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Abstract— The problem of designing an adaptive robust
H∞ dynamic output feedback controller for uncertain linear
systems is considered. The uncertainties are assumed to be
time-varying, unknown, but bounded, which appear affinely in
the matrices of system model. Based on the online estimations
of uncertain parameters, a robust dynamic output feedback
controller with variable gains is constructed to compensate the
effect of uncertainty on systems. An adaptive mechanism is
introduced to estimate uncertain parameters according to the
designed adaptive laws and to enhance system performance.
New sufficient conditions with less conservativeness than those
of traditional robust controllers are also derived to guarantee
the stability and H∞ performance of the closed-loop systems.
A numerical example is given to illustrate the effectiveness of
the proposed method.
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back; linear matrix inequalities (LMIs); indirect adaptive
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I. INTRODUCTION

In many applications, modeling errors and system uncer-

tainties in the plant model are inevitable. For preciseness, a

design technique must accommodate these errors and uncer-

tainties to be practically feasible. In the past few decades,

much research works have been focused on the robust control

of linear systems with parameter uncertainties. A particular

uncertainty representation is called norm bounded uncer-

tainty, where the mathematical model of the uncertain system

explicitly exhibits a nominal model located at the center of

the hyper ellipsoid of uncertainty in the parameter space.

Riccati equation approaches have been proposed for linear

systems subject to norm-bounded parameter uncertainty in

the state-space model [17], [18] [23] and [24]. Another

uncertain representation is convex polytopic uncertainty [7].

Recently, system with polytopic-type parameter uncertainty

have been treated in [3], [12], [15], [16] using linear matrix

inequality (LMI) methodologies, which are computationally
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simple and numerically reliable for solving convex optimiza-

tion problems [2], [4]-[6], [9] and [20]. However, most of

the above-mentioned works are about robust state feedback

control of uncertain linear systems, where the system state

is assumed to be measurable. Thus, a severe restriction is

imposed on the class of systems to which they are applicable.

Recently, some attempts have been made to design robust

dynamic output feedback controllers [10], [11], [13], [21],

[22], [24] either for norm bounded uncertainty or poly-

topic uncertainty. For continuous-time linear systems with

polytopic uncertainty, the resultant necessary and sufficient

conditions are generally represented in terms of bilinear

matrix inequalities (BLMIs) and are nonconvex for most

design objectives. Only sufficient conditions can be derived

for computing dynamic output feedback control laws using

convex optimization method. In [10], a locally optimal

dynamic output feedback controller is proposed based on

iterative algorithm. An initial feasible robust output-feedback

controller is obtained by a two-step procedure, which pro-

poses a convex optimation design method for traditional

robust output feedback controller with fixed gain.

Adaptive method is one of the effective method to deal

with parameter uncertainty [1] and [8]. They rely on the

potential of adjustments of uncertain parameters to assure

stability of closed-loop systems. Most of the results in

adaptive robust control are based on model reference adaptive

control (MRAC)[14], [19], [25], where the outputs of closed-

loop systems can track the pre-described referent outputs.

Unfortunately, this adaptive method is not easily extended to

treat performance tasks such as H2/H∞ indexes when the

external disturbance exists.

In this paper, we proposed a novel robust H∞ dynamic

output feedback controller design method for uncertain lin-

ear continuous-time systems. The uncertainties are assumed

to be time-varying, unknown, but bounded, which appear

affinely in the matrices of system model. By the introduc-

tion of adaptive mechanism, the designed controller gains

are variable and online adjusting based on estimation of

uncertain parameters. Due to the successful combination

between indirect adaptive method and LMI approach, suf-

ficient conditions with less conservativeness than those of

traditional robust controller are derived. The effectiveness

of the proposed approach is demonstrated on a numerical

example.

This paper is organized as follows. Section 2 introduces

the problem and some preliminaries. It is followed by the

adaptive robust H∞ dynamic output feedback controller

design method in Section 3. An illustrative example is given
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in Section 4 to demonstrate the proposed method. Finally,

Section 5 concludes the paper.

II. PROBLEM STATEMENT AND PRELIMINARIES

A. Problem Statement

Consider a linear uncertain model described by

ẋ(t) = A(δ(t))x(t) + B(δ(t))u(t) + Bωω(t)

z(t) = C1x(t) + D12u(t)

y(t) = C2x(t) + D21ω(t) (1)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control

input, y(t) ∈ Rp is the measured output and z(t) ∈ Rq

is the regulated output,respectively. ω(t) ∈ L2[0,∞) is the

exogenous disturbance. And

A(δ(t)) = A0 +

N0
∑

i=1

δi(t)Ai, B(δ(t)) = B0 +

N0
∑

i=1

δi(t)Bi.

