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Abstract— This paper considers the flocking of a class of
multi-agent systems with switching topology in a noisy envi-
ronment. We have shown that although the information is con-
taminated by variable noises, all agents can form and maintain
flocking if the gradient of the environment is bounded and the
interaction graphs are jointly connected. The proposed results
reveal that the discussed multi-agent system with switching
topology can maintain the flocking in the considered noisy
environment.

I. INTRODUCTION

Flocking is a group behavior of a large number of agents
with a common objective. In nature, flocking behavior pro-
vides more chance for the group of birds, fishes or other an-
imals to evade an attack from predators and find food. From
the engineering point of view, such a collective behavior has
broad applications in the fields like mobile robots, surveil-
lance and search systems, unmanned air vehicles(UAVs)
and autonomous underwater vehicles(AUVs), etc. Hence, the
mechanism of flocking has attracted lots of researchers from
different disciplines and many results have been obtained(See
[3]−[12] and references therein). More specifically, Y. Liu
and K. M. Passino [5] propose a discrete model and obtain
the convergent results for the aggregation of the swarm under
total asynchronism(i.e., asynchronism with time delays). In
[6], V. Gazi and K. M. Passino propose a continuous first-
order dynamic model with attraction/repulsion terms and
environment potential function, and then the convergence of
the swarm is proved. Thereafter, Y. F. Liu and K. M. Passino
[7] extend the results in [6] to a second order model, in which
they consider the noise influence on the aggregation of the
swarm. A common limitation for the models in [6]∼[7] is
that the interaction topology is a complete graph, i.e., each
agent knows all information about the group and thus the
algorithm is centralized. Recently, Li and Jia [8] extend the
works in [7] to the fixed topology case, where the local
information is used. The other important works about the
flocking can see [10]−[12]. Although the switching topology
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case are discussed in the literatures [10]−[12], the noises are
not considered by them.

Considering that the interaction graph in [7] is not con-
sistent with the practical situation, we extend it to a more
general case, in which both switching topology and noises
are considered. In this paper, the global information is
represented by the potential function because it can reflect
the change of the environment which is usually unknown or
known little by us. Thus, it is necessary for the agents to
detect such a change by themselves. Meanwhile, for each
agent, the local information is employed to update its states
although these information has been contaminated by the
noises. The obtained results give the sufficient conditions
for the considered system to achieve flocking in a noisy
environment.

This paper is organized as follows. In section II, some
background knowledge and the model of the system are
given. In section III, the error system is derived and the
control law for each agent is designed. The ultimately
bounded analysis of the system is presented in section IV.
In section V, we conclude our work.

II. PROBLEM FORMULATION

To solve coordinated control problems, graph theory has
become a basic tool which provides a natural method to
describe the relations between the coordinated variables.
A undirected graph of order n is always denoted as G =
(V,E,A), where V = {v1,v2, · · · ,vn} denotes the set of nodes,
E is a finite set of sets. Each element of E is a set that is
comprised of exactly two(distinct) nodes, which is denoted
as (vi,v j). The elements of E are called the edges of G.
Because the graph is undirected, (vi,v j) ≡ (v j,vi). And the
symmetrical matrix A = [ai j] denotes the weights of the
edge between nodes vi and v j. In general, the elements
ai j = a ji ≥ 0 for all i 6= j(i, j ∈ I) and aii = 0 for all i ∈ I,
where I = {1,2, · · · ,N} is an index set. If ai j = a ji > 0,
it means that (vi,v j) is an edge of the graph G. A path
from a node vi to a node v j in graph G is a sequence
of nodes vi1 ,vi2 , · · · ,vik−1 ,vik such that vi = vi1 , v j = vik ,
and (vim−1 ,vim) ∈ E for m = 1, · · · ,k. If there exists a path
between any two nodes of G, then G is connected, otherwise,
disconnected. For a series of graphs G j1 , · · · ,G jn with the
same nodes, we say graph Gu is the union of them if the
nodes of Gu are the same as any one of these graphs and the
weight āi j of edge (vi, v j) of Gu is defined as follows.

