
Kalman Filtering with Optimal Sensor Motion Planning

Islam I. Hussein

Mechanical Engineering

Worcester Polytechnic Institute

Worcester, MA 01609 USA

ihussein@wpi.edu

Abstract— In this paper the Kalman filter equations are re-
derived for systems with mobile sensors. The motion of the
sensor impacts the measurement noise statistical properties
through the measurement covariance matrix and, consequently,
the estimation error covariance matrix. Moreover, since the
sensors are mobile, their motion has an associated control cost.
Minimizing the control effort expended during the measure-
ment process is of critical importance in many applications,
in particular where fuel and energy resources scarce. With
this realization, the Kalman filter equations are re-derived in
this paper to include sensor dynamics and their impact on
the estimation error. While the classical Kalman filter seeks
to minimize a measure of the estimation error, in this paper
the goal is to minimize both the estimation error as well
as control energy expended during the estimation process.
Necessary optimality conditions are derived, and are further
simplified for the case where the process to be estimated is
composed of a set of decoupled and uncorrelated processes.
A mathematical continuation approach is proposed to solve
the resulting nonlinear two-point value problem. A numerical
example is provided to illustrate the work of this paper.

I. INTRODUCTION

The problem of estimating a noisy signal using a noisy

sensor is a classic problem in estimation theory. The optimal

solution to the problem of estimating a linear time varying

process is the Kalman filter [1]. With the accelerated progress

made in sensor and autonomous vehicle technologies that can

host these sensors, as well as the emergence of applications

that need to employ such technologies, a new feature in the

estimation problem arises. This feature is the introduction

of a new degree of freedom that needs to be optimized, in

particular if it influences the estimation process. This new

degree of freedom is the sensor motion itself, which is now

seen as a variable that influences the quality of the estimate.

Moreover, since sensor motion requires energy expenditure

and since energy resources may be scarce or very valuable

in many (in particular, long time range) applications, the

amount of control energy expended during the estimation

process becomes another quantity that we may need to

minimize along with the estimation error. Hence, one now

has to ask: How should the sensors be best moved in order

to maximize the estimation quality and minimize the control

energy expended in the maneuver?

The question of mobility in multi- and single sensor

estimation problems, though not including optimality, has

been addressed by many researchers in recent years. Most

of the literature has been focused on extending the Kalman

filter to mobile sensor networks from different perspectives,

including distributed Kalman filtering with consensus filters

[2], for solving consensus problems [3], [4] and sensor fusion

[5], Kalman filtering for coverage control and simultaneous

localization and mapping (SLAM) [6]–[8], where we note

that not all the cited articles involve mobile sensors. This

list of papers is by no means comprehensive, and we refer

the reader to these papers and references therein on Kalman

filtering for fixed and mobile sensor networks.

The earliest paper on decentralized Kalman filtering in a

combined sensing and control setting is the paper by Speyer

[9]. In this paper a decentralized control problem involving

multiple sensor/actuator nodes is formulated, where the goal

is to share the information of each sensor, processed with a

local Kalman estimator, with all the other nodes so that the

controllers can be computed using the best estimate of the

state of the system given the information from all the sensors.

The controls are determined so that the expected value of

a quadratic performance index is minimized. Hence, the

paper [9] and the present work share the common theme of

obtaining controls to maximize a performance metric, except

that in the present work decentralization is not considered

and where the control is not used to influence the process

to be estimated, but, instead, to control the location of the

sensors to maximize a given performance metric.

The question of optimal filtering with mobile sensors has

not been widely addressed in the past. In [10], by allowing

sensors to continuously and autonomously correlate the out-

comes of their previous observations and use them to plan

for next observations, more effective sensory activities can

be achieved. The authors propose a mathematical formulation

which ties together, the state of uncertainty of the sensor and

the parameters that control its sensing activities in an optimal

control setting. In [11], the authors consider the nonlinear

filtering problem of a diffusion process where several noisy

vector observations with possibly different dimensions are

available. At each time the problem considered is the optimal

selection of a schedule of available sensors to optimally

estimate a function of the state at the final time.