A0, Ai, B0, Bi, Bω, D12, C1, C2 and D21 are known con-

stant matrices of appropriate dimensions. δi(t), i = 1 · · ·N0

are unknown time-varying uncertainty, which satisfy δi ≤
δi(t) ≤ δ̄i. Here δi and δ̄i are known lower and upper bounds

of δi(t), respectively. Since C2 ∈ Rp×n and rank(C2) =
p1 ≤ p, then there exists a matrix Tc ∈ Rp1×p such that

rank(TcC2) = p1. Furthermore, there exists a matrix Ccn

such that rank

[

TcC2

Ccn

]

= n. Denote Tcn =

[

TcC2

Ccn

]

−1

.

For traditional robust control, the following dynamic output

feedback controller is usually used.

ξ̇1(t) = AKfξ1(t) + BKfy(t)

u(t) = CKfξ1(t) (2)

then combing (2) with (1), it follows

ẋe1(t) = Ae1xe1(t) + Be1ω(t)

z(t) = Ce1xe1(t) (3)

where xe1(t) = [xT (t) ξT
1

(t)]T , and

Ae1 =

[

A(δ) B(δ)CKf

BKfC2 AKf

]

, Be =

[

Bω

BKfD21

]

,

Ce1 = [C1 D12CKf ].

In this paper, the following dynamic output feedback con-

troller with variable gains is considered.

ξ̇(t) = AK(δ̂(t))ξ(t) + BK(δ̂(t))y(t)

u(t) = CK(δ̂(t))ξ(t) (4)

where δ̂i(t)(i = 1 · · ·N0) are the estimations of δi(t),
which are obtained according to the introduced adaptive

mechanism. AK(δ̂) ∈ Rn×n, BK(δ̂) ∈ Rn×p and CK(δ̂) ∈
Rm×n have the following forms, that is

AK(δ̂) = AK0 +

N0
∑

i=1

δ̂iAKi, BK(δ̂) = BK0 +

N0
∑

i=1

δ̂iBKi,

CK(δ̂) = CK0 +

N0
∑

i=1

δ̂iCKi

where AK0, AKi, BK0, BKi, CK0, CKi are fixed parameter

matrices to be designed.

Applying the dynamic output feedback controller (4) to the

system (1), it follows

ẋe(t) = Aexe(t) + Beω(t)

z(t) = Cexe(t) (5)

where xe(t) = [xT (t) ξT (t)]T ,

Ae =

[

A(δ) B(δ)CK(δ̂)

BK(δ̂)C2 AK(δ̂)

]

,

Be =

[

Bω

BK(δ̂)D21

]

, Ce = [C1 D12CK(δ̂)]

Control objective: Find an adaptive robust H∞ controller

(4) via dynamic output feedback such that the closed-loop

system with the above-mentioned time-varying uncertainty

is robustly stable and its H∞ disturbance attenuation index

is minimized.

B. Preliminaries

The following lemma presents a condition for the system

(3) to have robust H∞ performance bound.

Lemma 1: Consider the system described by (3), and let

γ > 0 be given constant. Then the following statements are

equivalent:

(i) there exist a symmetric matrix X > 0 and a dynamic

output feedback controller K described by (2) such that

AT
e1X + XAe1 +

1

γ2
XBe1B

T
e1X + CT

e1Ce1 < 0 (6)

holds for δi ∈ [δi, δ̄i]
(ii) there exist symmetric matrices 0 < N < Y , and a

dynamic output feedback controller described by (2) with

AKf = AKe1, BKf = BKe1 and CKf = CKe1 such that

Va =









V11 V12 Y Bω − NBKe1D21 CT
1

∗ V22 −NBω + NBKe1D21 CT
Ke1D

T
12

∗ ∗ −γ2I 0
∗ ∗ ∗ −I









< 0

(7)

holds for δi ∈ [δi, δ̄i] where

V11 = Y A(δ) − NBKe1C2 + (Y A(δ) − NBKe1C2)
T

V12 = Y B(δ)CKe1 − NAKe1 − AT (δ)N + CT
2

BT
Ke1N

T

V22 = −NB(δ)CKe1 + NAKe1

+ [−NB(δ)CKe1 + NAKe1]
T

Proof: Due to the limitation of space, the proof is omitted.

