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Abstract— This paper presents a method for higher-order
controller design with improved low-frequent disturbance re-
jection properties. Given a default PID-based controller, the
circle criterion is used to construct an extra controller part
that deals with resonances resulting from closing the loop. The
advantage is twofold. First, a closed-loop shaping method is
obtained that is straightforward, graphically-supported, and in-
tuitively clear. Second, it applies to existing control designs and
therefore exploits (or even further extends) the design freedom
and low-frequency performances therein. The effectiveness of
the method is demonstrated using examples from the wafer
scanning industry.

Index Terms— absolute stability, circle criterion, frequency-
domain methods, loop shaping, PID control, Lyapunov theory

I. INTRODUCTION

In the field of mechatronics, the application of clas-

sical proportional-derivative-integrator (PID) control is

widespread. The reason for this seems twofold. On the

one hand, its performance under disturbances along with

its robustness to model uncertainty sufficiently challenges

alternatives. On the other hand, its ease and simplicity of

design is difficult to compete with using modern control

techniques. On the occasion, however, that higher-order

controllers are expected to improve upon the closed-loop

performances, standard tuning methodologies and design

rules [8] give limited support.

To expand the possibilities of PID-based control, a method

is presented using the positive real properties of a default PID

design. That is, given the closed-loop frequency response

characteristics of such a design and taking into account its

positive real properties, an additional closed-loop shaping

controller synthesis step is performed using the Nyquist

plot. This forms the basis for the derivation of higher-

order PID-based filters that allow for a significant controller

gain increase and subsequent improvements in low-frequent

disturbance suppression; see also [2] with a similar purpose,

but under nonlinear feedback conditions.

The paper is organized as follows. In Sec.II, a short

introduction into the control of wafer scanners is presented,

the latter being a carrier for this work. For motion control

systems in general, but wafer scanners in particular, Sec.III

provides the conditions for global asymptotic stability of

the control design. Based on absolute stability [10], Sec.IV

deals with closed-loop shaping in the Nyquist plot, fol-

lowed, in Sec.V, by relating these stability conditions to
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classical robustness measures like gain- and phase margin.

Improved wafer scanner performance is demonstrated in

Sec.VI whereas Sec.VII summarizes the main findings.

II. CONTROL OF WAFER SCANNERS

During the lithographic manufacturing of integrated cir-

cuits (ICs) wafer scanners achieve performance by combin-

ing nano-scale resolution with optimized wafer throughput;

see also [5]. The scanning process can be described as

follows, see Fig.1. Light from a laser passes from a reticle

light path
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Fig. 1. Schematic of a wafer scanner.

which contains an image, through a lens, which scales down

the image, onto a wafer. Both reticle and wafer are part of

two separate motion sub-systems: the reticle stage and the

wafer stage. Basically these motion systems represent float-

ing masses which are controlled in six degrees-of-freedom

on a single-input single-output (SISO) basis.

For each direction, the reticle- and wafer stage can be

represented by the simplified block diagram representation

of Fig.2; a more realistic representation using feed forward

control and dual-stage feedback falls beyond the scope of this

paper. Based on a linear time-invariant PID-based controller
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Fig. 2. Block diagram of the simplified feedback connection.

C1, the plant P is controlled such that its output y ∈ R

tracks the input x ∈ R in face of disturbances (and possible
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feed forward contributions) contained in f ∈ R or in x
itself. The tracking ability is expressed by the servo error

signal e = x − y. In addition to the lower path from e to y,

a path is added given by the series connection of a gain α
with 0 ≤ α ≤ αmax and a linear time-invariant controller C∗

2

which for reasons of simplicity is chosen C∗

2
= C2C1. The

generally higher-order controller C3 is then given by

C3 = (1 + αC2)C1. (1)

Both the reticle- and wafer stage plants are characterized

by double integrator behavior along with the expression of

higher-order dynamics. In this respect, the design of con-

troller C1 follows a standard loop-shaping argument, see, for

example, [8]. A proportional-integrator-derivative (PID) filter

is used, which aims at both disturbance rejection and robust

stability, a second-order low-pass filter is added to avoid

high-frequency noise amplification, and several notch filters

are applied to deal with resonant behavior in the plant. For

the scanning direction of a wafer stage, the resulting open-

loop frequency response functions Ol(jω) = C1(jω)P(jω)
are depicted in Fig.3. In Bode representation, this figure
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Fig. 3. Bode diagram of the measured open-loop frequency response
function of a short-stroke wafer stage in scanning direction along with the
characteristics of a second-order plant model.

shows robust stability for both the measured (solid) and

modelled (dashed) characteristics.