In this paper we formulate a cost functional that is a

weighted sum of (1) the error covariance matrix at the ter-

minal time (a soft constraint on the terminal error covariance

matrix), (2) the control energy expended throughout the

maneuver, and (3) the error covariance matrix throughout

the maneuver. The maneuver is required to be complete over
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a predetermined time interval given a set of initial sensor

positions and velocities. The sensor vehicle dynamics are

assumed linear. Terminal sensor positions and velocities can

be kept free or can be set before hand, though in this paper

we keep the terminal sensor state free. There are several

ways to derive the optimality conditions for the classical

Kalman filter. However, the one that is most in line with

the optimal control approach of this paper is the paper [12],

where the author derives the Kalman filter equations using

Pontryagin’s maximum principle [13]. We follow the same

approach (as opposed to, say, a variational approach) in

this paper, where the optimality conditions involve solving

a two-point boundary value problem, which is a difficulty

when compared to the classical Kalman filter, which involves

solving an initial value problem. Given this difficulty, we

proposed a method based on mathematical continuation [14]

to solve the two-point boundary value problem. This solution

approach may not converge to the global optimal solution,

but will converge to local optima (which may in fact be

suboptimal). The present paper derives necessary optimality

conditions and the question of sufficient conditions and/or

uniqueness of the solutions is the subject of future research.

The paper is organized as follows. In Section II, the

classical Kalman filter is reviewed and the optimal control

problem of interest in this paper is introduced. In Section

III, the necessary optimality conditions are derived and in

Section IV we propose a method to compute trajectories

that satisfy the optimality conditions. In Section V, the

optimality conditions for the simple case where the processes

to be estimated are decoupled and uncorrelated is derived

in a simple form and numerical simulation is provided. We

conclude the paper with current and future research.

II. PROBLEM FORMULATION

A. The Constraining Equations

Consider a linear process described by the following set

of linear time varying equations:

ẋ(t) = A(t)x(t) + B(t)w(t), y(t) = C(t)x(t), (1)

where x(t) ∈ R
n is the state of the process, w(t) ∈ R

r is a

vector-valued white-noise Gaussian process with zero mean

E [w(t)] = 0, ∀t and covariance given by E [w(t)w′(t)] =
δ(t − τ)Q(t), where δ(·) is the Dirac delta function and

Q(t) being a symmetric positive definite matrix for all t,
and y(t) ∈ R

m is the output to be measured by a set of

moving sensors. The matrix A(t) is n × n, B(t) is n × r,

and C(t) is m × n.

It is assumed that the initial state x(t0) is a vector-valued

Gaussian random variable independent of the process noise

w(t), with a known mean E [x(t0)] = x̄0 and covariance

matrix E [x(t0)x
′(t0)] = Σ0. Hence, x(t) and, consequently,

y(t) are Gaussian random processes.

The sensor measurement is described by the equation

z(t) = y(t) + ν(t) = C(t)x(t) + ν(t), (2)

where ν(t) ∈ R
m is a Gaussian white-noise process

with zero mean, E [ν(t)] = 0, and covariance given by

E [ν(t)ν′(t)] = δ(t − τ)R(t), R(t) being a symmetric

positive definite matrix for all t. In this paper, we will assume

that R(t) is in fact a function of the relative distance between

the sensors and the process location. We will return to this

issue, which is at the crux of this paper, in the next section.

In this paper, the Linear time-varying filter is given by
˙̂x(t) = F(t)x̂(t) + G(t)z(t), (3)

where F(t) is a n× n matrix1 and G(t) is a n×m matrix.

The estimation error is then given by

e(t) = x(t) − x̂(t) (4)

and it satisfies the error dynamics given by

ė(t) = (A(t) − F(t) − G(t)C(t))x(t)

+F(t)e(t) + B(t)w(t) − G(t)ν(t), (5)

To guarantee an unbiased estimate x̂(t), F(t) and G(t) are

constrained to satisfy [12]

F(t) = A(t) − G(t)C(t). (6)

Defining the error covariance matrix Σ(t) :=
E [e(t)e′(t)], one can verify that the error covariance

matrix satisfies the equation [12]

Σ̇(t) = (A(t) − G(t)C(t))Σ(t)

+ Σ(t) (A(t) − G(t)C(t))
′

+ B(t)Q(t)B′(t) + G(t)R(t)G′(t), Σ(t0) = Σ0, (7)

where we have eliminated F(t) as given in equation(6). Note

that in deriving the error covariance matrix equation the fact

that R may be dependent on the sensor positions played no

role. Equation (7) represents the first constraining equation

for the optimal control problem developed in the next section.

