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Abstract— This paper formulates a Stackelberg (N + 1)-
person non-cooperative game framework for OSNR optimiza-
tion in optical networks. We introduce cost functions with
differentiated prices for users and develop a cost function
for the higher level Stackelberg player. In the design, we
consider the capacity constraints in optical networks, i.e., that
the total optical power does not exceed the link’s capacity. We
formulate a novel Stackelberg framework in OSNR game and
characterize its Stackelberg equilibrium. Based on it, we give a
closed form solution and develop an iterative algorithm for the
optical network control problem and illustrate the game with
a numerical example.

I. INTRODUCTION

Devices such as optical add/drop MUXes (OADM),
optical cross connects (OXC) and dynamic gain equal-
izer (DGE) have provided essential building blocks for
smart optical networks [1]. These technological advances
have enabled a new generation of reconfigurable optical
wavelength-division multiplexed (WDM) communication
networks, which are dynamically evolving to respond to
changes in traffic and requirements. A static network man-
agement mechanism can no longer service such networks.
Therefore, intelligent network management and control sys-
tems need to be part of future network design.

This paper addresses a power control scheme at a link
level, where channel optical signal-to-noise ratio (OSNR) is
an important performance factor as it directly relates to the
bit error rate (BER) in the transmission [2]. In recent years,
research work on OSNR-based optimization is making an
effort to derive iterative decentralized OSNR optimization
algorithms in optical networks. Two dominant methods are
commonly seen in literature. One is the centralized optimiza-
tion as in [3], [4] and the other is non-cooperative game
theory as in [5], [6]. The centralized approach embeds OSNR
targets in constraints and indirectly minimizes the total power
consumption in optical networks. It is relatively easy to find a
closed form solution with this approach, however, its indirect
minimization of total power consumption doesn’t fully make
use of the network resource for communication purposes.
On the other hand, the non-cooperative game approach
naturally deals with OSNR optimization in a decentralized
and direct manner. However, it is a well-known fact that
the resulting Nash equilibrium may not be Pareto efficient
[7], [8]. In addition, under the OSNR game framework, it
has been a challenge to find an analytical solution for a
game with capacity constraints. Research efforts have been

Quanyan Zhu and Lacra Pavel are with Department of Electrical and
Computer Engineering, University of Toronto, Ontario M5S 3L1, Canada
{qzhu,pavel}@control.utoronto.ca

made to solve this problem by integrating constraints into
utility functions [9], [10]. And, in particular, work has been
done in [11], [12] to deal with such constraints based on
classical Lagrangian duality theory. However, complexity of
the theory needs to be reduced to an applicable form and
it is difficult to give an analytical solution for OSNR Nash
game.

In this paper, we formulate a game with an additional
Stackelberg player to give a closed form solution to the
constrained OSNR game. We may also use the role of
Stackelberg player to achieve an efficient equilibrium under
certain conditions. The Stackelberg player, in reality, can be
implemented via a service channel or a transmission channel
which only needs a target OSNR.

We also compare the Stackelberg equilibrium with the
Nash equilibrium obtained from a similar game with a
non-Stackelberg player. We propose the notion of price of
leadership to quantify the price a Stackelberg player has to
pay to assume the role of leadership.

This paper is organized as the following. In section II, we
review a network OSNR model and give a brief introduction
to unconstrained non-cooperative game approach. In section
III, we establish the framework of Stackelberg game. We
will characterize the Stackelberg equilibrium and discuss the
achievable target OSNR of the Stackelberg player. Section
IV proposes the notion of price of leadership and makes
comparison with game with a fictitious player. An iterative
algorithm is presented in section V and we illustrate the
algorithm using a numerical example. Finally, we point out
the directions of future research and conclude and conclude
in section VI.

