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Abstract— In this paper, an observer-based fault estimation
(FE) method is presented for a class of nonlinear networked
control systems (NCSs) with Markov transfer delays. First, the
nonlinear NCSs are modelled by nonlinear discrete Takagi-
Sugeno (T-S) fuzzy model with modelling uncertainty. Under
some geometric conditions, the proposed nonlinear T-S model
can be transformed into two subsystems with one of them hav-
ing backstepping form. Then, the discrete nonlinear observer is
designed to provide the estimation of unmeasurable state and
the modelling uncertainty, which is used to construct a fault
estimation algorithm. Finally, an example is included to show
the efficiency of the proposed method.

Index Terms— Nonlinear networked control systems, Takagi-
Sugeno fuzzy model, fault estimation, observer.

I. INTRODUCTION

Fault detection and identification algorithms and their

applications to a wide range of industrial processes have

been the subjects of intensive research over the past three

decades. Fruitful results can be found in several books and

many papers, e.g. [1]-[2]. As the rapid development of

communication networks, recently, a great amount of effort

has been made on fault detection problem of networked

control systems (NCSs).

In networked control systems, a controller and spatially

distributed sensors/actuators are grouped into network nodes

and communicate by exchanging packet-based messages via

a network. NCSs have several advantages over the classical

control systems, such as low cost, simple installation and

maintenance, increased system agility and reduced system

wiring. However, NCSs require novel control design method

due to network’s presence in the closed loop. Modelling,

analysis, and design of NCSs have received increasing at-

tention in recent years, see [3]-[5]. For some representative

works on fault detection (FD) of NCSs, to name a few, we

refer the readers to [6], [7] and references therein. However,

to the best of our knowledge, until now, few results have

been reported about fault estimation (or fault identification)

for nonlinear NCSs.

This work is partially supported by National Natural Science Foundation
of China (60574083), National ”863” program of China (2006AA12A108)
and Natural Science Foundation of Jiangsu Province (BK2007195).

Z. H. Mao is with College of Automation Engineering (CAE), Nanjing

University of Aeronautics and Astronautics (NUAA), 29 YuDao Street,

Nanjing, 210016, China. zehuimao@nuaa.edu.cn.

B. Jiang is with CAE, NUAA, China. binjiang@nuaa.edu.cn.

Tel: +86 25 85214846, Fax: +86 25 84892300.

P. Shi is with Institute for Logistics and Supply Chain Management,

School of Computer Science and Mathematics, Victoria University, PO Box

14428, Melbourne, VIC 8001 Australia. peng.shi@vu.edu.au.

V. Cocquempot is with LAGIS-CNRS, UMR 8146, USTL, France.

vincent.cocquempot@univ-lille1.fr.

The challenges of observer-based FE for nonlinear NCSs

are twofold: 1) There is a lack of appropriate model for

nonlinear NCSs. It is difficult for nonlinear NCSs fault

estimation to find a model with enough accuracy, under the

conditions of network-induced delays and packets loss; 2)

Most of the NCSs are modelled as discrete-time systems

with delays. However, some control theories, such as stability

analysis using Lyapunov function or adaptive observer design

for discrete-time systems are not so matured yet as that for

continuous-time systems.

Our objective in this work is to propose an observer-

based FE method for nonlinear networked control systems.

Motivated by the work in [4] and using Euler approximate

method, we present a Takagi-Sugeno (T-S) fuzzy model

for nonlinear NCSs with Markov transfer delays. Under

geometric conditions, each mode of discrete T-S model is

transformed into a new form which is more convenient

for adaptive observer design. A novel observer is designed

for each mode to estimate the unmeasurable state and the

modelling uncertainty, then a fault estimation algorithm is

designed.

The rest of this paper is organized as follows. Section

2 describes the system model and presents some NCSs

modelling techniques. The geometric conditions are derived

in Section 3 for model transformation, and an observer-based

fault estimation method is proposed in sections 4. In Section

5, an application example is given to illustrate the potential of

the proposed method, followed by some concluding remarks

in Section 6.

II. SYSTEM DESCRIPTION

A. Notations

The notations used in this paper are fairly standard. ℜ
denotes the field of real numbers, ℜr denotes r-dimensional

real vector space. | · | is the Euclidean norm. Lgh denotes Lie

derivative of h along a vector field g, Lgh , dh · g, Ln
g h =

Lg(L
n−1
g h), where dh = ( ∂h

∂x1
· · · ∂h

∂xn
) is the differential

of a smooth function, [g1, g2] = ∂g1

∂x
· g2 − ∂g2

∂x
· g1. ◦ is

the composition, and define △gh , h ◦ g, then △n
g h ,

△g(△
n−1
g h).