We now introduce the dynamics for each mobile sensor.

Each sensor is assumed to satisfy dynamics of the form

ẋs,i(t) = As,ixs,i + Bs,iui, xs,i(t0) = x0

s,i, (8)

i = 1, . . . , N , where N is the number of sensors, xs,i ∈ R
4

is the state of sensor i, and ui ∈ R
2 is the control force

acting on sensor i. xs,i = (pi(t),vi(t)) is thus a vector

of length2 4, where pi(t) ∈ R
2 denotes the position of

sensor i and vi(t) ∈ R
2 denotes the velocity of sensor

i. Aggregating the sensor dynamics into a single vector

xs(t) = (xs,1(t),xs,2(t), . . . ,xs,N ) ∈ R
4N , the control

vectors ui into the single vector u(t) = (u1, . . . ,uN (t)) ∈
R

2N , the matrices As,i into the single matrix As =
diag (As,1, . . . ,As,N ), and the matrices Bs,i into the single

matrix Bs = diag (Bs,1, . . . ,Bs,N ), the sensors’ dynamics

can be written in the compact form

ẋs(t) = Asxs(t) + Bsus(t), xs(t0) = x0

s. (9)

More general dynamics may also be easily considered.

Above, diag (A,B, . . . ,Z) denotes a block diagonal matrix

whose block diagonal components are A,B, . . . ,Z. Equa-

tion (9) represents the second constraining equation for the

optimal control problem developed in the next section.

B. The Optimal Control Problem

If the sensors are fixed the only free variable is G(t).
Moreover, if the goal is to minimize the cost

Jkf = Tr [M(tf )Σ(tf )] , (10)

1Here we assume that the filter has the same dimension as the process,
though it is standard to generalize to higher dimensional filters.

2The dimension of pi(t) and vi(t) may increase to higher dimensions
if three-dimensional and rigid body motions, or three-dimensional vehicle
models are of interest.
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where Tr denotes the trace of a square matrix and M(tf )
is a positive definite matrix, subject to the covariance matrix

equation (7), then the optimal choice for G(t) is given by

G(t) = Σ(t)C′(t)R−1(t). (11)

Substituting this and equation (6) into equation (3) one

obtains the classical Kalman filter equations [12].

If the sensors are mobile, additional degrees of free-

dom become available. These are namely the trajectories

of the sensors in the system. Since the locations of the

sensors influence the quality of the estimated signal, via the

observation covariance matrix, one can then ask “what is

the optimal trajectory to achieve the maximum estimation

quality?” If energy efficiency is not a concern, the answer

to this question is simply to move the agents to the “sweet

spots” of the sensors, where optimal estimation is achieved

based on the sensor characteristics [15], [16]. If we also have

the additional requirement that, in addition to minimizing the

estimation error, the trajectory minimizes the control energy

expended during the maneuver. Control effort efficiency is

a desirable property, in particular, when energy is scarce

or when battery recharging or re-fueling is not readily

available. Including energy efficiency in the cost may have

the consequence that sensor sweet spots are not necessarily

the optimal sensor locations since getting to these locations

may require a prohibitive amount of control energy. Hence,

the goal is to find a trajectory that minimizes a weighted sum

of estimation error as well as control energy. This discussion

motivates the following optimal control problem.

Problem II.1. Given an initial time t0 and a final time tf , a

set of N mobile sensors that satisfy the equations of motion

(9), and the error covariance matrix dynamics (7), find the

optimal values for G(t) and us(t) that minimize

J = Tr [M(tf )Σ(tf )] +

∫ tf

t0

α

2
‖us‖

2
+ Tr [KΣ(t)] dt, (12)

where α ≥ 0 is a weighting parameter and K is a symmetric

positive semi-definite n × n weighting matrix. No terminal

conditions on the sensor location or velocity are imposed.

Two important remarks are in order. In the case when

the sensors are immobile, one may be tempted, in an effort

to recover the classical Kalman filter equations, to just set

α = 0 and K = 0. As will be mathematically seen from the

optimality conditions, sensor immobility is in fact reflected

in the problem formulation by setting α = ∞. By setting

α = ∞, any nonzero control vector us immediately results in

an infinite cost, which is obviously non-optimal since setting

us = 0 will result in a finite cost. With us = 0 and K = 0,

the resulting finite cost is exactly that which results from the

classical Kalman filter with immobile sensors. In the next

section, we derive the necessary optimality conditions, where

it should become obvious that α = ∞ corresponds to the

immobile sensors case. Setting α = 0 corresponds to the

case where control effort is of no concern and an infinite

source of energy is available to us. α = 0 results in a singular

optimal control problem. In fact, in the next section we will

restrict α to being strictly positive. In the immobile sensor

case, the only free variable, as in the classical Kalman filter,

is just G(t). In the mobile sensor case, both G(t) and u(t)
are free variables.