II. BACKGROUND

We consider the same optical network model described in
[5]. We let N denote the set of of channels are transmitted
and ui be the i−th channel input optical power (at Tx), and
u = [u1, ..., uN ]T the vector of all channels’ input powers.
The ith channel optical OSNR is thus given as

OSNRi =
ui

n0,i +
∑

j∈N Γi,juj
, i ∈ N (1)

where Γ is the full n×n system matrix which characterizes
the coupling between channels. n0,i denotes the ith channel
noise power at the transmitter. System matrix Γ encapsulates
the basic physics present in optical fiber transmission and
implements an abstraction from a network to an input-output
system. This approach has been used in [6] for the wireless
case to model CDMA uplink communication. Different from
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the system matrix used in wireless case, the matrix Γ is com-
monly asymmetric and is more complicatedly dependent on
parameters such as spontaneous emission noise, wavelength-
dependent gain, and the path channels take.

A game-theoretical model for power control in optical
networks without constraints is formulated in [5]. Let’s
consider a game defined by a triplet 〈N , (Ai), (Ji)〉, where
N is the index set of players or channels; Ai is the strategy
set {ui | ui ∈ [ui,min, ui,max]}; and, Ji is the cost function
chosen in a way that minimizing the cost is related to
maximizing OSNR level. In [5], Ji is defined as

Ji(ui, u−i) = αiui − βi ln
(

1 + ai
ui

X−i

)
, i ∈ N (2)

where αi, βi are channel specific parameters, that quantify
the willingness to pay the price and the desire to maximize its
OSNR, respectively, ai is a channel specific parameter, X−i

is defined as X−i =
∑

j 6=i Γi,juj +n0,i. This specific choice
of utility function is non-separable, nonlinear and coupled.
However, Ji is strictly convex in ui and takes a specially
designed form such that its first-order derivative, the implicit
best response function, takes a linear form with respect to
u.

The solution from the game approach is usually character-
ized by Nash equilibrium (NE). Provided that

∑
j 6=i Γi,j ≤

ai, the resulting NE solution is given in a closed form by

Γ̂u∗ = b̂, (3)

where b̂i = aibi

αi
− n0,i and

Γ̂ =


a1 Γ12 . . . Γ1N

Γ21 a2
. . . Γ2N

...
. . . . . .

...
ΓN1 . . . . . . aN

 . (4)

Similar to the wireless case [6], we are able to construct
iterative algorithms to achieve the Nash equilibrium. A
simple deterministic first order parallel update algorithm can
be found by ui(n + 1) = βi

αi
− X−i(n)

ai
, or equivalently in

terms of OSNRi,

ui(n + 1) =
βi

αi
− 1

ai

(
1

OSNRi(n)
− Γi,i

)
ui(n). (5)

As proved in [5], the algorithm (5) converges to Nash
equilibrium u∗ provided that 1

ai

∑
j 6=i Γi,j ≤ 1,∀i.

III. STACKELBERG GAME

In optical networks, a saturation power level exists in each
link of channel paths [9]. A launched power has to be below
or equal to this threshold so that the nonlinear effects in the
span following each amplifier are kept minimum [13]. We
can easily interpret this effect as a capacity constraint on an
optical link in the network. In this section, we introduce a
noncooperative game with an additional Stackelberg player
to deal with such capacity constraints in optical networks.

Fig. 1. Illustration of Stackelberg Game: users 1,2,3 submit their parametric
information to stackelberg player S. Player S regulates the network by
sending information back to the rest of the players.

Suppose we have a capacity constraint on an end-to-end link
such that ∑

i∈N∪{S}

ui ≤ C, (6)

where S denotes the Stackelberg player. In the Nash game
described in section 2, players behave selfishly to minimize
their own cost function. They make decisions solely based
on their own local information without the knowledge of
other players’ actions. In Stackelberg game, we treat the
additional player as a leader or manager, who can make
decisions based on global information and guide other users
in the network as in [14],[15]. We implement this Stackelberg
player by an optical service channel (OSC) as it serves as
an internode communication channel for management and
user data [1],[16]. We can assume that service channel can
gather the information about the strategy each user employs
and thus make decisions on the network resource allocation
policy. It gives a structure of two-stage leader and follower
extensive game [17],[18], illustrated in Figure 1. In real
practice, service channel can obtain information by asking
for user parameters such as α, β. Parameter αi can be seen
as an evaluation or bid on unit power, and βi as the level
of quality of service. Parameter ai is a technical system
determined parameter that controls the rate of convergence.