To design the extra controller C2 and choose the extra

gain α, a loop transformation is performed on the controlled

dynamics in Fig.2, the result of which is depicted in Fig.4.

Hence a linear time-invariant system in the forward path

m - C2C1P
1 + C1P

α

-

�

6

u1−2 y1−2

-

Fig. 4. Block diagram of the transformed feedback connection in Fig.2.

is separated from the gain α in the feedback path with

u1−2 = u1 − u2 and y1−2 = y1 − y2. Note that the pairs

y1, u1 ∈ R and y2, u2 ∈ R generally differ in terms of initial

conditions. If α in Fig.4 is replaced by a memoryless and

sector-bounded nonlinearity 0 ≤ α(·) ≤ α, this feedback

connection shows similarity with a Lurie-Postnikov form [4].

The stability result related to this type of nonlinear systems,

which is derived in the next section (Sec.III), is used in the

design of C2 and α via a closed-loop shaping argument. This

is considered in Sec.IV.

III. LYAPUNOV STABILITY

Lyapunov stability of systems presented in the feedback

connection of Fig.4 (with α being a special case of a

generally memoryless and sector-bounded nonlinearity α(·)
that satisfies 0 ≤ α(·) ≤ α) can be analyzed using the next

result.

Theorem 3.1: Assume the strictly proper system P in

Fig.2 that is globally asymptotically stabilized – under uni-

formly bounded disturbances x and f – by C1 which is

strictly proper and Hurwitz. Also assume C2C1 to be strictly

proper and Hurwitz. Then any controller of the form C3 =
C1 + αC2C1 with 0 ≤ α ≤ αmax globally asymptotically

stabilizes P in a bounded-input bounded-output sense if

ℜ{C2(jω)G(jω)} = ℜ
{C2(jω)Ol(jω)

1 + Ol(jω)

}

≥ − 1

α
. (2)

Proof: Since C1, C2, and P are strictly proper functions,

C2G is also strictly proper and allows for a state-space

realization of the form

ẋ = Ax + bu1−2

y1−2 = cTx,
(3)

x ∈ R
n×1, A ∈ R

n×n, b ∈ R
n×1, c ∈ R

n×1, which in

Laplace domain is given by the transfer

y1−2

u1−2

(s) = cT(sI − A)−1b. (4)

Because C1 globally asymptotically stabilizes P , the closed-

loop transfer P/(1 + Ol) is Hurwitz, which combined with

C2C1 being Hurwitz, gives a C2G, hence A, that is Hurwitz.

Since the pair (A,b) is controllable and the pair (A, c) is

observable, a positive definite matrix P = PT ∈ R
n×n,

matrix Q ∈ R
1×n, and a positive constant ǫ > 0 satisfying

PA + ATP = −QTQ − ǫP

Pb = c −
√

2QT,
(5)

result from C2(jω)G(jω) satisfying Eq.(2). This is the so-

lution to the Kalman-Yakubovich-Popov problem, see also

[1], [6] and the references therein. On the basis of P, the

following Lyapunov function candidate is constructed

V (x) = xTPx, (6)

which is positive definite and whose derivative is given by

V̇ (x) = xT(ATP + PA)x + 2u1−2b
TPx

= −xTQTQx − ǫxTPx + 2u1−2y1−2

− 2
√

2u1−2Qx.

(7)
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Since αu1−2y1−2 ≤ −u2

1−2
, it follows that

V̇ (x) ≤ −xTQTQx − ǫxTPx + 2u2

1−2

− 2
√

2u1−2Qx

≤ −ǫxTPx −
(

xTQT +
√

2u1−2

)2

≤ −ǫxTPx,

(8)

which is negative definite, i.e., the equilibrium point

y1−2 = y1 − y2 = 0 is globally asymptotically stable

whereas the solutions y1 = y1(t) and y2 = y2(t) are bounded

given the imposed stability properties of the control design

and the properties of the disturbances x and f .

From Theorem 3.1, it follows that
∣

∣

∣

∣

∣

∣

∣

C2(jω)Ol(jω)

1 + Ol(jω) +
αC2(jω)Ol(jω)

2
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∣

∣

∣

∣

∣

∣
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≤ 0. (10)

As a result, C2Ol/(1+Ol+αC2Ol/2) lies in the interior of a

circle with radius 2/α about the origin. This is the standard

circle criterion [3] representation.