The second remark is in regards to terminal conditions

on sensor locations and velocities, which are kept free in

problem II.1. One may also impose terminal conditions on

the sensor locations and velocities. An important application

is a scenario where an autonomous aerial vehicle equipped

with a radar detection sensor flies through a way-point at

a particular speed. This defines the initial aircraft position

and velocity. The goal is to pass through a second way-point

at a particular speed. This defines the terminal condition on

the sensor position and velocity. The optimal control problem

II.1 seeks to find the trajectory that satisfies the sensor bound-

ary conditions, its dynamics, the filter constraining equations,

and that optimizes between a weighted sum of the fuel cost

and estimation quality. The above optimal control problem

and the ensuing derivation of the optimality conditions can

easily be modified (in fact, only transversality conditions will

be modified below) to deal with terminal sensor position

and velocity conditions. The reason we restrict attention to

the free terminal sensor condition case is that there is a

straightforward mathematical solution procedure to solve the

optimal control problem that will be described in Section IV.

III. NECESSARY OPTIMALITY CONDITIONS

As in [12], the optimality conditions are derived using

the Pontryagin maximum principle [13]. We first form the

pre-Hamiltonian, which is given by

Ĥ = Tr
[

Σ̇(t)Λ′(t)
]

+ λ(t) · ẋs(t)

−
α

2
‖us(t)‖

2
− Tr [KΣ(t)] , (13)

where Λ(t) is an n× n generalized momentum matrix dual

to Σ(t) and λ(t) ∈ R
n is a generalized momentum vector

dual to xs(t). After substituting equations (7) and (9) into

equation (13), the Hamiltonian is obtained by finding the

critical value of Ĥ with respect to G(t) and us(t), equating

to zero to obtain expressions for G(t) and us(t) in terms of

the multipliers Λ(t) and λ(t), and finally substituting back

into Ĥ . Firstly, the critical value of Ĥ with respect to the

free variables G(t) and us(t) gives

∂Ĥ/∂G(t) = 0, ∂Ĥ/∂u(t) = 0,
which result in

0 = −Λ(t)Σ(t)C′(t) − Λ′(t)Σ(t)C′(t)

+ (Λ′(t) + Λ(t))G(t)R(xs(t))

0 = −αu(t) + B′

sλ(t), (14)

where we used the identities [17]

∂Tr [AX′] /∂X = A, ∂Tr [AX′B] /∂X = BA. (15)

Remark. Note that the partial derivative of a function with

respect to a matrix is known as a matrix gradient. The result

is again a matrix. Matrix gradients can also be of vector and

matrix maps of matrices. The result is a higher order tensor.

We will come across such gradients shortly. We refer the

reader to [17], [18] for more on derivatives of vector and

matrix maps with respect to a matrix. •
The adjoint variables satisfy the following equations:

Λ̇(t) = −∂Ĥ/∂Σ, λ̇(t) = −∂Ĥ/∂xs,
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which result in

Λ̇(t) = − (A(t) − G(t)C(t))
′

Λ(t) (16)

− Λ(t) (A(t) − G(t)C(t)) − K

λ̇(t) = − A′

sλ(t) −

(

I4N ⊗
∂f (R)

∂ (rs (R))

)(

∂ (rs (R))
′

∂xs

)

,

where we used the following identities [17]:

∂Tr [XA] /∂X = A′, ∂Tr [AXB′] /∂X = A′B

∂Tr [AXBX′] /∂X = A′XB′ + AXB (17)

and the fact that Σ is symmetric. In the above ⊗ is the

Kronecker product, and rs (A), where A is n×m, is a row

vector obtained by taking the rows of A and stacking them

horizontally to obtain a 1×nm row matrix. In obtaining the

expression for λ̇, one had to apply a matrix chain rule. There

are several conventions in the literature, where we adopted

the one found in [18]. The function f(R) is given by

f(R) = Tr [G(t)RG′Λ′] . (18)

Transversality conditions give

Λ(tf ) =
∂

Σ(tf )
Tr [M(tf )Σ(tf )] = M(tf ), λ(tf ) = 0. (19)

The right hand side of the second equation is zero since

there are no soft or hard terminal conditions on xs. In the

case where terminal soft or hard constraints are imposed on

the sensor locations and velocities, the right hand side of the

second equation will not be zero.