āi j =
1
n

n

∑
k=1

ak
i j ,
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where ak
i j is the weight of edge (vi,v j) of graph Gk for k =

j1, · · · , jn. As āi j > 0, it means that (vi,v j) is an edge of Gu.
If Gu is connected, we say that graphs G j1 , · · · ,G jn is jointly
connected.

In what follows, we consider a multi-agent system con-
sisting of N agents. Here, each agent is modeled as a mass
point and its dimension is ignored. The dynamics of agent i
is given as follows,

ẋi = vi, v̇i =
1
mi

ui, (1)

where i ∈ I, xi,vi,ui ∈ Rn and mi ∈ R respectively denote the
position, velocity, control input and mass of agent i. In this
paper, we assume that mi 6= 0 for all i and each agent can
obtain the position and velocity information of its neighbors
with some sensing errors. The agent to agent interactions
considered here are an attractive/repulsive function where
each agent seeks to be in a position that is comfortable
relative to its neighbors. Attraction indicates that each agent
wants to be close to every other agent and it provides the
mechanism for achieving flocking. Repulsion provides the
mechanism where each agent does not want to be too close to
any other agent(e.g., for agents to avoid collision). In general,
there are many ways to define attraction and repulsion. In
our model, attraction is represented by the term in ui like
−kx(xi − x j) where kx > 0 is the scalar representing the
strength of the attraction. If the neighbors are far apart, then
there is a large attraction between them; and if they are close
there is a small attraction. For repulsion, we let the two-norm
‖z‖=

√
z>z and use a repulsion term in ui of the form

f (xi− x j) = kr(xi− x j)exp(−‖xi− x j‖2

2c2 ), (2)

where kr > 0 denotes the magnitude of the repulsion. If
f (xi− x j) = kx(xi− x j), i.e., the attraction and the repulsion
are balanced between two neighbors. Then, ‖xi − x j‖ = 0

or ‖xi − x j‖ = c
√

2ln kr
kx

= δ , it is clear that when ‖xi −
x j‖< δ , the repulsion takes effect; otherwise, the attraction
dominates. So the parameter c reflects the repulsion range
between neighbors. Meanwhile, f (y) has a unique maximum
value of krcexp(− 1

2 ) at ‖y‖= c.
For the considered multi-agent system, all agents move in

an unknown environment which is represented by an artificial
potential function F(·). We assume that F(·) is continuous
with finite slope at all points, meanwhile, its gradient satisfies
the following assumption.

Assumption 1: Let the environment be represented by a
potential function F(·) and its gradient at xi be ∇xiF(xi),
then there exists a constant σ > 0 such that

‖∇xiF(xi)‖ ≤ σ , ∀xi ∈ Rn. (3)
We assume that each agent can sense the negative gradient

of the environment at its position and try to follow it. But the
sensing value of agent i always has some sufficiently smooth
error d fi so agent i actually senses

∇xiF(xi)−d fi (4)

To proceed, for the considered system (1), we give a
definition about neighbors and an assumption about the
position topology of all agents as follows.

Definition 1: (Neighbor) Any two agents i and j are called
neighbors each other if di j = ‖xi(t)−x j(t)‖≤ d, where d > 0
is a given scalar value, xi(t) and x j(t) are the positions of
the agents i and j at time t, respectively. All the neighbors
of agent i at time t are denoted by a set Ni(t),

Ni(t) , { j : ‖di j‖ ≤ d, j ∈ I, j 6= i},
meanwhile, let |Ni(t)| denote the number of the neighbors of
agent i at time t. Furthermore, as agent i has no neighbors,
we stipulate |Ni(t)|= 1. In general, the time t is omitted, i.e.,
Ni(t) = Ni and |Ni(t)|= |Ni|.

Assumption 2: For the system (1), there exists a constant
T > 0 and an infinite sequence of uniformly bounded, non-
overlapping, continuous time intervals [ti, ti +T ), i = 0,1, · · · ,
starting at t0 = 0, such that the union of position graphs of
all agents is jointly connected during each time interval i.

