO approach for uncertain retarded time-

delay systems with bounded uncertainty. In this work, some

assumptions on the system structures are considered. Both

approaches are based on determining a suitable state trans-

formation and designing a reduced order observer for the

transformed system. Parity space approach is also developed

in [18] for fault detection of time-delay systems. In [19]–

[25], a robust fault detection problem for linear retarded time-

delay systems is investigated by solving an H∞ optimization

problem. In this approach one attempts to keep the sensitivity

of the residual signal to unknown inputs (disturbances) less
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than a specific bound while increase the sensitivity of the

residual signal to the fault over the frequency range of

the fault. In [26]–[28], an adaptive observer approach is

developed for estimating the fault signal in retarded time-

delay systems. However, FDI problem for the neutral time-

delay systems has only been investigated in [29] where the

H∞ filter approach is used for robust FDI of neutral time-

delay systems.

In this paper, a set of residuals that are based on the

dedicated residual scheme [6], [12] is generated by gener-

alizing the geometric FDI results in [6] to neutral time-delay

systems. The notion of a common unobservability subspace

is introduced for neutral time-delay systems and an algorithm

for constructing the smallest common unobservability sub-

space containing a given subspace is also proposed. Based

on the developed geometric framework, a set of residuals

is generated such that each residual is affected by one fault

and is decoupled from others. At the same time the effects

of disturbances on the residuals are attenuated by using an

H∞ optimization technique and the LMI approach is used

for solving this optimization problem. The main contribution

of this work is in developing a geometric FDI framework for

linear neutral time-delay systems.

The remainder of this paper is organized as follows.

In section II, a brief background on geometric properties

of linear systems and an H∞ control for neutral time-

delay systems are reviewed. The problem formulation and

framework of our proposed fault detection and isolation

strategy are presented in section III. In section IV, a robust

fault detection and isolation strategy for time-delay systems

is presented. In section V, the effectiveness and capabilities of

our proposed algorithm are shown through simulation results.

Conclusions and future work are presented in section VI.

The following notation is used throughout this paper.

Script letters X ,U ,Y, ..., denote real vector spaces. Ma-

trices and linear maps are denoted by capital italic letters

A,B,C, ...; the same symbol is used both for a matrix and

its map; the zero space, zero vector ,..., are denoted by 0.

B = Im B denotes the image of B; Ker C denotes the kernel

of C. If a map C is epic, then C−r denotes a right inverse

of C (i.e., CC−r = I)). A subspace S ⊆ X is termed A-

invariant if AS ⊆ S . For A-invariant subspace S ⊆ X , A : S
denotes the restriction of A to S, and A : X/S denotes the

map induced by A on the factor space X/S. For a linear
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system (C,A, B), < Ker C|A > denotes the unobservable

subspace of (C,A).

II. BACKGROUND

Consider the linear system

Σ :

{

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

where x ∈ X is the state of the system with dimension n,

u ∈ U , y ∈ Y are input and output signals with dimensions

m and q, respectively.

Definition 1: A subspace S is a (C, A) unobservability

subspace (u.o.s.) [3] if S =< Ker HC|A + DC > for some

output injection map D : Y → X and measurement mixing

map H : Y → Y .

Given an u.o.s. S, a measurement mixing map H can be

computed from S by solving the equation KerHC = KerC+
S. Let D(S) denote the class of all maps D : Y → X such

that (A + DC)S ⊆ S . The notation S(L) refers to the class

of (C, A) u.o.s. containing L ⊆ X . The class of u.o.s. is

closed under intersection; therefore, it contains an infimal

element S∗ = inf S(L). In [6] an algorithm for computing

S∗ is proposed.