Note that the equation for Λ̇ in (16) is a linear matrix

differential equation in Λ. Note also the Λ(tf ) from the

transversality conditions is symmetric and positive definite

since so is M(tf ). These two facts imply that Λ(t) is

symmetric and positive definite. Using these two properties

of Λ, one can simplify equations (14) in the form:

G∗(t) = Σ(t)C′(t)R−1(xs(t)), u∗(t) =
1

α
B′

s(t)λ(t). (20)

Remark. Note that:

1. The Kalman gain G(t) in the present case is exactly equal

to that in the classical Kalman filter [12].

2. If α = ∞, the control force is zero, which corresponds to

the immobile sensor case. In the case where α = 0, we have

a singularity that results in infinite control forces, which is

not a feasible solution. Hence, from hereon we restrict α to

being a strictly positive real number. •
Substituting the optimal expressions for G and us from

(20) in the pre-Hamiltonian, one obtains the Hamiltonian

function H , which is a function of the states xs(t) and Σ(t),
and the co-states λ(t) and Λ(t). The equations governing the

optimal values of Λ∗ and λ
∗ are then given by

Λ̇∗(t) = −
∂H

∂Σ
= − (A(t) − G∗(t)C(t))

′

Λ∗(t)

−Λ∗(t) (A(t) − G∗(t)C(t)) + K

λ̇
∗

(t) = −
∂H

∂Σ
= −A′

sλ
∗(t) (21)

+

(

I4N ⊗
∂f2 (R)

∂ (rs (R))

)

∗
(

∂ (rs (R))
′

∂xs

)∗

Λ∗(tf ) = M(tf )

λ
∗(tf ) = 0,

where (·)
∗

means that all the variables inside the parentheses

are evaluated along the optimal trajectory, and where

f2(R) = Tr
[

Σ(t)C′(t)R−1(xs(t))C(t)Σ(t)Λ′(t)
]

. (22)

Equations (21) are the necessary optimality conditions. We

have the following result.

Theorem III.1. The equations (21) along with the equations

of motion (7) and (9) evaluated along the optimal trajectory

are the necessary optimality conditions for the problem II.1.

IV. A NUMERICAL PROCEDURE FOR SOLVING THE

NECESSARY OPTIMALITY CONDITIONS

Note that the set of optimality conditions is comprised of

four first order matrix and vector differential equations (21),

(7) and (9) with two point boundary conditions. This is a

significant difficulty in the present result. While the Kalman

filter results in solving an initial value problem that can be

solved in realtime, the optimal control problem presented

here requires the solution of a two-point boundary value

problem. However, this is a standard difficulty in optimal

control approaches and many techniques such as receding

horizon control (see for example [19] and references therein)

can be used to obtain (suboptimal) solutions for the optimal

control problem in realtime.

For off-line determination of the optimal solution, one

can use, for example, Matlabr’s bvp4c.m function, the two-

point boundary value problem solver [20], [21]. This uses

a simple shooting method that requires an initial guess for

the time parameterized states: Σ(t), xs(t), Λ(t), and λ(t).
Since an initial guess is hard to obtain for the nonlinear,

possibly time-varying optimality conditions, one can make

use of the standard Kalman filter solution, and use a contin-

uation method (homotopy) to solve the problem (a general

discussion of the method applied to two point boundary value

problems can be found in Chapter 7 in [14].) This is done

as follows.

