
  

  

Abstract—A Nonlinear Predictive Generalized Minimum 

Variance (NPGMV) control algorithm is introduced for the 

control of nonlinear multivariable systems. The plant model is 

represented by a series combination of a nonlinear operator, 

which is assumed finite-gain stable, and a linear state-space 

model, which can include time delays and unstable modes. The 

main contribution is to incorporate predictive action into the 

recently introduced Nonlinear GMV controller by defining a 

multi-step cost index and using a minimum-variance form of the 

usual GPC cost function. The solution is very different to 

traditional nonlinear model predictive control, providing a 

solution which is similar to fixed model based controllers. This 

does not provide the same constrained optimization features but 

it does give a controller which is very simple to implement. 

I. INTRODUCTION 

HE objective in this paper is to derive a relatively 

simple controller for nonlinear systems and one that has 

some of the advantages of the popular Generalized 

Predictive Control (GPC) algorithms.  

 The Model Based Predictive Control (MBPC) approach 

based on linear systems theory has been very successful in 

applications, particularly in the process industries. The most 

popular predictive control algorithms have been Dynamic 

Matrix Control (DMC) [1] and Generalized Predictive 

Control (GPC) [2,3]. Richalet [4,5] has been very influential 

in the development of predictive control and has applied the 

technique successfully in a wide range of applications. The 

GPC controller was originally obtained in a polynomial 

systems form and a state-space version, suitable for large 

systems, was derived later [6]. 

 Most systems, however, are inherently nonlinear, and in 

many cases cannot be adequately described by linear 

models, especially when the operating regimes change 

frequently. Moreover, the increasingly more stringent 

product quality and energy cost requirements make it 

necessary to develop and use nonlinear models to achieve 

optimal performance. 

 There has been a rich history of research in the field of 

nonlinear predictive control. Some of the approaches include 

the use of Lyapunov functions [7], quadratic Hammerstein 

and Volterra models [8], observer-based nonlinear quadratic 

dynamic matrix control [9], and linear quadratic feasible 

predictive control [10]. Excellent reviews of existing NMPC 

techniques can also found in [11,12]. 
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 The control strategy introduced here builds upon previous 

results on Nonlinear Generalized Minimum Variance 

(NGMV) control, which was derived recently for nonlinear 

model-based multivariable systems [13-15]. The present 

major development over the basic NGMV control law 

involves an extension of the cost-index to include future 

tracking error and control costing terms in a GPC type of 

problem where the linear plant subsystem model is 

represented in state equation form. When the system is 

linear, the results revert to those for a GPC controller. 

 The main advantage over the other nonlinear MPC 

approaches lies in the simplicity of the control law: the 

controller, although it incorporates the nonlinear model of 

the system, is nevertheless fixed, i.e. its component blocks 

can be pre-computed off-line and no on-line optimization is 

needed. Of course, the controller performance may not be as 

good as the one potentially achievable by computationally 

intensive on-line schemes, however this is compensated by 

generality and low complexity of the solution, which may be 

an important issue in fast real-time applications. Due to that 

simplicity, no explicit optimal constraint handling is 

possible. However, the input limits can be taken into account 

implicitly by defining appropriate penalty functions on 

control signals. 

 Compared with adaptive methods based on multiple linear 

models, no switching or controller blending is required since 

the internal nonlinear model of the system is supposed to be 

valid for the whole operating range of interest.  

II. SYSTEM DESCRIPTION 

The system model considered in this paper is separated 

into a nonlinear and linear part, connected in series. Such a 

structure may for example represent plant dynamics which is 

essentially linear but with nonlinear actuators, Hammerstein 

models or nonlinear systems with output linear dynamics 

and/or transport delays. 