We have flexibility at our disposal in choosing an ap-
propriate utility function for the Stackelberg player. One
choice is to take the form like other users as a function of
OSNR. However, it turns out that solving it for an analytical
Stackelberg equilibrium is quite challenging. We notice that
Stackelberg player may not be a network customer, but an
internal network service channel. As a result, its target may
not be optimizing OSNR and it can be satisfied if a certain
OSNR target for this channel is met.

Therefore, in addition to N channel users, we choose
a particular utility function for the Stackelberg player as
in (7). It is composed of its own utility function given
by US =

(
C −

∑
j 6=S uj

)
uS and the cost function by

PS = 1
2

(
ωS + 1T Γ̂−1gS

)
u2

S . The utility is related to two
factors: one is its own power usage and the other is the
penalty from the constraints, or the remaining power in the
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optical system. The cost is specially designed such that it
accounts for the entire network and gives a tractable solution.
In (7), it is given in a quadratic form parameterized by ωS .

JS = PS(uS)− US(uS , u−S) (7)

=
1
2

(
ωS + 1T Γ̂−1gS

)
u2

S −

C −
∑
j 6=S

uj

 uS ,

where u−S = [ui], i ∈ N ; ωS ∈ R is a network design
variable, gS is a vector given by gS = [Γ1S ,Γ2S , ...,ΓNS ]T

and Γ̂ is defined earlier in (4). Since we are implementing
the Stackelberg as OSC, ΓiS , i ∈ N in gS , denotes the
interactions between user channels and OSC.

Following the payoff functions (2) adopted in the uncon-
strained game, in the (N + 1)− person Stackelberg game,
we choose the cost functions for user i ∈ N in a similar
form given by

Ji(ui, u−i) = αiui−βi ln
(

1 + ai
ui

X−i + ΓiSuS

)
,∀i ∈ N .

(8)
where ui ∈ Ai, for i = 1, · · · , N and uS ∈ AS , for i =
S. Such choice of payoff function includes the channel and
channel coupling with OSC, or the Stackelberg player.

A. Stackelberg Equilibrium

A solution that characterizes such (N +1)− person game
is the Stackelberg equilibrium [19]. We provide a precise
definition for the Stackelberg solution concept in (3.1), where
we have one leader and multiple users, or followers.

Definition 3.1: (Stackelberg Equilibrium, [19]) Let Ω =∏N
i=1 Ai and ui ∈ Ai, i ∈ N ∪ {S}. A (N + 1)− person

finite game with (N + 1)-th person, denoted as S, as the
Stackelberg leader, a strategy u∗−S , or [u∗i ], (i = 1, · · · , N),
and u∗S is called a Stackelberg equilibrium for the leader if

J∗S(u∗−S , u∗S) := max
u−S∈R−S(u∗

S
)
JS(u−S , u∗S) (9)

= min
uS∈AS

max
u−S∈R−S(uS)

JS(u−S , uS),(10)

where R−S(uS) = {u′−S ∈ Ω : Ji(uS ,u′−S) ≤
Ji(uS ,u−S), ∀i, ∀u−S ∈ Ω}. The set R−S(uS) is the
optimal response of N players to the strategy uS ∈ AS of
the Stackelberg player. The quantity J∗S is the Stackelberg
cost of the leader.

Remark 3.1: If R−S(uS) is a singleton for each uS ∈ AS ,
then there exists a mapping TNS : AS → Ω, such that
u−S ∈ R−S(uS) implies uS = TNSuS . This corresponds
to the case in which the optimal response of the followers
is unique for every strategy of the leader. A solution u∗S is
a Stackelberg equilibrium if

J∗S(u∗S ,TNSu∗S) = min
uS∈AS

JS(uS ,TNSuS).

The pair (u∗S ,u∗−S) is a Stackelberg solution for the game
with S as the leader, and the costs Ji(u∗S ,u∗−S), i ∈ N are
the corresponding Stackelberg outcome.