Consider the following cost functional:

Jǫ = Tr [M(tf )Σ(tf )]

+
1

ǫ

(∫ tf

t0

α

2
‖us‖

2
+ Tr [KΣ(t)] dt

)

, (23)

where 0 ≤ ǫ ≤ 1. Note that if ǫ = 0, then we are

placing an infinite wight on the integral part of the cost and

the solution to problem II.1 is the classical Kalman filter

solution, which is easily computable since it only involves

an initial value problem as explained in Section II. Here is

where we highlight the need for having free terminal time

sensor locations and velocities. If the terminal sensor vehicle

conditions were not free but constrained to be different from

the initial conditions, then clearly the Kalman filter is not a

solution to the problem with ǫ = 0 since the classical Kalman

filter necessarily requires an immobile sensor, which violates

terminal sensor vehicle conditions. Hence, the main reason

why we keep the terminal vehicle conditions free is to be

able to use the classical Kalman filter as a starting solution

for the modified optimal control problem when ǫ = 0. If

we need to impose terminal conditions on sensor vehicle

position and velocity, then an alternate solution method has

to be pursued. This is the focus of current research.
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For a nonzero value of ǫ, the necessary optimality con-

ditions are identical to those given in the previous section

except that the optimal value of us is given by

uǫ
s

∣

∣

∗

=
ǫ

α
B′

s(t)λ(t). (24)

In a continuation method, one uses the solution to the

problem with ǫ = ǫ0 = 0 (that is, the classical Kalman filter

which is easily computable) as the initial guess for ǫ1 = δ,

where δ is a sufficiently small parameter. Assuming that the

problem with ǫ = ǫ1 = δ has been successfully solved, one

then uses this solution as the initial guess for the next step

with, say, ǫ = ǫ2 = 2δ. This is repeated until ǫ = ǫj = jδ is

sufficiently close to ǫ = 1. At this point, we are able to solve

the original two point boundary value problem (21), (7) and

(9), since ǫ = 1 corresponds to the original problem we seek

to solve. In the next section, we will apply the mathematical

continuation approach to solve the optimal control problem.

V. LINEAR TIME INVARIANT CASE WITH DECOUPLED,

UNCORRELATED PROCESSES

In this section, we simplify the above equations for the

situation where the state to be estimated x is composed

of a set of n decoupled and uncorrelated processes, each

satisfying a linear time-invariant process. This case arises

naturally in many applications and is also of much interest.

In this case, the matrix A = diag (A1, . . . , An) and B =
diag (B1, . . . , Bn) is a diagonal n×n matrix (here we have

set r = n for simplicity). We will also assume that the

noise corrupting the process is uncorrelated and, hence, that

the covariance matrix Q is a diagonal matrix of the form:

Q = diag (Q1, . . . , Qn). The matrix C is chosen to be

the Nn × n row block matrix composed by concatenating

m identity matrices of dimension n × n row-wise (i.e.,

each sensor has access to all states to be measured. Hence,

m = Nn since the number of outputs is equal to the number

of sensors times the number of states.

Assuming that the sensor measurements are uncorrelated

(which is a natural assumption to make), the covariance

matrix R(xs) is a Nn × Nn block diagonal matrix of

the form R(xs) = diag(R1(p1), . . . ,R
N (pN ), where each

Ri(pi) (i = 1, . . . , N ) is a n×n diagonal matrix: Ri(pi) =
diag

(

Ri
1(pi), . . . , R

i
n(pi)

)

, and where we recall that pi is

the position of sensor i. In this example, we will assume that

each Ri
j(pi) is a function of the distance between between

the sensor i and the location of the jth state of the process

to be estimated. Here we assume that the state x has a fixed

location and, hence, the measurement covariance matrix is

a function of the position of the sensor location alone as

is the case with the earlier developments in this paper. The

case where the process to be estimated is the position of,

say, a target (as in target tracking), the problem is a bit more

complex since the covariance matrix R itself is an estimate

as opposed to being a deterministic quantity that is based on

some sensor model. This situation is the subject of future

work.

Based on the above the covariance matrix Σ is a diagonal

matrix of the form Σ = diag (Σ1, . . . ,Σn). As described in

Section II, the state of the sensors xs is given by xs =

((p1,v1) , · · · (pN ,vN )). We will assume that all sensor

vehicles are identical. The matrix As is a block diagonal

matrix of the form As = diag (As,1, . . . ,As,N ) where

As,i =









0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0









for all i = 1, . . . , N . The matrix Bs is a block diagonal

matrix of the form Bs = diag (Bs,1, . . . ,Bs,N ), where

Bs,i =

[

0 0 1 0
0 0 0 1

]

′

.