Given the matrices Ai, i = 0, ..., N and C, a subspace

S0,...,N is called a common u.o.s. for the pairs (C, Ai), i =
0, ..., N if

S0,...,N =< Ker HC|Ai + DiC >, i = 0, ..., N (1)

The notation S0,...,N (L) refers to a common u.o.s. con-

taining L ⊆ X . The following algorithm can be used for

finding the smallest common u.o.s. S(0,...,N)∗(L) for the

pairs (C, Ai), i = 0, ..., N containing L

CUOS :

{

S0 = X
Sk = W∗ + (∩N

i=0A
−1
i Sk−1) ∩ Ker C

where S(0,...,N)∗(L) = lim Sk and W∗ = lim Wk where

Wk can be obtained from the following algorithm

1) W0 = L
2) Wk = Wk−1 +

∑N

i=0 Ai(Wk−1 ∩ Ker C)

For details see [3], [30] and [31].

Let S ⊂ X be an u.o.s. , i.e., S =< Ker HC|A+D0C >,

then the factor system of Σ which is denoted by Σ : X/S
is defined as

Σ : X/S

{

ẋ(t) = ASx(t) + BSu(t)
y(t) = CSx(t)

where AS = A + D0C : X/S, BS = PB, CS is the unique

solution of CSP = HC, D0 ∈ D(S) and P : X → X/S is

the canonical projection.

In the following, certain results on H∞ disturbance atten-

uation of neutral time-delay systems are presented. Consider

a linear time-delay system

ẋ(t) = A0x(t) + A1x(t − h) + A2ẋ(t − d) + Dd(t)

y(t) = Cx(t)

x(θ) = 0 ∀θ ∈ [−τ, 0] (2)

where d(t) represents the unknown input vector including

modeling errors and uncertain disturbances. Without loss of

generality, it is assumed that d is L2-norm bounded. The

next theorem provides a sufficient condition for asymptotic

stability of system (2) while the H∞ norm of the transfer

function between the disturbance d and the output signal y
is less that a given positive value γ.

Theorem 2.1: Given γ > 0 and the time-delay system (2),

if there exist positive-definite matrices R, Q1 and Q2 such

that the following inequality is satisfied









RA0 + AT
0 R + AT

0 Q1A0 + Q2 + CT C RA1 + AT
0 Q1A1

∗ AT
1 Q1A1 − Q2

∗ ∗
∗ ∗

RA2 + AT
0 Q1A2 RD + AT

0 Q1D
AT

1 Q1A2 AT
1 Q1D

AT
2 Q1A2 − Q1 AT

2 Q1D
∗ −γ2I + DT Q1D









< 0 (3)

then system (2) is asymptotically stable and its L2 gain is

not greater than γ, i.e.

∫ ∞

0

yT (t)y(t)dt ≤ γ2

∫ ∞

0

dT (t)d(t)dt ∀d(t) ∈ L2[0,∞]

(4)

Proof: Define a difference operator D as D(φ) =
φ(0) − A2φ(−d), then according to inequality (3), we have

AT
2 Q1A2−Q1 < 0. Hence the operator D is stable. Let V (t)

be a Lyapunov-Krasovskii functional of the form V (t) =
V1(t) + V2(t) + V3(t) [32] where

V1(t) = xT (t)Rx(t)

V2(t) =

∫ 0

−d

ẋT (t + s)Q1ẋ(t + s)ds

V3(t) =

∫ 0

−h

xT (t + s)Q2x(t + s)ds

The asymptotical stability can be shown according to

Theorem 2 in [32]. Define an associated Hamiltonian

H(xt, d(t), t) as follows:

H(xt, d(t), t) = V̇ (xt) + yT (t)y(t) − γ2dT (t)d(t) (5)

It is sufficient [33] to show that under zero initial conditions

H(xt, d(t), t) < 0. It can be shown through some algebraic

manipulations:

H(xt, d(t), t) ≤ ηT (t)Φη(t)

where ηT (t) = [x(t)T , x(t − h)T , ẋT (t − d), dT (t)] and

Φ is the matrix in inequality (3) (the details are omitted

due to space limitations). Therefore, Φ < 0 leads to

H(xt, d(t), t) < 0 and hence the inequality (4) holds. ¥
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Using the Schur complement, the inequality (3) can be

rewritten as












RA0 + AT
0 R + Q2 + CT C RA1 RA2

∗ −Q2 0
∗ ∗ −Q1

∗ ∗ ∗
∗ ∗ ∗

RD + AT
0 Q1D AT

0 Q1

AT
1 Q1D AT

1 Q1

AT
2 Q1D AT

2 Q1

−γ2I + DT Q1D 0
∗ −Q1













< 0 (6)

which is in an LMI form.