B. Characterization of Stackelberg Equilibrium

In this section, we use Definition 3.1 to characterize the
Stackelberg solution. To find the Stackelberg equilibrium
u∗, we can form a system of equations (11) from the best
response function of user i ∈ N . The linearity of the best
response function and the non-singularity of Γ̂ in (11) give
rise to a singleton of set R−S(uS) for each uS ∈ AS .

Γ̂u∗ = ξ(uS), (11)

where Γ̂ is defined in (4), ξ(uS) = b̂− gSuS , or

ξ(uS) =


a1β1
α1

− n0,1 − Γ1SuS
a2β2
α2

− n0,2 − Γ2SuS

...
aN βN

αN
− n0,N − ΓNSuS

 ,u−S =


u1

u2

...
uN

 .

With the assumption of diagonal dominance, i.e.,∑
j Γij < ai on Γ̂, the matrix is nonsingular; the solution to

(11) is uniquely determined by (12) for every uS .

u∗−S = Γ̂−1ξ(uS). (12)

Substitute (12) into (7) and we can obtain JS only in terms
of uS given by

JS =
1
2

(
ωS + 1T Γ̂−1gS

)
u2

S −
(
C − 1T Γ̂−1ξ(uS)

)
uS .

=
1
2

(
ωS + 1T Γ̂−1gS

)
u2

S − CuS

+1T Γ̂−1b̂uS − 1T Γ̂−1gSu2
S . (13)

Suppose uS,min and uS,max are sufficiently small and large
respectively. We can thus take the first derivative of (13) to
find its minimum with respect uS and arrive at

dJS

duS
=

(
ωS + 1T Γ̂−1gS

)
uS − C

+1T Γ̂−1b̂− 2
(
1T Γ̂−1gSuS

)
= ωSuS − C + 1T Γ̂−1

(
b̂− gSuS

)
= 0

Therefore, a necessary condition of a minimum is that u∗S
satisfies

ωSuS + 1T Γ̂−1(b̂− gSuS) = C. (14)

From the second derivative of (13), we observe that a
unique minimum is given by (14) provided that

ωS > 1T Γ̂−1gS . (15)

In addition, when

ωS < 1T Γ̂−1gS , (16)

the minimum is simply achieved at uS,min.
Under the condition of (15), we observe from (14) that it

is equivalent to the slacked capacity constraint

ωSuS + 1T Γ̂−1ξ(uS) = C.
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or equivalently,

ωSuS +
∑
i∈N

ui = C. (17)

Therefore, directly following (14), we can solve for u∗S in a
closed form given by

u∗S =
1

ω′S

(
C − 1T Γ̂−1b̂

)
, (18)

where ω′S = ωS − 1T Γ̂−1gS . Since uS is positive, it is
required that

1T Γ̂−1b̂ < C, (19)

In summary, under (19) and (15), u∗S can be obtained
in a closed-form as in (18) and (12). It describes a sit-
uation in which the unconstrained allocations among N
non-Stackelberg users satisfy the strict inequality (6) and
the Stackelberg player gets the remaining resources. When
condition (19) doesn’t hold, the Stackelberg player regulates
the network by allocating himself a minimum power and
other users respond to this allocation according to (11). Other
cases will result in unrealistic solutions.

Condition described by (19) can be satisfied by imposing
a simplified sufficient condition described in (20) which has
its implication in admission control. This is summarized into
the following proposition.

κ maxi b̂i

√
N√

ρ(Γ̂TΓ̂)
≤ C. (20)

Proposition 3.1: Let ρ(·) denotes the spectral radius and
κ be the condition number. If κ maxi b̂i

√
N√

ρ(Γ̂TΓ̂)
≤ C, ω′S >

0 and ωS ≥ 1, the Stackelberg solution u∗ is uniquely
given by (12) and (18) and satisfies the capacity constraint∑

i∈N∪{S} ui ≤ C. In addition, when ωS = 1, the solution
is Pareto efficient.

Proof: First of all, we need to show that (13) and the
utility functions Ji, i ∈ N are convex and there exists a
minimizing u∗. It has been proved in [5] that functions (2)
is convex in ui. We just need to show the convexity of (13)
in uS . With the condition of (15), the convexity of JS in uS

will follow because the second derivative of (13) is positive.
Due to the fact that ui ∈ [umin, umax] gives a compact set,
there exists a minimizing uS .