For a wafer stage with C2 = 1, a graphical interpretation of

Eq.(9) is shown in Fig.5. Note that global asymptotic stability

−4    0    4
−4

0

4

 

 

real axis

im
ag

in
ar

y
ax

is

G′

D(2/αmax)

Fig. 5. Nyquist plot of Eq.(9) for a short-stroke wafer stage with C2 = 1.

is guaranteed if

G′(jω) =
C2(jω)Ol(jω)

1 + Ol(jω) +
αC2(jω)Ol(jω)

2

(11)

with 0 ≤ α ≤ αmax remains in the interior of a disk D
with radius 2/α about the origin. Note moreover that for

the considered case of α = αmax, Eq.(2) becomes exact;

this fact is used explicitly in the derivation of estimates

on robustness margins such as presented in Sec.V. For the

special case of α(·) = α, stability also follows from the

application of Nyquist’s theorem. So what’s the contribution

of Eq.(2) in view of the results based on linear analysis?

Basically, this is the frequency-domain interpretation of

Eq.(2), which provides a loop shaping argument (see also

[9]) for the design of C2.

IV. CLOSED-LOOP SHAPING

The design of C2 in the feedback connection of Figs.2

and 4 is based on closed-loop shaping. Different from the

loop-shaping argument used to construct C1, which deals

with resonances in the plant P , the choice for C2 addresses

resonance resulting from closing the loop. A proper choice

for C2 therefore aims at reducing the negative real parts of G
which otherwise endangers the stability result. At the same

time, the low-frequency response vectors (with positive real

part) should not be decreased too much in magnitude. This

assures a potential gain increase not to be counteracted by a

decrease in magnitude of these vectors.

Conjecture 4.1: Assume the strictly proper system P that

is globally asymptotically stabilized under the conditions

considered in Theorem 3.1. Suppose there exists a filter

C2 = Ci
2
,

Ci
2
(jω) =







1, if ℜ{G(jω)} ≥ −1/α,

− 1

αℜ{G(jω)} , if ℜ{G(jω)} < −1/α,

(12)

which satisfies these conditions. Then the maximum gain

value α = αmax > 0 can be chosen arbitrarily large.

Proof: With C2 = Ci
2
, Eq.(2) can be written as

Ci
2
(jω)ℜ{G(jω)} ≥ −1/α which is satisfied for any α > 0.

Unfortunately Ci
2

is unstable which for ℜ{G(jω)} < −1/α
follows from

Ci
2
(jω) = − 1

α
ℜ

{

1

G(jω)

}

= − 1

2α

{

1

G(jω)
+

1

Gc(jω)

}

, (13)

i.e., G(jω) has left half-plane zeros such that Gc(jω) has

right half-plane zeros giving right half-plane poles for Ci
2

if ℜ{G(jω)} < −1/α. But the value of Ci
2

lies in its

frequency-domain characteristics which form a reference

towards shaping stable filters. This is shown in Fig.6 where

it can be seen that a stable wafer stage feedback is obtained

for 0 ≤ α ≤ αmax = 5.1282. For C2 = 1, this reduces to

αmax = 0.7418. So closed-loop shaping gives a potential

gain ratio increase of (1+5.1282)/(1+0.7418) = 3.5.

In Bode representation, Fig.7 depicts the magnitude of Ci
2
.

Note the strong correlation between Ci
2

and two physical

realizations C1

2
and C2

2
. This demonstrates the value of Ci

2
in

being a design reference. Having C2 and αmax, the choice

of extra gain α amounts to requiring sufficient robustness

properties of the control design.

V. ROBUSTNESS MEASURES

The choice of extra gain α largely depends on the choice

for the controller C2, the properties of the closed-loop
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2
and two physical realizations of C2.

frequency response G and the requirements imposed on

robustness to model error. Herein the relation with classical

robustness measures like gain- and phase margin is funda-

mental. In studying this relation, the positive real properties

of C2G are related to bounds on closed-loop sensitivities.

Definition 5.1: For 0 ≤ α ≤ 2αmax let S(α) be the

closed-loop sensitivity function:

S(α) =
1

1 + Ol +
αC2Ol

2

, (14)

and let Sc(α) be the complementary sensitivity function:

Sc(α) =
Ol +

αC2Ol

2

1 + Ol +
αC2Ol

2

. (15)

Corollary 5.1: Assume the strictly proper system P that

is globally asymptotically stabilized under the conditions

considered in Theorem 3.1. Moreover, assume that ǫ ≤
|C2(jω)| with ǫ > 0. Then the closed-loop system satisfies

|Sc(α)| ≤ 1 +
2

αǫ
. (16)

in terms of complementary sensitivity and

|S(α)| ≤ 2 +
2

αǫ
, (17)

in terms of sensitivity.