The covector Λ will then be diagonal of the form

Λ = diag (Λ1, . . . ,Λn). The covector λ is a vector of

length 4N . We will partition λ in the following man-

ner. Let λ
1

i denote the covector associated with the po-

sition vector of sensor i and λ
2

i denote the covector as-

sociated with the velocity vector of sensor i. Hence, we

write λ =
((

λ
1

1,λ
2

1

)

,
(

λ
1

2,λ
2

2

)

, . . . ,
(

λ
1

N ,λ2

N

))

. Finally,

we will assume that both M(tf ) and K are diagonal

n × n matrices, where M = diag(M1, . . . ,Mn) and K =
diag (K1, . . . ,Kn). One can show that

Σ̇i == 2Σiai − Σ2

i

N
∑

j=1

(

rj
i

)

−1

+ Qi. (25)

The sensor vehicle equations of motion are given by

ṗi = vi, v̇i =
1

α
λ

2

i , i = 1, . . . , N. (26)

One can verify that Λ is diagonal matrix, where the ith

diagonal of Λ is given by

Λ̇i = −2Λi



ai − Σi

N
∑

j=1

(

rj
i

)

−1



 + Ki. (27)

Our final goal is to obtain an expression for λ̇. One can show

that

λ̇
1

i = −

n
∑

j=1

ΛjΣ
2

j

1
(

ri
j

)2

∂ri
j

∂pi

, λ̇
2

i = −λ
1

i . (28)

The above equations can then be solved using a numerical

procedure as described in Section IV.

In the following simulation, we assume that the measure-

ment noise covariance matrix is quadratic in the distance

between the location of the process to be estimated and the

sensor location. Hence, each ri
j is of the form:

ri
j = βi ‖pi − sj‖

2
+ γi,

where sj is the position vector that describes the location of

process j, and βi and γi are positive scalar parameters that

characterize the sensor performance. More realistic models

can be used, though we will use the simplified model given

above.

For the sake of simplicity, consider a one dimensional

process (n = 1) and a single sensor (N = 1) with a1 =
−0.5, B1 = 1, Q1 = 1, s1 = (0, 0) (red circle in Figure 1),

and r1
1 having the above form with β1 = 5 and γ1 = 3. The

initial position for the sensor is given by p1(0) = (10, 10)
and initial velocity v1(0) = (0,−2). The initial value for

Σ = Σ1 was set to be Σ1(0) = 200. The control weighting

parameter is set to α = 0.004, the terminal covariance weight

was set to M1 = 20 and the weighting parameter K1 = 0.

The final time tf was set to 10.
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Fig. 1. (a) Motion in the plane withe the various trajectories correspond
to a varying value of ǫ from ǫ = 0.05 (red trajectory) to ǫ = 1 (green
trajectory), and (b) error covariance variable Σ1(t) for various values of ǫ.

The results are shown in Figure 1, where we have applied

the mathematical continuation approach of Section IV. As

can be seen as ǫ is varied, more weight is placed on the

integral component of the cost function. Hence, for ǫ = 0
we get the classical Kalman filter solution with a fixed

sensor location (blue square) that corresponds to its original

location. As ǫ is increased (in increments of δ = 0.05) the

trajectory is adjust until the solution converges to a trajectory

that satisfies the original optimal control problem with ǫ = 1.

In the figure, one can also see the variation in Σ1 as epsilon is

incremented from 0 to 1. Due to the scale of the variable Σ1

it is hard to distinguish between the final solution with ǫ = 1
and other solutions. However, a close-up view of the figure

will show that the final solution is not necessarily the one

with minimum covariance value at each point in time since

the final trajectory may compromise signal quality at the cost

of improved control energy efficiency. In a future archival

publication, we will also consider the more interesting case

with more than a single sensor and a single process, including

the possibility that the signals be coupled and correlated.

More realistic sensor models will also be considered.

VI. CURRENT AND FUTURE WORK

Currently, the author is seeking to determine whether the

above necessary conditions are sufficient or not. Under some

conditions (specifically, convexity in terms of the state and

control variables) on the process and sensor dynamics and

cost functional, the necessary conditions are also sufficient

(see, for example, the Corollary on page 214 and Theorem

10 on page 216 in [22]). Another crucial question is the case

where R is a function of both the state to be estimated as

well as the position and/or velocity of the sensor vehicle

dynamics. In this case R is itself a function of estimated

variables which renders the problem more complicated. This

situation is of particular interest in optimal target tracking

problems. Other questions of interest include decentralizing

the above result, where information sharing and estimation

is distributed to reduce communication costs at the expense

of estimation quality.
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