III. PROBLEM FORMULATION

Consider the following linear neutral time-delay system

ẋ(t) = A0x(t) + A1x(t − h) + A2ẋ(t − d) + B0u(t)

+
L

∑

j=1

Bju(t − τuj) +
k

∑

l=1

Llml(t) + Dd(t)

y(t) = Cx(t) (7)

with the continuous initial condition x(θ) = φ(θ), θ ∈
[−τ, 0] where x ∈ X is the state of the system with

dimension n, u ∈ U , y ∈ Y are input and output signals

with dimensions m and q, respectively, mi ∈ Mi are the

fault modes with dimension ki, Li’s are fault signatures and

τ = max{h, d}. The fault modes together with the fault

signatures may be used to model the effects of actuator

faults, sensor faults and system faults on the dynamics of

the system. For modeling a fault in the i-th actuator, Li =
[b0i, b1i, ..., bLi] and the fault mode mi is chosen to model

the type of a fault where bji, j = 0, ..., L denote the i-th
column of matrices Bj , j = 0, ..., L. For example a complete

failure of an actuator can be represented and modeled by

mi(t) = [−ui(t),−ui(t−τu1), ...,−ui(t−τuL)]T . A system

fault can be represented by a potential variation in the

parameters of the A0, A1 and A2 matrices as shown below:

ẋ(t) =(A0 + ∆A0)x(t) + (A1 + ∆A1)x(t − h)

+ (A2 + ∆A2)ẋ(t − d) + B0u(t) +
L

∑

j=1

Bju(t − τuj)

y(t) =Cx(t)

As an example, a change in the i-th row and j-th column of

matrix A2 can be modeled as ∆A2ẋ(t−d) = Ii∆a2
ij

ẋj(t−

d) where xj is the j-th element of the vector x and Ii is an

n-dimensional vector with all zero elements except one in

the i-th element. Define the signal mi(t) , ∆a2ij
ẋj(t − d)

as an external input and fault signature Li = Ii, then this

fault can be modeled as in equation (7).

It should be noted that sensor faults can initially be

modeled as additive inputs in the measurement equation

y = Cx+
∑q

j=1 Ejnj where Ej is an q×1 unit vector with

a one at the j-th position and nj ∈ R is a sensor fault mode,

which corresponds to a fault in the j-th sensor. For example,

a complete failure of the j-th sensor can be represented and

modeled by nj = −cjx where cj is the j-th row of the

matrix C. The sensor fault signature can also be modeled as

an input to the system [6], [9] and [34]. Following [9], let fj

be the solution to Ej = Cfj . The new states can be defined

according to x̄(t) = x(t) +
∑q

j=1 fjnj(t), where the state

space representation for the new states can be written as

˙̄x(t) = A0x̄(t) + A1x̄(t − h) + A2x̄(t − d) + B0u(t)

+
L

∑

j=1

Bju(t − τuj) +

q
∑

j=1

Ljmj(t)

y(t) = Cx̄(t)

(8)

where Lj =
[

fj A0fj A1fj A2fj

]

and mj(t) =
[ṅj(t),−nj(t),−nj(t − h),−ṅj(t − d)]T .

We are now in a position to formally introduce the robust

fault detection and isolation problem considered in this paper.