B. T-S fuzzy model for nonlinear NCSs

Consider the NCSs as shown in Fig. 1. The continuous-

time state-space model of the nonlinear time-invariant plant

dynamics can be described by the following standard form:

ẋ= g0(x) + g(x)u + e(x)f (1)

y =h(x) (2)

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

ThB18.6

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 3058



PlantActuator Sensor

Net Net

Discrete Controller

u y

Continuous Signal

Discrete Signal

Fig. 1. The block of the networked control system with FTC

where x ∈ ℜn denotes the state vector, u ∈ ℜm is the

control input vector, y ∈ ℜr is the measurable output vector.

f ∈ ℜq represents the fault signal that could be constant

or time-varying, while e(x) represents the fault distribution

function.

The sampling period of the NCS is T , sensors are time-

driven, controller and actuator are event-driven. The network

channel load and limited communication bandwidth can

cause transfer delays, which include the sensor-controller

delay τsc and controller-actuator delay τca. Then, the overall

network delay, which is also the transfer delay, can be

computed by τ = τsc + τca.

Assumption 1 [4] : The transfer delay of the data packet,

which is received by the actuator at the instant kT , is τk(∈
N ) periods and max(τk) = n.

Remark 1 : At the instant kT the actuators receive the sensor

data packet that is sent out at the instant (k−i)T . Therefore,

τk+1 is only affected by τk and is irrelevant to τ1, . . ., and

τk−1. That is, the sequence {τ1, τ2, . . . , τk, . . .} constructs a

Markov chain [4].

Under Assumption 1, considering the sampling period and

delays τk, in one sampling period, system (1) - (2) can be

transformed into:

x(k + 1)=x(k) +

∫ (k+1)T

kT

g0(x(s)) + g(x(s))u(k − τk)

+e(x(s))f(k)ds (3)

y(k)=h(x(k)) (4)

where x(k) = x(kT ), y(k) = y(kT ) and f(k) = f(kT ).
Then Eq. (3) can be simplified as in [8]:

x(k + 1) = x(k) + T

(

g0(x) + g(x)u(k − τk) + e(x)f

)

+O1(T )

where O1(T ) is the higher order terms greater than 2 of the

second term in Eq. (3). According to [10], we can obtain the

expression of the term O1(T ), which depends on the related

state, input and fault. To guarantee the accuracy of the NCS

model and make the model not too complex, an approximate

term φ(x(k), u(k))θ(k) is considered with φ(x(k), u(k)) a

known function determined from the higher order terms and

θ(k) a unknown vector to replace the term O1(T ).
Further, as in [4], the global model is the fuzzy fusion of the

local ones. IF-THEN rules provides the relationship between

the local models and the NCS global model. As τk has n

different values, and the number of fuzzy rules is also n, the

NCS model is regarded as the blending of n local nonlinear

models.

Rule i(i = 1, 2, . . . , n − 1, n): if τk is i, then the NCS

model is

x(k + 1)=x(k) + T

(

g0(x(k)) + g(x(k))u(k − i)

+φ(x(k), u(k))θ(k) + e(x(k))f(k)

)

y(k)=h(x(k))

Therefore, the global model of NCS can be written as in [4]:

x(k + 1)=
n∑

i=1

µi(k)

{

x(k) + T

(

g0(x(k))

+g(x(k))u(k − i) + φ(x(k), u(k))θ(k)

+e(x(k))f(k)

)}

(5)

y(k)=

n∑

i=1

µi(k)h(x(k)) (6)

where µi(k) is the membership function, representing the

probability of τk = i, i.e., µi(k) = Prob(τk = i). It satisfies
∑n

i=1 µi(k) = 1, 0 ≤ µi(k) ≤ 1, ∀i = 1, 2, . . . , n. A method

to obtain the membership function µi(k) is presented in [4].

Denote

x(k) = xk, y(k) = yk, u(k − i) = uk−i,
f(k) = fk, θ(k) = θk, µi(k) = µi

k

ḡ0(xk) = x(k) + Tg0(x(k)), ḡ(xk) = Tg(x(k)),

ē(xk) = Te(x(k)), φ̄(xk, uk) = Tφ(x(k), u(k)).

Then system (5) - (6) can be written as:

xk+1 =

n∑

i=1

µi
k

{

ḡ0(xk) + ḡ(xk)uk−i + φ̄(xk, uk)θk

+ē(xk)fk

}

(7)

yk =
n∑

i=1

µi
kh(xk) (8)

Remark 2 : It should be noted that some sufficient conditions

for sampling time are given in [9], under which the Euler

approximate model (without the high order terms) is equiv-

alent to the accurate discrete-time model. Then, the term

O1(T ), which is considered as the modelling uncertainty in

this paper, can be omitted in practice.