Secondly, we derive a sufficient condition for (19). Starting
with the condition

∑
j 6=S uj ≤ C, we use matrix norm

inequality ‖Γ̂‖2 ≤
√

N‖Γ̂‖∞ [20] to obtain an upper bound
on ‖1T Γ̂−1b̂‖∞.

‖1T Γ̂−1b̂‖∞ ≤ ‖1T Γ̂−1‖∞‖b̂‖∞ ≤ κ

‖Γ̂‖∞
‖b̂‖∞ ≤

κ maxi b̂i

‖Γ̂‖∞
≤ κ maxi b̂i

√
N

‖Γ̂‖2

=
κ maxi b̂i

√
N√

ρ(Γ̂TΓ̂)
.

where κ is the condition number of Γ̂, given by κ =
‖Γ̂‖∞‖Γ̂−1‖∞.

If inequality κ maxi b̂i

√
N√

ρ(Γ̂TΓ̂)
≤ C holds, then the solution to

the Stackelberg player is given in (18). If we further assume
that for a given C ≥ aibi

αi
− n0,i,∀i, then it will reduce the

condition (20) to ρ(Γ̂TΓ̂) ≥ κ2N . This result alludes to the
maximum number of channels to be admitted in the network
for a fixed capacity.

Lastly, we prove that there exists a unique solution under
the assumption of diagonal dominance of matrix Γ̂. With
ai >

∑
j 6=i Γij , matrix Γ̂ becomes diagonally dominant.

From Gershgorin’s Theorem [21], it follows that Γ̂ is non-
singular and there exists a unique solution to linear system
(11).

When ωS ≥ 1, any solution from (17) satisfies the capacity
constraint

∑
i∈N∪{S} ui ≤ C due to the fact∑

i∈N
ui + uS ≤ ωSuS +

∑
i∈N

ui = C,∀ωS ≥ 1,

where the equality comes from (17) and the inequality comes
from ω ≥ 1. In addition, since we have ωS > 1T Γ̂−1gS , this
ensures that uS > 0. It is obvious that when ωS = 1, uS

will be Pareto efficient.

IV. PRICE OF LEADERSHIP

In this section, we make a comparison between con-
strained OSNR Stackelberg game (GSP) and the game with
fictitious player (GFP). We define the notion of price of
leadership which quantifies the price that a Stackelberg
player has to pay to assume his role of leadership and obtain
the knowledge of his teammates.

A. Game with a Fictitious Player

Following the same idea described in section 3, we use
an additional player to formulate the game with fictitious
player (GFP) to tackle the game in section 2 with capacity
constraints. Instead of having a Stackelberg player, we let the
additional player be a fictitious player, denoted as F , who
optimizes his own utility without the knowledge of his peers.
We choose the cost function of the fictitious player as

JF = PF (uF )−UF (uF ) = ωF uF −

C −
∑
j 6=F

uj

 lnuF ,

where PF = ωF uF is the cost term for the player F ’s power
usage, UF =

(
C −

∑
j 6=F uj

)
lnuF is the utility of player

F , and ωF ∈ R is a user parameter. It has been shown in
[22] that the solution to the GFP is given by

u−F = Γ̂−1ξ(uF ),

uF =
1

ωF

(
C − 1T Γ̂−1b̂

)
,

when gF = [Γ1F ,Γ2F , · · · ,ΓNF ]T = 0.
It is easy to observe that the solutions to GSP and GFP

are in the same form. Suppose gS = gF = 0. In this case,
u−S = u−F ; however, uF and uS are related by

η =
uS

uF
=

ωF

ω′S
.
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B. GSP vs. GFP
To compare GSP with GFP, we let gS = gF = 0, and

η = 1, i.e., uF = uS = u, ωF = ω′S = ωS − 1T Γ̂g = ω.
Under these assumptions, the solutions from GSP and GFP
become identical, but the the payoff values for player S and
player F are different. We define ηP and ηU as follows.

ηP =
PF

PS
=

2
u

, ηU =
UF

US
=

ln(u)
u

.