IV. ROBUST FAULT DETECTION AND ISOLATION OF

NEUTRAL TIME-DELAY SYSTEMS

The Robust Extended Fundamental Problem in Residual

Generation (REFPRG) for the neutral time-delay system (7)

is to design a set of filters that generate k residuals ri(t)
such that a fault in the i-th component Li can only affect

the residual ri(t) and no other residual rj(t) (i 6= j) and

∫ ∞

0

rT
i (t)ri(t)dt ≤ γ2

∫ ∞

0

dT (t)d(t)dt, i = 1, ..., k (9)

Specifically, the residual signals ri(t) are generated accord-

ing to the following filters:

ẇi(t) =Fi0wi(t) + Fi1wi(t − h) + Fi2ẇi(t − d)

− Ei0y(t) − Ei1yi(t − h) − Ei2ẏi(t − d)

+ Kiu(t) +
L

∑

j=1

Kiju(t − τuj)

ri(t) = Miwi(t) − Hiy(t) (10)

which has a similar structure as an observer that is considered

in [32] and [35].

The following theorem summarizes our proposed strategy.

Theorem 4.1: The REFPRG problem defined by expres-

sions (9) and (10) has a solution for the linear neutral

time-delay system (7) if there exist the following common

unobservability subspaces

Si = S(0,1,2)∗(
∑

j 6=i

Lj), i = 1, ..., k (11)

such that Li ∩ Si = 0, i = 1, ..., k as well as the matrices

Ti0, Ti1, Ti2, i = 1, ..., k and positive-definite matrices Ri,

and Qi, i = 1, ..., k such that the inequality (12) holds where

Pi is the canonical projection of X on X/Si, DS = −PiD
and the pairs (MSi

, A0Si
), (MSi

, A1Si
), (MSi

, A2Si
) are the

factor system of the pairs (C, A0), (C,A1) and (C,A2) on

X/Si, respectively.

3295















RiA0Si
+ AT

0Si
Ri + Ti0MSi

+ MT
Si

TT
i0 + MT

Si
MSi

+ Qi RiA1Si
+ Ti1MSi

∗ −Qi

∗ ∗
∗ ∗
∗ ∗

RiA2Si
+ Ti2MSi

RiDS + AT
0Si

RiDS + MT
Si

TT
i0DS AT

0Si
Ri + MT

Si
TT

i0

0 AT
1Si

RiDS + MT
Si

TT
i1DS AT

1Si
Ri + MT

Si
TT

i1

−Ri AT
2Si

RiDS + MT
Si

TT
i2DS AT

2Si
Ri + MT

Si
TT

i2

∗ −γ2I + DT
SRiDS 0

∗ ∗ −Ri













< 0 (12)

Proof: Given the unobservability subspaces Si, there exist

output map injections Di0,Di1,Di2 and measurement mix-

ing map Hi such that

Si =< Ker HiC|A0 + DijC >, j = 0, 1, 2

where Hi is the solution to Ker HiC = Si + Ker C and

is common for all Ai’s. Let MSi
be a unique solution to

MSi
Pi = HiC and A0Si

= (A0 + Di0C : X/Si), A1Si
=

(A1 + Di1C : X/Si), A2Si
= (A2 + Di2C : X/Si) where

Pi(Aj + DijC) = AjSi
Pi, j = 0, 1, 2 (13)

Define Gi0 = R−1
i Ti0, Gi1 = R−1

i Ti1 and Gi2 = R−1
i Ti2

where Ti0, Ti1, Ti2 and Ri are the solution to the inequality

(12). Let Fi0 = A0Si
+ Gi0MSi

, Fi1 = A1Si
+ Gi1MSi

,

Fi2 = A2Si
+ Gi2MSi

and Ei0 = Pi(Di0 + P−r
i Gi0Hi),

Ei1 = Pi(Di1 + P−r
i Gi1Hi), Ei2 = Pi(Di2 + P−r

i Gi2Hi)
and Mi = MSi

, Ki = PiB0, and Kij = PiBj , j = 1, ..., L.