III. CONTROL LAWS AND ERROR DYNAMICS

In this section, we will derive the error system and propose
the control law for each agent. To proceed, let xi/vi denote
the average position/velocity of the neighbors of agent i as
follows.

xi =
1
|Ni| ∑

j∈Ni

x j , vi =
1
|Ni| ∑

j∈Ni

v j , i ∈ I. (5)

And x/v denote the position/velocity of the swarm center.

x =
1
N

N

∑
i=1

xi , v =
1
N

N

∑
i=1

vi , i ∈ I. (6)

Now, for a given agent i ∈ I, the local error is defined as
exi = xi− xi and evi = vi− vi; and the global error is defined
as exi = xi−x and evi = vi−v. Clearly, the following relations
can be derived.

exi = xi− xi = exi + x− 1
|Ni| ∑

j∈Ni

x j

= exi + x− 1
|Ni| ∑

j∈Ni

(ex j + x)

= exi + x− 1
|Ni| ∑

j∈Ni

ex j − x = exi −
1
|Ni| ∑

j∈Ni

ex j ,

(7)

and,

evi = vi− vi = evi + v− 1
|Ni| ∑

j∈Ni

v j

= evi + v− 1
|Ni| ∑

j∈Ni

(ev j + v)

= evi + v− 1
|Ni| ∑

j∈Ni

ev j − v = evi −
1
|Ni| ∑

j∈Ni

ev j .

(8)

Thus, the error system can be defined as follows.

ėxi = evi , ėvi = v̇i− v̇. (9)

We assume that each agent can get information about the
positions and velocities of its neighbors, and then calculate
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its position/velocity relative to the local position/velocity
center xi and vi, but with some errors. Particularly, let dxi ∈
Rn and dvi ∈ Rn be these errors for agent i, respectively.
We assume that dxi(t) and dvi(t) are any trajectories that
are sufficiently smooth and fixed a priority for all time,
meanwhile, these terms are uniformly called as ”noise”.
Thus, agent i actually sense

êxi = exi −dxi , êvi = evi −dvi , (10)

Here, we further assume that each agent can accurately
obtain its position and velocity. Meanwhile, no agent can
obtain the states of swarm center x and v. Thus, substituting
equations (7) and (8) into equation (10), we have

êxi = exi −
1
|Ni| ∑

j∈Ni

ex j −dxi , (11)

and, êvi = evi −
1
|Ni| ∑

j∈Ni

ev j −dvi . (12)

In what follows, the control input for agent i is proposed
as

ui =−mikp(∇xiF(xi)−d fi)−mikxêxi −mikvêvi

−mikvi +mi ∑
j∈Ni

f (xi− x̂ j), i ∈ I, (13)

where kp > 0 denotes the desire of agent i to follow the
negative gradient of the environment, kx > 0 and kv > 0
represent the magnitude of attraction between neighbors, k
is the coefficient of velocity damping term, and the last term
exactly denotes the repulsion which is exerted to agent i
by its neighbors. It is noted that parameters kp,kx,kv and k
are the same for all agents. This means that all agents are
identical. In fact, different agent can have different kp,kx,kv
and k, and the below analysis can also be derived. One reason
we take them as same is to simplify the analysis. On the
other hand, because different agent has different error terms,
this implies that the systems are robust to the models and
thus we assume that the parameter uncertainty can be partly
reflected. For the last term in ui, we assume that any two
agents i and j are disturbed by the same noises as they are
neighbors and ‖xi− x̂ j‖= ‖x j− x̂i‖= ‖xi−x j‖+ d̂i j with the
upper bounded constant d̂i j as the sensing error. In addition,
the control law (13) is non-smooth because the neighbor set
Ni is changed along the time. In what follows, by substituting
equation (13) into v of equation (6), we have

v̇ =
1
N

N

∑
i=1

[−kp(∇xiF(xi)−d fi)− kvi + ∑
j∈Ni

f (xi− x̂ j)]

− kxêxi − kvêvi

=
1
N

N

∑
i=1

[−kp(∇xiF(xi)−d fi)− kx(exi −dxi)