Proof: With Eq.(9), it both follows that
∣

∣

∣

∣

∣

∣

∣

αC2(jω)Ol(jω)

2

1 + Ol(jω) +
αC2(jω)Ol(jω)

2

∣

∣

∣

∣

∣

∣

∣

≤ 1, (18)

and
∣

∣

∣

∣

∣

∣

∣

Ol(jω)

1 + Ol(jω) +
αC2(jω)Ol(jω)

2

∣

∣

∣

∣

∣

∣

∣

≤ 2

α

1

|C2(jω)| ≤
2

αǫ
,

(19)

which combined gives Eq.(16). Moreover, using the fact that

||S| − |Sc|| ≤ |S + Sc| = 1 gives Eq.(17).

Note that the lower bound ǫ on C2 can be relaxed for all ω
sufficiently outside the regions where S and Sc have their

maximums, thus enabling low-pass characteristics, see Fig.7.

For a wafer stage, a graphical representation of Corollary 5.1

is shown in Fig.8. It shows two cases: i) C2 = 1 with α =
αmax/2 ≈ 0.7418/2, and ii) C2 = C2

2
(see Fig.6) with α =

αmax/2 ≈ 5.1282/2. Conservatism is included in two ways:
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Fig. 8. Bode magnitude plots of frequency response functions and bounds
on S(αmax) and Sc(αmax), respectively.

i) via the lower bound ǫ on C2, and ii) by obtaining an upper

bound on S using ||S|−|Sc|| ≤ 1. As a result only the bound

on Sc for C2 = 1 with α = αmax is exact. Note the potential

improvement in low-frequency performance (black curves) in

comparison with the reference design (dotted curves) and the

reference design with increased gain (grey curves).

Via circle constraints (m-circles [7]), Corollary 5.1 can be

used to derive lower bounds on classical robustness measures

like gain- and phase margin. Hereto Eq.(16) is written as
∣

∣

∣

∣

∣

∣

∣

1 +
1

Ol(jω) +
αC2(jω)Ol(jω)

2

∣

∣

∣

∣

∣

∣

∣

≥ αǫ

2 + αǫ
= Bc(α),

(20)

for all 0 ≤ α ≤ αmax. In terms of margins, it follows that:

gain margin ≥ 1

1 + Bc(α)
, (21)

phase margin ≥ 2 arcsin

{Bc(α)

2

}

. (22)

This is shown in Fig.9. In Nyquist representation the inverse

open-loop frequency responses are shown for: i) C2 = 1 and
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α = αmax ≈ 0.7418, and ii) C2 = C2

2
from Fig.7 with ǫ =

1/8 and α = αmax ≈ 5.1282. With Eq.(21), the gain margins
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Fig. 9. Nyquist plot of wafer stage inverse open-loop characteristics and
M-circles.

of -2.1 dB and -1.9 dB are lower bounds on the actual gain

margins of -2.3 dB and -2.2 dB, respectively. In terms of

phase margin, Eq.(22) gives 15.6 degrees and 13.9 degrees,

respectively, instead of the actual values of 22.3 degrees

and 17.9 degrees, respectively. It is therefore concluded that

in addition to the previous arguments, the lower bounds in

Eqs.(21) and (22) incorporate extra conservatism.

Lower bounds can also be derived on the basis of Eq.(17),

however, inducing more conservatism. Namely with
∣

∣

∣

∣

1 + Ol(jω) +
αC2(jω)Ol(jω)

2

∣

∣

∣

∣

≥ αǫ

2 + 2αǫ
= Bs(α),

(23)

where 0 ≤ Bs(α) ≤ Bc(α), it follows that

gain margin ≥ 1 − Bs(α) = 1/(1 + Bc(α)), (24)

which equals the result in Eq.(21). But the lower bound on

the phase margin,

phase margin ≥ 2 arcsin

{Bc(α)

2

}

≥ 2 arcsin

{Bs(α)

2

}

,

(25)

becomes more conservative.

A graphical validation of the lower bounds based on

Eq.(17) is given in Fig.10. It shows the open-loop frequency

responses in Nyquist representation for: i) C2 = 1 and

α = αmax ≈ 0.7418, and ii) C2 = C2

2
with ǫ = 1/8

and α = αmax ≈ 5.1282. In terms of phase margins, the

lower bounds are given by 12.2 degrees and 11.2 degrees,

respectively. This is an extra decrease as compared to the

values obtained from Fig.9, which equal 15.6 degrees and

13.9 degrees, respectively.