Define ei(t) = wi(t) − Pix(t), then using (10) we have

ėi(t) = Fi0wi(t) + Fi1wi(t − h) + Fi2ẇi(t − d)

− Ei0y(t) − Ei1yi(t − h) − Ei2ẏi(t − d)

+ Kiu(t) +
L

∑

j=1

Kiju(t − τuj)

− Pi(A0x(t) + A1x(t − h) + A2ẋ(t − d) + B0u(t)

+
L

∑

j=1

Bju(t − τuj) +
k

∑

l=1

Llml(t) + Dd(t))

= Fi0wi(t) + Fi1wi(t − h) + Fi2ẇi(t − d)

− Pi(A0 + Di0C)x(t) − Gi0MiPix(t)

− Pi(A1 + Di1C)x(t − h) − Gi1MiPix(t − h)

− Pi(A2 + Di2C)ẋ(t − d) − Gi2MiPiẋ(t − d)

− PiLimi(t) − PiDd(t)

= Fi0ei(t) + Fi1ei(t − h) + Fi2ėi(t − d)

− PiLimi(t) − PiDd(t)

Note that PiLj = 0, j 6= i, since Lj ∈ Si, j 6= i. Also

ri(t) = Miwi(t) − Hiy(t) = Miwi(t) − HiCx(t)

= Miei(t)

Consequently, the error dynamics can be written as

ėi(t) =Fi0ei(t) + Fi1ei(t − h) + Fi2ėi(t − d)

− PiLimi(t) + DSd(t)

ri(t) =Miei(t) (14)

Using Theorem 2.1 by restricting Q1 = R and the inequality

(12), it follows that the inequality (9) holds and the operator

D = φ(0) − Fi2φ(−d) is also stable. Moreover, from the

error dynamics (14), it follows that ri(t) is only affected by

Li and is decoupled from other fault signatures. ¥

The generic conditions for existence of the unobservability

subspaces of Theorem 4.1 can be stated as follows.

Proposition 4.2: Let Ai, i = 0, 1, 2, C and Li be arbitrary

matrices of dimensions n×n, q×n and n×ki, respectively.

Let v =
∑k

i=1 ki. The unobservability subspaces of Theorem

4.1 generically exist if and only if (a) v ≤ n and (b) v −
min{ki, i = 1, ..., k} < q

Proof: The proof is the same as in the EFPRG problem for

linear systems [6] and is omitted due to space limitations. ¥

After constructing the residual signals ri(t), i = 1, ..., k,

the last step is to determine the threshold Jthi
and the evalu-

ation function Jri
(t). In this paper, the following evaluation

functions and thresholds are selected

Jri
(t) =

∫ t

t−T0

rT
i (t)ri(t)dt, i = 1, ..., k (15)

Jthi
= sup

d∈L2,mj=0,j=1,...,k

(Jri
), i = 1, ..., k (16)

where T0 is the length of the evaluation window. Based on

the above thresholds and evaluation functions, the occurrence

of a fault can be detected and isolated by using the following

decision logics

Jri
(t) > Jthi

=⇒ mi 6= 0, i = 1, ...., k (17)

V. NUMERICAL EXAMPLE

To illustrate the effectiveness and capabilities of our pro-

posed FDI algorithm, a numerical example is provided in this

section. Consider the time-delay system (7) that is specified
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with parameters

A0 =









2 −1.5 1 1
1 −1 0.5 2
1 2 −3 0
2 0 −1 1









, B0 =









1 0
1 1
1 1
0 1









A1 =









−1 2 0.2 0
−0.1 1.3 0.5 1
0.1 −1 2 0.1
1 0.1 1 2









, C =





1 1 0 0
0 0.2 1 0
0 0 0 1





A2 =









0.1 0 0.0 0.1
0.2 −0.1 0.2 0.3
0.4 0.3 0.4 0.1
−0.1 0 0.2 0.3









,D =









0.3
0.2
0

0.6









, B1 = 0

and h = 2, d = 1 and L = 0. The fault signatures L1 and L2

are selected as the first and second columns of the matrix B0,

and hence they represent actuator faults for the time-delay

system.