The nonlinear part of the system can be grossly nonlinear, 

dynamic and may have a very general form but the remaining 

system description is chosen so that relatively simple results 

are obtained. The disturbance signal is assumed to have a 

linear time-invariant model representation. This is not very 

restrictive, since in many applications the disturbance model 

is only a linear time-invariant (LTI) approximation. The 

system in Fig. 1 includes the plant model together with the 

reference, measurement noise and disturbance signals. The 

white measurement noise ( )v t  is assumed to have a 

covariance: 0
T

f fR R= ≥  and the zero-mean white noise 

source ( )tξ  has an identity covariance matrix. 
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Fig.1 Two Degrees of Freedom Feedback Control for Nonlinear Plant 

 

The nonlinear plant model is denoted as: 

 ( ) ( ) ( ) ( )1k1

k
u t z u t

−
=W W  (1) 

where k
z I

−  is a diagonal matrix of common delay elements 

in the output signal paths. The generalization to different 

delays in different signal paths complicates the solution but 

is straightforward [16]. The output of the non-linear 

subsystem 1kW  will be denoted as: ( ) ( )( )0 1k u t u t= �W . The 

nonlinear subsystem: 1W  is assumed to be finite gain stable 

but the linear subsystem, denoted: 0W 0k
kz W−= , introduced 

in more detail below, can contain any unstable modes. For 

stability analysis the time sequences can be considered to be 

contained in extensions of the discrete Marcinkiewicz space 

m2(R+,Rn) [17]. This is the space of time sequences with 

averaged square summable signals, which have finite power. 

A. Linear State-Space Subsystem Models 

The linear state-space model including the linear plant and 

disturbance states may be represented as: 

ξ+ = + − +0( 1) ( ) ( ) ( )x t Ax t Bu t k D t   (2) 

= + −0( ) ( ) ( )y t Cx t Eu t k  (3) 

The input signal channels are assumed to include a k-steps 

delay. The delay-free plant transfer of the linear sub-system, 

referred to above, may be written as: 0kW C B E= Φ +  where 

the resolvent matrix: ( ) 1
zI A

−
Φ = − .  

Future Outputs and States: The predictive action of the 

controller uses future values of the linear states, which may 

be obtained as: 

+ + = + +( ) ( )ix t i k A x t k

( )0
1

( 1) ( 1)
i

i j

j

A Bu t j D t j k−

=

+ + − + + + −∑ ξ  (4) 

The weighted output equation can include any cost-function 

weighting, such as: 
−= 1( ) ( ) ( )p cy t P z y t , by augmenting the 

state model. The new weighted output ( )
p

y t  to be regulated 

at future times then has the form: 

= + −0( ) ( ) ( )p p py t C x t E u t k   (5) 

B. Prediction Model 

 The i-steps ahead prediction of the output signal may be 

calculated by noting the above result (5) and assuming for 

the present that the future values of the control action are 

known. Thus let: + +ˆ ( | )py t i k t = + +{ ( ) | }pE y t i k t  then,  

−

=

+ + = + +

+ + − + +∑ 0 0
1

ˆ ˆ( | ) ( | )

( 1) ( )

i
p

i
i j

j

y t i k t CAx t k t

CA Bu t j Eu t i
 (6) 

Collecting together the results for the prediction horizon of 

N steps, the vector of predicted outputs: + ,
ˆ
t k NY  may be 

obtained: 
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with the following definition of terms: 
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The state estimate +(̂ | )x t k t  may be obtained in a 

computationally efficient form from a Kalman filter [18] 

where the number of states in the filter is not increased by 

the number of the delays k. The prediction equation: 
1

0 0
ˆ ˆ( | ) ( | ) ( , ) ( )kx t k t A x t t T k z Bu t−+ = +   (9) 

where 1

0
( , )T k z− denotes a finite impulse response block: 

( )1 1 1 2 2 1 1

0
( , ) ...− − − − − + −= + + + + k kT k z z I z A z A z A  (10) 

The N-step ahead prediction in (7) can be written as: 

+ = + + 0
, ,

ˆ (̂ | )t k N N N N t NY C A x t k t V U  (11) 