− kv(evi −dvi)− kvi + ∑
j∈Ni

f (xi− x̂ j)]

=
1
N

N

∑
i=1

[−kp∇xiF(xi)− kxexi − kvevi − kvi

+ ∑
j∈Ni

f (xi− x̂ j)]+
1
N

N

∑
i=1

[kpd fi + kxdxi + kvdvi ]

(14)

=
1
N

N

∑
i=1

[−kp∇xiF(xi)− kx(exi −
1
|Ni| ∑

j∈Ni

ex j)

− kv(evi −
1
|Ni| ∑

j∈Ni

ev j)− kvi + ∑
j∈Ni

f (xi− x̂ j)]

+
1
N

N

∑
i=1

[kpd fi + kxdxi + kvdvi ]

=− kv− 1
N

N

∑
i=1

kp∇xiF(xi)+
1
N

N

∑
l=1

(
kx

|Nl | ∑
j∈Nl

ex j)

+
1
N

N

∑
l=1

(
kv

|Nl | ∑
j∈Nl

ev j)+
1
N

N

∑
i=1

[kpd fi + kxdxi + kvdvi ],

where we use the fact that ∑N
i=1[∑ j∈Ni f (xi − x̂ j)] =

0; kx
N ∑N

i=1 exi = kx
N ∑N

i=1(xi− x) = 0; kv
N ∑N

i=1 evi = kv
N ∑N

i=1(vi−
v) = 0. Let Ei = [e>xi

,e>vi
]> and E = [E>1 ,E>2 , · · · ,E>N ]>, and

note that kvi− kv = kevi . Then, substituting equations (11)-
(14) into (9), we have

ėvi = v̇i− v̇ =−kp(∇xiF(xi)−d fi)− kxêxi − kvêvi − kvi

+ ∑
j∈Ni

f (xi− x̂ j)+ kv+
1
N

N

∑
i=1

kp∇xiF(xi)

− 1
N

N

∑
l=1

(
kx

|Nl | ∑
j∈Nl

ex j)−
1
N

N

∑
l=1

(
kv

|Nl | ∑
j∈Nl

ev j)

− 1
N

N

∑
i=1

[kpd fi + kxdxi + kvdvi ]

=− kp(∇xiF(xi)−d fi)− kx(exi −
1
|Ni| ∑

j∈Ni

ex j −dxi)

− kv(evi −
1
|Ni| ∑

j∈Ni

ev j −dvi)− kvi + ∑
j∈Ni

f (xi− x̂ j)

+ kv+
1
N

N

∑
i=1

kp∇xiF(xi)− 1
N

N

∑
l=1

(
kx

|Nl | ∑
j∈Nl

ex j)

− 1
N

N

∑
l=1

(
kv

|Nl | ∑
j∈Nl

ev j)−
1
N

N

∑
i=1

[kpd fi + kxdxi + kvdvi ]

=− kxexi − (kv + k)evi + fi(E)+gi(E)+φi(E)+ψi(E),

(15)

where

fi(E) =− kp∇xiF(xi)+
kp

N

N

∑
l=1

∇xl F(xl);

gi(E) = ∑
j∈Ni

f (xi− x̂ j);

φi(E) =
kx

|Ni| ∑
j∈Ni

ex j +
kv

|Ni| ∑
j∈Ni

ev j−

kx

N

N

∑
l=1

(
1
|Nl | ∑

j∈Nl

ex j)−
kv

N

N

∑
l=1

(
1
|Nl | ∑

j∈Nl

ev j);

ψi(E) =− 1
N

N

∑
i=1

[kpd fi + kxdxi + kvdvi ]+ kxdxi

+ kvdvi + kpd fi .

(16)

Let In be an n× n identity matrix, then substituting (15)
into (9), error dynamics of agent i can be written in a compact
form as
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Ėi =
[

0 In
−kxIn −(kv + k)In

]

︸ ︷︷ ︸
A

Ei+

[
0
In

]

︸︷︷︸
B

( fi(E)+gi(E)+φi(E)+ψi(E)), i ∈ I.
(17)

Note that matrix A with kx > 0, kv + k > 0 has eigenvalues
given by the roots of [s2 +(kv + k)s+ kx]n, which are in the
strict left half plane. Thus, A is Hurwitz. In addition, we can
see from (17) that the noise and the switch of the information
topology can only affect the second terms, and ‖Ei‖ is a
deterministic term. Thus the error systems can be analysis
as a perturbed systems [14].