The subspaces in Theorem 4.1 for the above time-delay

system can be determined using the CUOS algorithm and are

given by S1 = L1,S2 = L2. After determining the subspaces

S1 and S2, the maps Di0, Di1, Di2,Hi, Mi, i = 1, 2 and

matrices A0S1
, A1S1

, A2S1
, A0S2

, A1S2
, A2S2

can be found

according to Theorem 4.1. Using the LMI tools, the gain

matrices G10, G11, G12, G20, G21 and G22 are computed by

solving the LMI inequality (12) for γ = 1. An H∞ robust

state feedback control u(t) = Kx(t) is also designed for the

closed-loop system to ensure its stability.

A disturbance input d(t) is assumed to be a band-limited

white-noise with power of 0.2. The thresholds are calculated

as Jth1
= 0.06 and Jth2

= 0.07 for T0 = 5 seconds.

Figure 1 shows the residuals and their evaluation functions

corresponding to the healthy operation of the system. As

shown in this figure, no false alarm is generated during

normal operation of the system. Figure 2 shows the residuals

and the evaluation functions corresponding to a fault in the

second actuator (u2) of the system where the gain of the

actuator is decreased by 55% at t = 10 seconds. This type

of fault can be modeled as m2(t) = −0.55u2(t), where

m2(t) is the fault mode of the second actuator. As shown

in this figure, the fault is detected and isolated at t = 13.3
seconds and the evaluation function of residual r1 (i.e. J(r1))
remains below its corresponding threshold. Figure 3 shows

the residuals and evaluation functions corresponding to a

fault in the first actuator where the gain of the actuator

is decreased by 40% at t = 10 seconds. This fault can

be modeled as m1(t) = −0.4u1(t), where m1(t) is the

fault mode of the first actuator. As shown in this figure,

this fault is detected and isolated at t = 14 seconds and

the evaluation function of r2 (i.e. J(r2)) remains below its

corresponding threshold. Figure 4 shows the residuals and

the evaluation functions corresponding to simultaneous faults

in both actuators where 40% loss of effectiveness (gain) is

occurred in the first actuator at t = 5 seconds and 50%
loss of effectiveness is occurred in the second actuator at

t = 10 seconds. According to this figure, the fault in the

0 50
−0.4

−0.2

0

0.2

t(s)

r 1

0 50
0

0.02

0.04

0.06

0.08

t(s)

J r 1

0 50
−0.5

0

0.5

t(s)

r 2

0 50
0

0.02

0.04

0.06

0.08

t(s)

J r 2

Fig. 1. Residual signals and their evaluation functions corresponding to
the normal mode (healthy operation).
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Fig. 2. Residual signals and their evaluation functions corresponding to a
fault in the second actuator.

first actuator is detected at t = 7.7 seconds and the fault

in the second actuator is detected at t = 13.5 seconds. It

should be noted that in all above scenarios the time-delay

system remains stable and well-behaved, which makes the

FDI problem more challenging.

Remark: It should be emphasized that the presently avail-

able FDI algorithm for neutral time delay systems [29] can-

not generate the residual signals with the above decoupling

properties. In [29], faults that one needs to be decoupled are

considered as unknown inputs and the algorithm seeks to

attenuate the effects of faults on the residual. Therefore, those

type of algorithms cannot decouple fault effects from the

residuals. However, in our proposed approach, the residual

signals that can decouple the faults from each other and are

robust with respect to disturbances are constructed where

one can easily use these residuals for both fault detection

and isolation.

VI. CONCLUSIONS

A geometric approach to fault detection and isolation of

faults in linear neutral time-delay systems is developed in

this paper. The set of residual signals are generated so that

each residual is only affected by one fault and is decoupled

from the others while the H∞ norm of the transfer function

between the unknown input (disturbances and modeling

errors) and residual signals is less than a given positive
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Fig. 3. Residual signals and their evaluation functions corresponding to a
fault in the first actuator.
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Fig. 4. Residual signals and their evaluation functions corresponding to
simultaneous faults in both actuators.

value. Simulation results demonstrate the effectiveness of our

proposed method.
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