Output prediction error: + + += −�
, , ,

ˆ
t k N t k N t k NY Y Y  

+= + + +0
, ,( )N N N t N N N t k NC A x t k V U C D W  

− + + 0
,ˆ( ( | ) )N N N t NC A x t k t V U  (12) 

Thence, the inferred output estimation error:  

+
�

,t k NY += + +� ,( )N N N N t k NC A x t k t C D W   

where the k-steps-ahead state estimation error: 

+ = + − +� ˆ( ) ( ) ( | )x t k t x t k x t k t . 
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 Note for later use that the state estimation error is 

independent of the choice of control action. Also recall that 

the optimal +(̂ | )x t k t  and +�( | )x t k t  are orthogonal and 

the expectation of the product of the future values of the 

control action (assumed known in deriving the prediction 

equation), and the zero mean white noise driving signals, is 

null. It follows that the vector of predicted signals: + ,
ˆ
t k NY  in 

(11) and the prediction error: � ,t NY  are orthogonal. 

III. GENERALISED PREDICTIVE CONTROL 

 A brief review of the derivation of the GPC controller is 

provided below where for the moment the input will be 

taken to be that for the linear subsystem (
0

u ), since it also 

provides results needed for the definition of the nonlinear 

problem of interest. The following GPC performance index 

with equal prediction and control horizons is considered: 

λ
=

= + + + + + + +∑ 2
0 0

0

{ ( ) ( ) ( ) ( )) }
N

T T
p p j

j

J E e t j k e t j k u t j u t j t  (13) 

where the vector of future weighted reference signal values 

is denoted by + +( )pr t j k  and the weighted error signal: 

= −( ) ( ) ( )p p pe t r t y t . 

A. Optimal Solution for State Estimate Feedback: Review  

 Assume that the states are not available, then an optimal 

state estimator must be introduced and the cost function 

must be written in terms of the state estimate and the state 

estimation error.  

 The multi-step cost function may be written in a concise 

vector form by introducing: 

+ + + += − − + Λ0 2 0
, , , , , ,{( ) ( ) | }T T

t k N t k N t k N t k N t N N t NJ E R Y R Y U U t  (14) 

If it is assumed that a Kalman filter is introduced for state 

estimation and prediction, then from (14) obtain,  

, , , , , ,
ˆ ˆ{( ( )) ( ( ))T

t k N t k N t k N t k N t k N t k NJ E R Y Y R Y Y+ + + + + += − + − +� �

0 2 0
, , | }
T

t N N t NU U t+ Λ  (15) 

where the cost weightings: 2 2 2 2

0 1
{ , ,..., }

N N
diag λ λ λΛ = . 

 The terms in the cost-index can then be simplified, first by 

noting the optimal estimate ,
ˆ
t k NY +  is orthogonal to the 

estimation error ,t k NY +
�  and second by recalling the future 

reference or set-point trajectory 
,t k N

R +   is assumed to be a 

known signal over the N+1 steps. Simplifying, obtain:  
0 2 0

, , , , , , 0
ˆ ˆ( ) ( )T T

t k N t k N t k N t k N t N N t NJ R Y R Y U U J+ + + += − − + Λ +  (16) 

where 
0 , ,

{ | }
T

t k N t k N
J E Y Y t+ += � � . Substituting from (11) for 

+ ,
ˆ
t k NY  and writing: 

, , (̂ | )t k N t k N N NR R C A x t k t+ += − +� ,  (17) 

the cost function may be expanded as: 

0
, ,( )Tt k N N t NJ R V U+= −� 0

, ,( )t k N N t NR V U+ −� 0 2 0
, , 0
T

t N N t NU U J+ Λ +  

0
, , , ,

T T T
t k N t k N t N N t k NR R U V R+ + += −� � � 0

, ,
T
t k N N t NR V U+− �

( )0 2 0
, , 0
T T

t N N N N t NU V V U J+ + Λ +   (18) 