Remark 1: It should be noted that conditions (7) are not

convex. But when CKf is given, and NAKf and NBKf are

defined as new variables, they become LMIs.

Algorithm 1: Let γ denotes the robust H∞ performance

bound of the closed-loop system (3). Then γ is minimized

by

Step 1.

min η s.t. X > 0

1099







Γ Bω C1X + D12Y0

∗ −γ2I 0
∗ ∗ −I



 < 0 (8)

where Γ = A(δ)X + B(δ)Y0 + (A(δ)X + B(δ)Y0)
T . Here

condition (8) is the classical robust H∞ control results via

state feedback [2]. The optimal solutions are denoted as Xopt

and Y0opt. Let CKf = Y0optX
−1

opt.

Step 2. Let NAKf = ĀKf and NBKf = B̄Kf .

min η s.t. 0 < N < Y (7)

where η = γ2. Then the resultant controller gains are AKf =
ĀKfN−1, BKf = B̄KfN−1, CKf = Y0optX

−1

opt.

Remark 2: Algorithm 1 gives a method for the traditional

robust dynamic output controller design by two-step opti-

mizations. Step 1 is performed to find a CKf , which solves

the corresponding design problem via state feedback. With

the CKf fixed, controller parameter matrices AKf and BKf

can be obtained by performing Step 2. Such a two-step

procedure is also used in [10] to obtain an initial feasible

robust output feedback controller for beginning the proposed

iterative algorithm.

III. DYNAMIC OUTPUT FEEDBACK

In this section, the problem of designing an adaptive robust

H∞ controller via dynamic output feedback for system (1) is

studied. An adaptive mechanism is introduced to reduce the

conservativeness compared with traditional robust control.

Theorem 1: The closed-loop system (5) is stable and

H∞ disturbance attenuation is no large than γ, if there exist

matrices 0 < N < Y,AK0, AKi, BK0, BKi, CK0, CKi,
i = 1 · · ·N0 such that for δi(t), δ̂i(t) ∈ [δi, δ̄i] the following

matrix inequalities hold:









T1 + TT
1

T2 T4 CT
1

∗ T3 + TT
3

T5 CT
K(δ̂)DT

12

∗ ∗ −γ2I + T6 0
∗ ∗ ∗ −I









< 0 (9)

with

T1 = Y A(δ) − NBK(δ)C2 −

N0
∑

i=1

(δ̂i − δi)N
T
3

NBKiC2

T2 = Y M1 − NAK(δ) − AT (δ)N + CT
2

BT
K(δ)N

+

N0
∑

i=1

(δ̂i − δi)N
T
3

(Y B0CKi − NAKi)

T3 = −NM1 + NAK(δ),

T4 =

N0
∑

i=1

(δ̂i − δi)[C
T
2

BT
KiNN2 + NBKiD21

− NT
3

NBKiD21] + Y Bω − NBK(δ̂)D21

T5 =

N0
∑

i=1

(δ̂i − δi)[−(Y B0CKi − NAKi)
T N2

− NBKiD21] − NBω + NBK(δ̂)D21

T6 =

N0
∑

i=1

(δ̂i − δi)[N
T
2

NBKiD21 + (NT
2

NBKiD21)
T ]

N1 = Tcn

[

Tc

0

]

, N2 = Tcn

[

TcD21

0

]

, N3 = Tcn

[

0
Ccn

]

,

AK(δ) = AK0 +

N0
∑

i=1

δiAKi, BK(δ) = BK0 +

N0
∑

i=1

δiBKi

M1 = B0CK(δ) +

N0
∑

i=1

BiδiCK(δ̂),

and also δ̂i(t) is determined according to the adaptive law

δ̂i =

{

δ̄i, if M2i < 0
δi, if M2i ≥ 0

, i = 1 · · ·N0 (10)

M2i = ξT (−NB0CKi + NAKi)ξ + ξT NBKiy

− yT NT
1

NBKiy + yT NT
1

(Y B0CKi − NAKi)ξ

Then the dynamic output feedback controller gains of the

form (4) are given by AK0, AKi,, BK0, BKi, CK0, CKi, i =
1 · · ·N0

Proof: Due to the limitation of space, the proof is omitted

here.