IV. ULTIMATELY UNIFORMLY BOUNDED ANALYSIS OF
FLOCKING

In this section, we study the ultimate boundedness of inter-
agents trajectories. Our analysis methodology involves view-
ing the error dynamics (17) as generating Ei(t) trajectories
for a given Ei(0) and the fixed error trajectories dxi(t),dvi(t)
and d fi(t), t ≥ 0. Here, most of error trajectories are not
considered except ones satisfying the bounded conditions as
follows [7].

‖d fi(t)‖ ≤D fi ; ‖dxi(t)‖ ≤ Di
x1
‖Ei‖+Di

x2
;

‖dvi(t)‖ ≤Di
v1
‖Ei‖+Di

v2
.

(18)

where D fi ,D
i
x1

,Di
x2

,Di
v1

and Di
v2

are known nonnegative
constants for all i ∈ I. It is noted that we do the same
assumption as [7]. On the one hand, from the practical point
of view, the agents located far away from the swarm center
has little chance to share the groups averaging influence, and
thus they have more possibility to be distracted by the noises,
just as the things always happen in the sheepherd. In this
sense, the above assumptions are suitable. But on the other
hand, in the considered system, each agent has the limited
sensing ability, and thus it only can receive the information
from its neighbors which are located within a limited range
around it. In this case, the sensing noise level around each
agent can be seen as a bounded term. So the terms Di

x1
and

Di
v1

should be little enough in order to match such a situation.
In addition, the noise d fi is unaffected by the position of
an agent. By considering only these class of fixed sensing
error trajectories, we prune the set of possibilities for ‖Ei‖
trajectories and it is only for theses pruned set our analysis
holds. To proceed, a key lemma is given as follows.

Lemma 1: Suppose that each agent of system (1) has the
control input ui defined in (13). Assume that the assumption
2 is satisfied, then there exists a scalar constant R > 0 such
that ‖Ei(t)‖< R for all time t, where i ∈ I.

Proof: At time t, let G(t) be the position graph of
system and x(t) = [x1(t)>,x2(t)>, · · · ,xN(t)>]> the positions
of all agents. Due to system (1) satisfying the assumption 2,
then for an arbitrary time interval τ ≤ t < τ +T , τ ≥ 0, the
union of position graphs is jointly connected. Let Gu(τ) =

⋃τ+T−1
t=τ G(t) denote the union of position graphs during time

interval τ , xu = [x(τ)>,x(τ +1)>, · · · ,x(τ +T−1)>]> denote
the positions of all agents during time interval τ . Then Gu(τ)
can be seen as a connected graph with NT vertices. The
position center of Gu(τ) is

xu(τ) =
1

NT

N

∑
i=1

τ+T−1

∑
t=τ

xi(t) =
1
T

τ+T−1

∑
t=τ

(
1
N

N

∑
i=1

xi(t)

)

=
1
T

τ+T−1

∑
t=τ

x(t),

(19)

where x(t) is the position center of all agents at time t. On
the other hand, the value of ei

u(t) = xi(t)− xu(τ) must be
finite because Gu(τ) is connected, i.e., there exists a constant
R∗ > 0 such that ‖xi(t)−xu(τ)‖≤R∗ holds for all xi(t), i∈ I,
t ∈ [τ,τ + T − 1). Obviously, all x(t) are the inner points
of the convex combinations of all positions xi(t) and thus
we have ‖xi(t)− x(t)‖ ≤ R∗ for all i at time t. Combined
with all agents having the limited velocity, there must exist
a constant R > 0 such that ‖Ei(t)‖ < R holds at time t for
all i ∈ I. Meanwhile, due to τ ≥ 0 being arbitrarily selected,
the conclusion holds for all time t.