 The procedure for minimizing this cost term, if the signals 

are deterministic, is similar to that when the conditional cost 

function is considered. That is, the gradient of the cost-

function must be set to zero, to obtain the vector of future 

optimal control signals. From a perturbation and gradient 

calculation [18], noting 
0

J  term is independent of the 

control action, the GPC future optimal control becomes: 

( ) ( )
10 2

, , (̂ | )T T
t N N N N N t k N N NU V V V R C A x t k t

−

+= + Λ − +  (19) 

The GPC optimal control at time t is defined from this 

vector based on the receding horizon principle [19], i.e. the 

optimal control is taken as the first element in the vector of 

future controls:
0
,t NU . 

B. Equivalent Cost Optimization Problem 

 It is now shown that the above problem is equivalent to a 

special cost minimization control problem which is needed 

to motivate the NPGMV problem introduced later. Let the 

constant positive definite, real symmetric matrix: 
2T

N N NV V + Λ  that enters the above solution, be factorized:  

TY Y = 2T
N N NV V + Λ  (20) 

Then observe that by completing the squares in equation 

(18) the cost-function may be written as: 

J ( ) ( )1 0 0
, , , ,

T T T T T
t k N N t k N N t k N t NR V Y U Y Y V R YU− −
+ + += − −� �

1
, , 0( )T T T

t k N N N t k NR I V Y Y V R J− −
+ ++ − +� �   

That is, the cost-function may be written as: 

J ˆ ˆT
t+k,N t+k,N= Φ Φ 10( )J t+  (21) 

and 

( )ˆ (̂ | )-T T 0
t+k,N N t+k,N N N t,N=Y V R -C A x t k t -YUΦ +  (22) 

The terms that are independent of the control action may be 

written as: 
10 0 1

( ) ( )J t J J t= +  where 

( )1
1 , ,( ) T T T

t k N N N t k NJ t R I V Y Y V R− −
+ += −� �  (23) 

Since the last term 10( )J t  in equation (21) does not depend 

upon the control action, the optimal control is found by 

setting the first term to zero, giving (19). It follows the GPC 

optimal controller for the above linear system is the same as 

the controller to minimize the norm of the signal ˆ t+k,NΦ . 

Theorem 3.1: Equivalent Minimum Variance Problem 

 Consider the minimization of the GPC cost index (13) for 

the system and assumptions introduced in §2. If the cost 

index is redefined to have a multi-step minimum variance 

form: 

, ,( ) { | }
N N

T
t k t kJ t E t+ += Φ Φ� ,  

where  

0 0
, , , ,( )

CN CNNt k t k N t k N t NP R Y F U+ + +Φ = − +  (24) 
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and the cost-function weightings: 
CN

T
NP V= -TY  and 

0 2−= − Λ
CN

T
NF Y , then the vector of future optimal controls is 

identical to the GPC controls in (19).  ■ 

Solution: The proof follows by collecting results above. ■ 

IV. NONLINEAR PREDICTIVE GMV CONTROL  

 Recall that the actual input to the system is the control 

signal ( )u t  shown in Fig. 1, rather than the input to the 

linear subsystem 
0
( )u t . The cost function for the nonlinear 

control problem of interest must therefore include an 

additional control signal costing term, although the costing 

on the intermediate signal 
0
( )u t  can be retained to examine 

limiting cases and to provide a useful actuator output 

costing. If the smallest delay in each output channel of the 

plant is of magnitude k  steps, this implies that the control 

signal affects the output at least k steps later. For this reason 

the control signal costing is defined as:  

( ) ( ) ( ) ( )c c
k

ku t z u t−=F F  (25) 

Typically this weighting on the nonlinear sub-system input 

will be a linear dynamic operator but it may also be chosen 

to be nonlinear to cancel the plant input nonlinearities in 

appropriate cases and it may also be used to introduce an 

anti-windup capability [15]. The control weighting operator 

ckF  will be assumed to be invertible. Thus, consider a new 

signal whose variance is to be minimized: 