Corollary 5.2: Assume the strictly proper system P that

is globally asymptotically stabilized under the conditions

considered in Theorem 3.1. Moreover, assume that ǫ ≤
|C2(jω)| with ǫ > 0. Then the gain- and phase margins
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Fig. 10. Nyquist plot of wafer stage open-loop characteristics and M-
circles.

satisfy

for 0 ≤ α ≤ αmax

2
gain margin ≥ 1 − Bs,1(α),

phase margin ≥ 2 arcsin

{Bs,1(α)

2

}

,

and for
αmax

2
≤ α ≤ αmax

gain margin ≥ 1 − Bs,2(α),

phase margin ≥ 2 arcsin

{Bs,2(α)

2

}

,

(26)

with

Bs,1(α) =
1

‖S(0)‖∞
− 2αBs(αmax/2)

αmax

,

Bs,2(α) = 2Bs(αmax/2) − 2αBs(αmax/2)

αmax

.

(27)

Proof: From Eqs.(9) and (23) at α = αmax, it follows

that

− |αC2Ol| ≥ − 2α

αmax

∣

∣

∣

∣

1 + Ol +
αmaxC2Ol

2

∣

∣

∣

∣

≥ −2αBs(αmax/2)

αmax

, 0 ≤ α ≤ αmax

2
,

(28)

hence

|1 + Ol + αC2Ol| ≥ |1 + Ol| − |αC2Ol|

≥ |1 + Ol| −
2αBs(αmax/2)

αmax

≥ 1

‖S(0)‖∞
− 2αBs(αmax/2)

αmax

,

(29)

which combined with Eqs.(24) and (25) gives the first part in

Eq.(26). For the second part, Eq.(9) at α = αmax is written

as

−
∣

∣

∣

(

α − αmax

2

)

C2Ol

∣

∣

∣
≥

∣

∣

∣

∣

1 + Ol +
αmaxC2Ol

2

∣

∣

∣

∣

(

1 − 2α

αmax

)

≥ Bs(αmax/2)

(

1 − 2α

αmax

)

,

(30)
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for
αmax

2
≤ α ≤ αmax, which gives

|1 + Ol + αC2Ol| =
∣

∣

∣

∣

1 + Ol +
αmaxC2Ol

2
+

(

α − αmax

2

)

C2Ol

∣

∣

∣

∣

≥
∣

∣

∣

∣

1 + Ol +
αmaxC2Ol

2

∣

∣

∣

∣

−
∣

∣

∣

(

α − αmax

2

)

C2Ol

∣

∣

∣

≥ 2Bs(αmax/2) − 2αBs(αmax/2)

αmax

,

(31)

and combined with Eqs.(24) and (25) completes the proof.

If 1/‖S(0)‖∞ = 2Bs(αmax/2), Corollary 5.2 states that

the m-circles evolution along α can be approximated by a

linear descent from the original values at α = 0 to zero

(for the phase margin) and one (for the gain margin) at

α = αmax. In an approximative sense, the same reasoning

can be applied on the actual stability margins, see Fig.11,

which gives direction during the process of tuning α.

A graphical validation of the lower bounds in Eq.(26) is

given in Fig.11. It shows that these bounds provide fairly
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Fig. 11. Gain- and phase margins (solid curves) compared with m-circle
estimates (dotted curves) and lower bounds (dashed curves) based on Eq.(26)
for a design with C2 = 1 (black curves) and a design with C2 = C2

2
(grey

curves).

good estimates on the bounds obtained by computing the

m-circles, the latter providing reasonable estimates for the

actual gain margins. The estimates for the actual phase mar-

gins, however, possess significant conservatism, the source

of which is previously discussed.

VI. WAFER STAGE PERFORMANCE

Improved wafer stage performance is demonstrated in

Fig.12. Both in time-domain or via cumulative power spec-

tral density analysis (cpsd), the effect on the error e is

demonstrated of an open-loop shaped (default) controller C1

(grey curves) and a combined open-loop/closed-loop shaped

controller C3 (black curves with α = 3). The wafer stage is

subjected to an acceleration set-point profile (dotted curve)

which is repeated four times. Characteristic to the combined
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Fig. 12. Time-series measurement and cumulative power spectral densities
of a design based on C1 (grey) and C3 (black) with α = 3.

loop shaping strategy and design of C3, a significant low-

frequent improvement results. Note that the ultimate (low-

frequent) improvement by a factor of 1+α is largely realized.

VII. CONCLUSIONS

For motion systems, a method to obtain higher-order con-

trollers embedded in a default PID-based design is presented.

Herein the properties of the default design generally allow

for a closed-loop shaping argument derived from the circle

criterion. In view of lower bounds on classical robustness

measures such as gain- and phase margin, this gives the

possibility of improved low-frequency performance, the latter

being the result of a substantial gain increase. The effective-

ness of the approach is demonstrated on the wafer stage of

an industrial wafer scanner.
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