Lemma 1 reveals that the error state Ei always has upper
bound and thus guarantees the below analysis. In what
follows, we give the main results.

Theorem 1: Assume that the system (1) has the control
input ui defined in (13), assumption 1 and 2 are satisfied,
and all noises are bounded by (18), let

β1 =
1

2kx(kv + k)
{
(kx +1)2 +(kv + k)2

+
√

[(kv + k)2 +(kx +1)2][(kv + k)2 +(kx−1)2]
}

,

(20)

if we have
kxDi

x1
+ kvDi

v1
≤ 1

β1
, (21)

and the parameters are such that

β1

√
k2

x + k2
v

N

∑
i=1

2+
√

Di
x1

2 +Di
v1

2

(1−θi)[1−β1(kxDi
x1

+ kvDi
v1

)]
< 1, (22)

where 0 < θi < 1 for all i, then the trajectories of (17) are
uniformly bounded.

Proof: For the error system (17), let Lyapunov function
for each agent be chosen as

Vi(Ei) = E>i PEi, (23)

where P = P> > 0 is a positive-definite matrix with order
2n× 2n. Then, choose the Lyapunov function for the com-
posite system as

V (E) =
N

∑
i=1

E>i PEi. (24)

Then, by equations (17) and (23), we have

V̇i(Ei) =Ė>i PEi +E>i PEi = E>i (PA+A>P)︸ ︷︷ ︸
−Q

Ei

+2E>i PB( fi(E)+gi(E)+φi(E)+ψi(E)).

(25)
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Note that when Q = Q> > 0, the unique solution P of
A>P+PA =−Q has P = P> > 0 as needed. Since for any
positive definite matrix M ∈ Rn×n and vector x ∈ Rn×1, we
have λmin(M)x>x ≤ x>Mx ≤ λmaxx>x, where λmin(M) and
λmax(M) denote the minimum and maximum eigenvalue of
M, respectively. Thus, by equation (24), we directly have

λmin(P)
N

∑
i=1
‖Ei‖ ≤V (E)≤ λmax(P)

N

∑
i=1
‖Ei‖.

Then,

V̇ (E) =
N

∑
i=1

V̇i(Ei) =
N

∑
i=1

[
−E>i QEi +2E>i PB( fi(E)

+gi(E)+φi(E)+ψi(E))]

≤
N

∑
i=1

{−λmin(Q)‖Ei‖2 +2λmax(P)‖Ei‖ [(kpσ̄ + kpσ̄)

+|Ni|krcexp(−1
2
)+

√
k2

x + k2
v

|Ni| ∑
j∈Ni

‖E j‖

+

√
k2

x + k2
v

N

N

∑
l=1

(
1
|Nl | ∑

j∈Nl

‖E j‖
)

+ kx‖dxi‖

+kv‖dvi‖+ kp‖d fi‖

+
1
N

N

∑
l=1

(
kx‖dxl‖+ kv‖dvl‖+ kp‖d fl‖

)
]}

≤
N

∑
i=1

{−λmin(Q)‖Ei‖2 +2λmax(P)‖Ei‖ [2kpσ̄

+|Ni|krcexp(−1
2
)+

√
k2

x + k2
v

|Ni| ∑
j∈Ni

‖E j‖

+

√
k2

x + k2
v

N

N

∑
l=1

(
1
|Nl | ∑

j∈Nl

‖E j‖
)

+kx‖(Di
x1
‖Ei‖+Di

x2
)+ kv(Di

v1
‖Ei‖+Di

v2
)

+kpD fi +
1
N

N

∑
l=1

(
kx(Dl

x1
‖Ei‖+Dl

x2
)

+kv(Dl
v1
‖Ei‖+Dl

v2
)+ kpD fl

)]}

=
N

∑
i=1

(−ci
1‖Ei‖+ ci

2‖Ei‖+‖Ei‖
N

∑
j=1

ai j‖E j‖)

(26)

where λmin(Q) > 0 is the minimum eigenvalue of Q and
λmax(P) > 0 is the maximum eigenvalue of P, ci