00 0 cc( ) ( ) ( ) ( )( )ct P e t F u t u tφ = + + F   (26) 

In analogy with previous GPC problem a multi-step cost 

index may be defined: 

Extended Multi-Step Cost Index  
0 0
, ,{ | }
N N

T
p t k t kJ E t+ += Φ Φ  (27) 

The signal 
0
,Nt k+Φ  is defined to include the future control 

signal costing terms:  

, , ,

0 0 0
, ,c( )

CN N CN N NNt k t k t k N tP E F U U+ +Φ = + + F

,

0 0
, , , ,c( ) ( )

CN CN Nt k N t k N t N k N tP R Y F U U+ += − + + F  (28) 

where the non-linear function 
,,c Nk N tUF  will normally be 

defined to have a simple diagonal form: 

( ) ( ) ( ) ( )= +F F F
,,c( ) { ,..., }
Nk N t ck ckU diag u t u t N  (29) 

and the vector of inputs: 
,

0
, 1k,N( )

Nt N tU U= W , where 1k,NW  

also has a block diagonal matrix form: 

,1k,N 1 1( ) [( )( ) ,...,( )( ) ]
N

T T T
t k kU u t u t N= +W W W  (30) 

A. The NPGMV Control Solution 

 Observe from (24) that 
,

0

, , ,c( )
NN N

k
t t k N tz U−Φ = Φ + F  and 

0 0 0
, , ,

ˆ
N N Nt k t k t k+ + +Φ = Φ + Φ�  with  

,

0
, , ,c

ˆ ˆ ( )
NN Nt k t k k N tU+ +Φ = Φ + F

,

0 0
, , , ,c

ˆ( ) ( )
CN CN Nt k N t k N t N k N tP R Y F U U+ += − + + F   (31) 

The future predicted values in the signal: 0
,

ˆ
Nt k+Φ  involve the 

estimated vector of weighted outputs ,
ˆ
t k NY +  and these are 

orthogonal to ,t k NY +
� . Therefore:  

0 0
, , 1

ˆ ˆ( ) ( )
N N

T
t k t kJ t J t+ += Φ Φ +� �  (32) 

where the optimal control sets: 0
,

ˆ 0
Nt k+Φ = . The condition 

for optimality has the form: 

,

0
, , , 1k,Nc

ˆ( ) ( ) 0
CN CN Nt k N t k N k N tP R Y F U+ +− + + =F W   (33) 

 The vector of future optimal control signals, to minimize 

the cost-index (32), follows from the condition for 

optimality in equation (33) and satisfies: 

,

2 1
, 1k,N , ,c

ˆ( ) ( )
N CN

T
t k N N t k N t k NU Y P R Y− −

+ += − − Λ −F W  (34) 

The optimal predictive control law is clearly nonlinear, since 

it involves the term: ,ck NF  and the model for the plant: 

1k,NW . Substituting from (11) for ,
ˆ
t k NY + , equation (33) may 

be written as:  

,, , 1k,Ncˆ( ( | )) ( ) 0
CN Nt k N N N k N tP R C A x t k t Y U+ − + + − =F W  (35) 

B. Optimal Nonlinear Predictive Control Signal 

 These expressions can be simplified by substituting for the 

predicted state, given (9) and 0( )u t  = 1k ( )u tW , and writing:  

0
, , (̂ | )k

t k N t k N N NR R C A A x t t+ += −�  (36) 

Thence from (35) the condition for optimality becomes: 

( )−
+ − +

+ − =

�

,

0 1
, 0 1k

, 1k,Nc

( , ) ( )( )

( ) 0

CN

N

t k N N N

k N t

P R C A T k z B u t

Y U

W

F W

 (37) 

giving  

( )