Remark 3: Theorem 1 presents sufficient conditions for

adaptive robust H∞ controller design via dynamic output

feedback. Generally, (9) is not LMIs. But when CK0 is given,

and NAK0, NAKi, NBK0 and NBKi are defined as new

variables, (9) becomes LMIs and linearly depends on δi and

δ̂i.

For the comparison between Theorem 1 and Lemma 1, we

have the following theorem

Theorem 2: If the conditions in Lemma 1 hold for the

closed-loop system (3) with traditional robust dynamic out-

put feedback controller (2), then the conditions in Theorem

1 hold for the closed-loop system (5) with adaptive robust

dynamic output feedback controller (4).

Proof: Due to the limitation of space, the proof is omitted

here.

Remark 4: Theorem 2 shows that the adaptive robust

H∞ controller design method given in Theorem 1 is less

conservative than that given in Lemma 1 for the traditional

robust H∞ controller design method.

The following algorithm is to optimize the robust H∞

performance of the closed-loop systems (5).

Algorithm 2: Let γ denotes the robust H∞ performance

bound of the closed-loop system (5). Then γ is minimized

by

Step 1. Choose CK0 = CKf , CKi = 0 with CKf being a

solution to the problem of traditional robust dynamic output

controller design via Algorithm 1.

Step 2.

min η s.t. 0 < N < Y and (9),
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where η = γ2. Then the resultant controller gains are

AK0 = ĀK0N
−1, AKi = ĀKiN

−1, BK0 = B̄K0N
−1,

BKi = B̄KiN
−1, CK0 = CKf , CKi = 0, i = 1 · · ·N0.

In order to obtain CK0, CKi, i = 1 · · ·N0 via adaptive

robust state feedback H∞ controller, next we derive the

corresponding conditions for adaptive robust state feedback

H∞ controller.

The corresponding adaptive state feedback controller

structure is chosen as

u(t) = K(δ̂) = (K0 +

N
∑

i=1

δ̂i(t)Ki)x(t) (11)

Then the closed-loop system is given by

ẋ(t) = (A(δ(t)) + B(δ(t))K(δ̂))x(t) + Bωω(t)

z(t) = (C1 + D12K(δ̂))x(t) (12)

Lemma 2: For all δi ∈ [δi δ̄i], the closed-loop system (12)

is stable and H∞ performance index is no large than a given

constant γ, if there exist matrices X > 0, Y0, Yi, i = 1 · · ·N
such that for all δi(t), δ̂i(t) ∈ {δi, δ̄i}





M0 + MT
0

Bω C1X + D12Y (δ̂)
∗ −γ2I 0
∗ ∗ −I



 < 0 (13)

where

M0 = (A0 +
N

∑

i=1

δi(t)Ai)X + (B0 +
N

∑

i=1

δi(t)Bi)Y0

+ B0

N
∑

i=1

δi(t)Yi +
N

∑

i=1

δi(t)Bi

N
∑

i=1

δ̂i(t)Yi

and also δ̂i(t) is determined according to the adaptive law

for i = 1 · · ·N0

δ̂i =

{

δ̄i, if xT PB0Kix ≤ 0
δi, if xT PB0Kix > 0

(14)

where P = X−1,K0 = Y0X
−1,Ki = YiX

−1, i = 1 · · ·N .

Then the controller gain is given by

K(δ̂) = Y0X
−1 +

N
∑

i=1

δ̂iYiX
−1.

Proof: Due to the limitation of space, the proof is omitted.

Remark 5: It is easy to see if the condition (8) is feasible,

then the condition (13) in Lemma 2 is feasible with X =
X0, Y0 = Y00 and Yi = 0, i = 1 · · ·N .

Another algorithm can also be proposed to design adap-

tive robust H∞ controller according to Lemma 2 via state

feedback, that is

Algorithm 3: Let γ denotes the robust H∞ performance

bound of the closed-loop system (5). Then γ is minimized

by

Step 1. Choose CK0 = K0, CKi = Ki with K0,Ki being a

solution to the problem of adaptive robust controller design

via state feedback, i.e., Lemma 2.

Step 2.

min η s.t. 0 < N < Y and (9),

where η = γ2. Then the resultant controller gains are

AK0 = ĀK0N
−1, AKi = ĀKiN

−1, BK0 = B̄K0N
−1,

BKi = B̄KiN
−1, CK0 = K0, CKi = Ki, i = 1 · · ·N0.