1,c
i
2 and ai j

are as follows

ai j =





2λmax(P)
N

[
√

k2
x + k2

v ∑
l∈N j

1
|Nl |

+ kxD j
x1

+kvD j
v1

]
, j∈Ni;

2λmax(P) [
√

k2
x + k2

v

(
1
|Ni| +

1
N ∑

l∈N j

1
|Nl |

)

+
1
N

(
kxD j

x1
+ kvD j

v1

)]
, j ∈ Ni.

ci
1 =λmin(Q)[1− 2λmax(P)

λmin(Q)
(kxDi

x1
+ kvDi

v1
)]

(27)

ci
2 =2λmax(P)[2kpσ̄ + kxDi

x1
+ kvDi

v1
+ kpD fi

+
1
N

N

∑
l=1

(kpd fl + kxdxl + kvdvl )]+ |Ni|krcexp(−1
2
),

Clearly, if
kxDi

x1
+ kvDi

v1
≤ 1

β0
, (28)

where
β0 =

2λmax(P)
λmin(Q)

.

then ci
1 > 0, so the first term in (26) gives a negative

contribution to V̇ (E). To proceed, it is noted that as β0
small as possible, the system may tolerate noise with the
largest possible bounds(Di

x1
and Di

v1
) while keeping stability.

Just as [7] and [14] state, β0 is minimized by take Q = In

and it is easy to calculate that min(β0) = 2λmax(P)
λmin(Q) |Q=In = β1.

Substituting β1 into equation (27), we can get the new form
of ci

1,c
i
2 and ai j. Although they are omitted here, we will

directly use them in the below analysis.
Now, let us return to (26) and note that for any 0 < θi < 1,

we have

− ci
1‖Ei‖2 + ci

2‖Ei‖
=− (1−θi)ci

1‖Ei‖2−θici
1‖Ei‖2 + ci

2‖Ei‖
≤− (1−θi)ci

1‖Ei‖2 = σi‖Ei‖2, ∀ ‖Ei‖ ≥ ri.

(29)

where σi = −ci
1(1− θi) and ri = ci

2
θici

1
. Then, if ‖Ei‖ ≥ ri,

the first two term in (26) combined will give a negative
contribution to V̇ (E). In what follows, we seek conditions
under which V̇ (E) < 0. By definition 1, we know |Ni| ≥ 1
for all i and thus 1

|Ni| +
1
N ∑l∈N j

1
|Nl | ≤ 2 for agent i. So, by

(27), we have

ai j ≤β1

[
2
√

k2
x + k2

v +
1
N

(kxD j
x1

+ kvD j
v1

)
]

≤β1

√
k2

x + k2
v

(
2+

1
N

√
D j

x1

2
+D j

v1

2
)

= a∗i j

Next, just as [7] does, the agents can be divided into two
sets according to whether ‖Ei‖ ≤ ri or not. One is

Πo = {i : ‖Ei‖ ≥ ri, i ∈ 1,2, · · · ,N}= {i1o, i
2
o, · · · , iNo

o },
and the other is

ΠI = {i : ‖Ei‖< ri, i ∈ 1,2, · · · ,N}= {i1I , i
2
I , · · · , iNI

I },
where Πo

⋃
ΠI = {1,2, · · · ,N}, Πo

⋂
ΠI = /0. Let the size of

Πo and ΠI are No and NI ,respectively, then No + NI = N.
Although we do not explicitly know the sets Πo and ΠI , they
must exist. Meanwhile, both Πo and ΠI depend on the time
t but we will allow that time to be arbitrary so the analysis
below will be for all time. From now on, we assume No > 0
and for the case No = 0 will be discussed in the later. Then,
by lemma 1 and equations (26)-(29), we have

V̇ (E)≤ ∑
i∈Πo

σi‖Ei‖2 + ∑
i∈Πo

(
‖Ei‖ ∑

j∈Πo

a∗i j‖E j‖
)

+ ∑
i∈Πo

(K1 +K3a∗ii)‖Ei‖+K2 +K4.
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where we used the fact that any ‖Ei‖ has the upper bound
by lemma 1. Thus, for each fixed No, there exists positive
constants K1(No), K2(No), K3(No), and K4(No) such that