It is obvious that ηP and ηU measure the cost and utility
ratios between F and S in GFP and GSP, respectively. With
full information, the Stackelberg player obtains more utility
than being a fictitious player. On other hand, it costs less for
the Stackelberg player when his power consumption doesn’t
exceed 2 units.

To characterize the total payoff, we define the payoff
difference between GSP and GFP as the price of leadership,
given by ∆JFS = JF −JS=− 1

2ωu2−du2+(t+ω)u−t lnu.

where d = 1T Γ̂−1g, t = C −
∑

j 6=F,S uj .
Theorem 4.1: Suppose ω > t, u ∈ [0, umax]. An upper

bound and a lower bound exist on ∆JFS . They are given by

ωumax ≤ ∆JFS ≤ t +
1
2
ω

Proof: To show an upper bound of ∆JFS , we find an
inequality as follows.

∆JFS ≤ min
u
−1

2
ωu2 + (t + ω)u− t ln(u).

The optimal solution to the right-side inequality is achieved
at u∗ such that

dR(u)
du

= −ωu + (t + ω)− t/u = 0.

Therefore, u = t/ω or u = 1. From the second derivative

d2R(u)
d2u

= −ω + tu−2,

we can conclude that u = 1 is an optimal solution when
ω > t, and umax > 1. Therefore, we obtain an upper bound
∆JFS ≤ t + 1

2ω.
On the other hand, since u > ln(u), we have the inequality

of
∆JFS ≥ max

u
ln(u).

The optimality of the right-hand inequality is achieved at
u = ln(umax). Therefore, ∆JFS ≥ ln(umax).

V. ITERATIVE ALGORITHM AND EXAMPLE

We can improve the first-order algorithm in (5) by includ-
ing the Stackelberg player. It is described as follows.

Algorithm 5.1:
Stackelberg player:

uS = max
(

uS,min,
1
ω′

(C − 1T Γ̂−1b̂)
)

(21)

User algorithm:

ui(n + 1) =
βi

αi
− 1

ai
[(

1
OSNRi(n)

− Γi,i)ui(n)

+ ΓiSuS ],∀i ∈ N ; (22)

Fig. 2. A Typical Optical Link in DWMW Optical Networks

Fig. 3. Channel Power in Time Steps

where OSNRi measures the OSNR level of each channel
as in (1). The Stackelberg player firstly sets his own power
in (21) and then passes its value to users who respond to uS

in (22).
We illustrate the linear OSNR Nash game by a MATLAB

simulation. We consider an end-to-end link described in
Figure (2) with 5 amplified spans. We assume 3 channels
are transmitted at wavelengths distributed from 1554nm to
1556nm with channel separation of 1nm. Suppose input noise
power is 0.5 percent of the input signal power and the total
power constraint is C=7.0mW. The gain profile for each
amplifier is identically assumed to be parabolic and gives
G1 = 29.2dB,G2 = 30.0dB, and G3 = 29.2dB, respectively.
The 3-by-3 Γ matrix is thus given as

Γ =

 6.187× 10−4 1.094× 10−4 2.732× 10−4

4.063× 10−4 6.786× 10−4 2.206× 10−4

2.728× 10−4 3.752× 10−4 2.728× 10−4


In Figure 3, we show the convergence of channel power
evolution in steps with a Stackelberg channel, which takes
1.8338mW of the remaining power from the capacity and
manifests a power allocation efficiency of 73.8% for the
link with respect to the capacity. Figure 4 demonstrates the
resulting OSNR level in the game with a Stackelberg player.

VI. CONCLUSION

In this paper, we introduced an additional player into the
unconstrained OSNR Nash game to formulate Stackelberg
game. It can be implemented via an optical service channel
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Fig. 4. Channel OSNR in Time Steps

which serves as a manager that regulates network perfor-
mance. By choosing a cost function for the Stackelberg
player, we can design an arbitrating mechanism to solve
the corresponding game with capacity constraints in optical
networks. We gave a closed form of the resulting Stackelberg
equilibrium, from which we derived an iterative algorithm.
In addition, we discussed the attainable OSNR levels within
this framework.
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