−

−
+

= − −

× −�

,

1
, 1k,N

0 1
, 0 1k

c( )

( , ) ( )( )

N CNt k N

t k N N N

U Y P

R C A T k z B u t

F W

W

 (38) 

To simplify the equations also introduce the matrix: 

C
CN

-T T
N N N N NP C A Y V C Aφ = =   (39) 

The condition for optimality in (37) may then be written: 

( )φ
−

+ + − − =� F W W
,

0 1
, , 1k,N 0 1k,Nc C ( , ) 0

CN Nt k N k N I0 tP R Y T k z BC U  (40) 

Theorem 4.1: NPGMV Optimal Control Law  

 Consider the linear components of the plant, disturbance 

and output weighting models in augmented state equation 

form (2), (3) with input from the nonlinear plant dynamics 

1kW . The nonlinear plant operator: 1kW  is assumed to be 

open-loop finite gain stable and the operator: 

( )1 1k ck( )I0C Y C Bφ+ Φ −W F   is also assumed to have a stable 

causal inverse, due to the choice of weighting operators:
CN

P , 

0
CN

F  and ,ck NF . The multi-step predictive controls cost-

function to be minimized, involving a sum of future cost 

terms, is defined in vector form as: 
0 0
, ,{ | }
N N

T
p t k t kJ E t+ += Φ Φ  (41) 
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where 
0
,Nt k+Φ  includes future error, input and control terms:  

, , ,

0 0 0
, ,c( )

CN N CN N NNt k t k t k N tP E F U U+ +Φ = + + F   (42) 

The error and input cost-function weightings:
CN

T
NP V

-TY=  

and 0 2
CN

T
NF Y −= − Λ , and the control signal cost-function 

weighting has the form: ( ) ( ) ( ) ( )c cku t u t k= −F F , where k 

represents the transport delay and ckF  is full rank and 

invertible. Define the constant matrix factor Y  to satisfy: 
TY Y = 2T

N N NV V + Λ , then the NPGMV optimal control law 

to minimize the variance (41) is given as: 

( )
( )

φ
−

+

− +

× −

,

-1
1

, 0 1k,N

,

c ( C ( , ) )

(̂ | )

N

CN

t k N

k
t k N N N

U = - Y T k z B

P R C A A x t t

F W
  (43) 

where C CN N NP C Aφ =   ■ 

C. Implementation of the Predictive Optimal Control 

 It is useful to separate the vector of controls into that to be 

applied at time t and the vector of future controls. This 

partition also enables the algorithm to be considerably 

simplified. The control at time t is computed for N > 0 by 

introducing [ , 0,...., 0]I0C I= . This enables the control at 

time t to be found as 

( )u t = [ , 0,...., 0]I
,NtU  (44) 

Because of the block diagonal structure of the control signal 

costing ,ck NF , 
1
,cI0 k NC −

F
1 1

I0[ , 0,... , 0]ck ck C− −= =F F . The 

optimal control at time t can be computed, using (40), as: 

( ),

1 0 1
, 0 1k,N- ( ( , ) )

CN Nck I0 t k N I0 tu(t) = C P R Y CT k z BC U− −
+ φ− +�F W  (45) 

 Note from equation (30) that the vector 
,1k,N NtUW  may be 

written as ==W W W
,1k,N 1 1k,N-1 ,( ) [( )( ) , ( ) ]
N

T f T T
t k t NU u t U  

Using a related partition, write the factor Y in the form: 

1 2[ ]=Y Y Y , where the number of columns in 
1

Y  equals the 

dimension of the signal u0(t), denoted as m. The optimal 

control may now be expressed, using  (40) and (45), as: 

φ
− −

+ − +

−

�1 0 1
I0 , 1 0 1k

2 1k,N-1 ,

c( ) - [ ( ( , ) )( )( )

( )]

CNk t k N

f
t N

u t = C P R Y C T k z B u t

Y U

F W

W
 (46) 

where ,
f

t NU  is a vector of future control actions. 