Remark 6: Similar to Algorithm 1, Algorithm 2 and Algo-

rithm 3 are also composed of two-step optimizations, where

the purpose of Step 1 is to determine state feedback gain

CK0, CKi. When we choose CK0 = CKf , CKi = 0 with

CKf being a solution to the problem of robust dynamic

output controller design via Algorithm 1, then by Theorem 2,

it follows that Algorithm 2 can give less conservative design

than Algorithm 1. Due to different CK0 is chosen in Algo-

rithm 1 and Algorithm 3, it is difficult to conclude Algorithm

3 can get less conservativeness results in theory. However,

in the numerical example of next section, the resultant H∞

performance indices in Algorithm 2 and Algorithm 3 are

both smaller than that in Algorithm 1.

IV. NUMERICAL EXAMPLE

Consider a linear system (1) with time-varying uncertainty

satisfying

A(δ(t)) =

[

−5 2
1 −2

]

+ δ1(t)

[

1 0.2
0 −1

]

+ δ2(t)

[

−1 0.5
0.6 0.1

]

,

B(δ(t)) =

[

−1 3
0 2

]

+ δ1(t)

[

0.2 0.5
0 3

]

+ δ2(t)

[

0 0
−0.5 1

]

,

C1 =









2 0
0 4
0 0
0 0









, D12 =









0 0
0 0

0.5 0
0 1









, Bω =

[

0 −1
0 1

]

,

C2 =

[

0 2
0 1

]

, D21 =

[

3 0
1 0

]

, x(0) =

[

0
0

]

with δ1(t) = 0.5sin(t) and δ2(t) = cos(t).

Using Matlab LMI tool box [5], Algorithm 1 and Algo-

rithm 2, we get the H∞ performance index is 6.6616 with the

adaptive robust controller while that of traditional robust con-

troller is 8.1946. Just as the theory has proved the adaptive

robust H∞ controller design method is less conservative than

the traditional robust controller design method. Moreover, the

corresponding H∞ performance index is 6.4416 obtained by

Algorithm 3.

In order to see the effectiveness of our method more

clearly, some simulation results are also given. Here the

disturbance ω(t) =
[

ω1(t) ω2(t)
]T

that used is

ω1(t) = ω2(t) =

{

3, 2 ≤ t ≤ 3 (seconds)

0 otherwise

Figure 1 and Figure 2 are the responses curves with

adaptive robust H∞ controller base on Algorithm 2 and

traditional robust H∞ controller base on Algorithm 1, re-

spectively. It is easy to see our adaptive robust H∞ controller

has more disturbance attenuation ability than that of the

traditional robust controller as theory has proved. While
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Fig. 1. Response curve of the first state with adaptive robust controller
based on Algorithm 2 (solid) and traditional robust controller based on
Algorithm 1 (dashed).
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Fig. 2. Response curve of the second state with adaptive robust controller
on Algorithm 2 (solid) and traditional robust controller based on Algorithm
1 (dashed).

Figure 3 and Figure 4 are the responses curves with adaptive

robust H∞ controller base on Algorithm 3 and traditional

robust H∞ controller base on Algorithm 1, respectively.

In this example, the adaptive robust controller designed

by Algorithm 3 performs better than the traditional robust

controller.

V. CONCLUSIONS

In this paper, we deal with the robust H∞ controller design

problem via dynamic output feedback for uncertain linear

systems. The uncertainties are assumed to be time-varying,

unknown, but bounded, which appear affinely in the matrices

of system model. An adaptive mechanism is introduced to

construct a robust H∞ controller with variable gain and

to reduce the conservativeness inherent in traditional robust

H∞ controller design. The proposed controller gains are

adjustable and updated automatically according to the online

estimations of uncertain parameters. More relaxed sufficient

0 1 2 3 4 5 6 7 8
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

time(s)

x
1
(t)

Fig. 3. Response curve of the first state with adaptive robust controller
based on Algorithm 3 (solid) and traditional robust controller based on
Algorithm 1 (dashed).

0 1 2 3 4 5 6 7 8
−1

−0.5

0

0.5

time(s)

x
2
(t)

Fig. 4. Response curve of the second state with adaptive robust controller
based on Algorithm 3 (solid) and traditional robust controller based on
Algorithm 1 (dashed).

conditions than those of traditional robust H∞ controller are

given in the framework of LMIs. A numerical example is also

given to illustrate the effectiveness of the proposed method.
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