K1(No)≥ ∑
j∈ΠI

a∗i j‖E j‖; K2(No)≥ ∑
j∈ΠI

[−ci
1‖Ei‖2 + ci

2‖Ei‖];

K3(No)≥ ∑
i∈ΠI

‖Ei‖; K4(No)≥ ∑
j∈ΠI

(
‖Ei‖ ∑

j∈ΠI

a∗i j‖E j‖
)

.
(30)

Let ω =
[
‖Ei1o

‖,‖Ei2o
, · · · ,‖EiNo

o
‖
]>

, and the No×No matrix
S be specified by

s jn =

{ − (σi j
o
+a∗

ii j
o
), for j = n;

−a∗
ii j

o
, for j 6= n.

(31)

Then, we have

V̇ (E)≤−ω>Sω + ∑
i∈Πo

(K1 +K3a∗ii)‖Ei‖+K2 +K4.

Clearly, if the matrix S is positive definite, i.e., λmin(S) > 0,
we have

V̇ (E)≤−λmin(S) ∑
i∈Πo

‖Ei‖2 + ∑
i∈Πo

(K1 +K3a∗ii)‖Ei‖

+K2 +K4.
(32)

Thus, by (31), when the ‖Ei‖ for i ∈Πo is sufficiently large,
the sign of the V̇ (E) is determined by the first term in (31).
This is valid for any value of No, 1 ≤ No ≤ N. Hence, for
any No 6= 0, the system is uniformly ultimately bounded if S
is positive definite, i.e., S > 0. In what follows, we seek the
conditions for S > 0.

By (31), S is a real symmetric matrix. So a necessary and
sufficient condition for S > 0 is that its successive principal
minors are all positive. Define |sm| as the determinants of
the principal minors of S, m = 1, · · · ,No. Then, we can show
that

|sm|=
{

1+
m

∑
j=1

a∗
i,i j

o

σi j
o

}
m

∏
k=1

(−σiko
).

Due to −σiko
> 0 for all k = 1, · · · ,m, to have all the previous

determinants positive, we need

m

∑
j=1

a∗
ii j

o

σi j
o

>−1,

that is,

m

∑
j=1

β1
√

k2
x + k2

v

(
2+ 1

N

√
Di j

o
x1

2
+Di j

o
v1

2
)

(1−θi j
o
)[1−β1(kxDi j

o
x1 + kvDi j

o
v1)]

< 1. (33)

for all m = 1, · · · ,No. Due to 1 ≤ m ≤ No ≤ N, (33) is
satisfied when (22) is satisfied and thus, S > 0 for all No 6= 0.
Hence, when ‖Ei‖ is sufficiently large, V̇ (E) < 0 and the
uniform boundedness of the trajectories of the error system
is achieved.

To complete the proof, we need to consider the case
No = 0. Note that when No = 0, ‖Ei‖ < ri for all i. If we
have No = 0 for all time, then we could simply take maxi(ri)

as the uniform ultimate bound. Otherwise, at certain time,
the system changes such that some ‖Ei‖ ≥ maxi(ri), then
we have No ≥ 1 immediately, then the analysis follows the
above. Thus, in either case we obtain the uniform ultimate
boundedness.

So far, we have proven that the error system (17) is
uniformly ultimately bounded when certain conditions are
satisfied.

Remark 1: Comparison theorem 1 with the corresponding
result in [7], the main difference between them is that our
result is a distributed algorithm but the results in [7] is a
centralized algorithm. As a result, it is remarkably reduced
that the communication costs for a multi-agent system to
maintain a flocking.

Remark 2: The conclusions are available for the case of
any dimension of Euclidean space because the dimension of
space is not used in the above analysis.

V. CONCLUSIONS

This paper has extended the results in [7] to a more general
case with switching topology and noises, which remarkably
reduces the communication cost for all agents to achieve
flocking in a noisy environment because the proposed results
only require the position graphs being jointly connected. In
future work, the time-delay influence on the convergence of
the system will be considered.
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