For the proposed nonlinear predictive control it may be 

shown that a nonlinear operator 

(
1 1k

( )
CNI0 N N ck

C P C A B YΦ + −W F ) must have a stable inverse 

where the measure of stability, such as finite gain, depends 

upon the assumption on the nonlinear plant sub-system:
1k
W . 

These stability results are discussed in [14]. 

V. SIMULATION EXAMPLE 

 One of the potential applications of the NPGMV control is 

in robotics. Consider for example a planar, two-link 

manipulator shown in Fig. 5. The objective is to control the 

vector of joint angular positions q with the vector of torques 

ττττ  applied at the manipulator joints so that they follow a 

desired trajectory: 
d

q . This problem was analyzed in detail 

in [20] where it was shown that a multi-loop PD controller 

can be used to move the links to required fixed positions. 

  

 
 

Fig. 5:  Two-link robotic manipulator  

 

The dynamics of the system is highly nonlinear and may be 

described, using the Lagrangian equations of motion, by the 

following differential equation [20]: 

( ) ( , ) ( )H q q C q q q g q τ+ + =		 	 	  (47) 

where 

11 12

21 22

H H
H

H H

 
=  
 

, 
2 1 2

1

( )
( )

0

hq h q q
C q

hq

− − + 
=  
 

	 	 	

	
 

with 
2 2 2

11 1 1 1 2 1 2 1 2 2 2

2

12 21 2 1 2 2 2 2 2

2

22 2 2 2 2 1 2 2

[ 2 cos ]

cos

, sin

c c c

c c

c c

H m l I m l l l l q I

H H m l l q m l I

H m l I h m l l q

= + + + + +

= = + +

= + =

 

( )H q  is the inertia matrix, ( , )C q q q	 	  is a vector of 

centripetal and Coriolis torques, and ( )g q  is a vector of 

torques due to gravity. For the purpose of the example, we 

assume that the manipulator is operating in the horizontal 

plane, and hence ( ) 0g q ≡ .  

For the purpose of the example, we assume the following 

numerical values for the parameters:  

m1 = 1, l1 = 1, m2 = 2, I1 = 0.12, lc1 = 0.5, I2 = 0.25, lc2 = 0.6. 

 The NPGMV controller design was performed, based on 

the nominal stabilizing PD controller, i.e. the dynamic 

weightings were initially defined as 
c PD

P C=  and 
ck

I= −F , 

with 100
D

K I=  and 20
P D

K K= . The sampling time was 

2
s

T ms= . The control weighting (penalty on control action) 

was then decreased to improve the tracking performance. 

The position control results for both the PD and NPGMV 

controller with increasing prediction horizon N are shown in 

Fig. 6 and 7, where in the simulations the maximum 

applicable torque were set to 10
4
 Nm. The effect of 

predictive action is clearly seen in the plots and generally 

results in improved tracking performance. 

q1 

q2 

τ1 

τ2 

m1, I1 

m2, I2 

l2 
lc2 

lc1 

l1 
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Fig. 6:  Position control for varying N: angles  
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Fig. 7:  Position control for varying N: torques  

VI. CONCLUDING REMARKS 

    The nonlinear predictive controller introduced in this 

paper is remarkably different from traditional nonlinear 

model predictive control design methods. The solution is 

similar to a fixed model based controller. This does not 

provide equivalent constrained optimization features but it 

does give a controller which is very simple to implement. 

The predictive controls strategy described is a development 

of the NGMV design method, which has been shown to be 

particularly easy to understand.  

    The controller has the very nice property that if the system 

is linear then the controller reverts to the linear generalized 

predictive control design method, which is well known and 

accepted in industry. It is well known that the robustness of 

MPC controllers seems to improve as the number of steps 

increases. This was one of the motivations for introducing 

the multi-step cost index in the NGMV family of designs. 
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