III. GEOMETRIC TRANSFORMATION

The purpose of this section is to transform the global

system (7) - (8) into a new form, which is more suitable

for observer-based design.

Let us first consider one local model of (7) - (8):

xk+1 = ḡ0(xk) + ḡ(xk)uk−i + φ̄(xk, uk)θk + ē(xk)fk (9)

yk =h(xk) (10)
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Some definitions are given based on the above system (9)

- (10) as follows:

Definition 1 : The relative degree ρi of system (9) - (10) is

defined as:

∂hi((ḡ0 + ḡjuj)
k)

∂uj

= 0, 0 ≤ k ≤ ρi − 1, 1 ≤ i ≤ r,

∀j : 1 ≤ j ≤ m;
∂hi((ḡ0 + ḡjuj)

ρi)

∂uj

6= 0, 1 ≤ i ≤ r, ∃j : 1 ≤ j ≤ m.

where h(·) = [h1, · · · , hr]
T , (ḡ0 + ḡjuj)

s, ḡ = [ḡ1, · · · , ḡm],
(ḡ0 + ḡjuj)

s, s ∈ Z+ is recursively defined as follows:

(ḡ0 + ḡjuj)
s = (ḡ0 + ḡjuj) ◦ · · · ◦ (ḡ0 + ḡjuj)

︸ ︷︷ ︸

s

Definition 2 : The fault diagnosis feedback form of system

(9)-(10) is

z1
k+1 =Az1

k + γ1(z
1
k, yk)uk−i + γ2(z

1
k, yk)

+ψ1(z
1
k, uk, yk)θk (11)

y1
k =Cz1

k (12)

z2
k+1 =ψ0(zk) + γ3(z

2
k, yk)uk−i + ¯̄e(zk)fk

+ψ2(zk, uk)θk (13)

y2
k = z2

k (14)

where z = [(z1)⊤, (z2)⊤]⊤, z1 = [(ξ1)⊤, . . . , (ξm−q)⊤]⊤ ∈
ℜn−q, z2 = [(ξm−q+1)⊤, . . . , (ξm)⊤]⊤ ∈ ℜq

are the states of system (11)-(14), with ξ =
[(ξ1)⊤, (ξ2)⊤, . . . , (ξm)⊤]⊤ ∈ ℜn, ξi ∈ ℜ̺i =
[ξi1, . . . , ξi̺i ]⊤. y = [(y1)⊤, (y2)⊤]⊤ with y1 ∈ ℜm−q, y2 ∈
ℜq. Moreover, A = diag[A1, . . . , Am−q] ∈ ℜ(n−q)×(n−q),

C = diag[C1, . . . , Cm−q] ∈ ℜ(m−q)×(n−q), with

Ai ∈ ℜ̺i×̺i =








0 1 · · · 0
...

...
. . .

...

0 0 · · · 1
0 0 · · · 0








,

1 ≤ i ≤ m − q.

Ci ∈ ℜ1×̺i =
[

1, 0, . . . , 0
]
, 1 ≤ i ≤ m − q

γ1(z
1
k, yk) = [(γ̄1

k)⊤, (γ̄2
k)⊤, . . . , (γ̄m−q

k )⊤]⊤ with

γ̄i
k ∈ ℜ̺i×p =








γ̄i1
k (ξ1

k, . . . , ξi−1
k , ξi1

k , yi+1
k , . . . , ym

k )

γ̄i2
k (ξ1

k, . . . , ξi−1
k , ξi1

k , ξi2
k , yi+1

k , . . . , ym
k )

...

γ̄i̺i

k (ξ1, . . . , ξi−1, ξi, yi+1, . . . , ym)








,

1 ≤ i ≤ m − q

and γ2(z
1
k, yk) = [(¯̄γ1

k)⊤, (¯̄γ2
k)⊤, . . . , (¯̄γm−q

k )⊤]⊤ with

¯̄γi
k ∈ ℜ̺i

= [0, 0, . . . , 0,
︸ ︷︷ ︸

̺i−1 orders

△̺i

ḡ0
hi(ξ

1
k, . . . , ξi

k, yi+1
k , . . . , ym

k )]⊤,

1 ≤ i ≤ m − q (15)

Assumption 2 : There exists a set of integer numbers

{̺1, ̺2, . . . , ̺m} such that
∑m

i=1 ̺i = n and ξk = T (xk) ∈
ℜn is a diffeomorphism where

T (xk) = [h1(xk),△ḡ0(xk)h1(xk), . . . ,△̺1−1
ḡ0(xk)h1(xk),

h2(xk), . . . ,△̺2−1
ḡ0(xk)h2(xk), . . . ,△̺m−1

ḡ0(xk)hm(xk)]⊤(16)

Moreover, the relative degree of yr, denoted as ρr, is such

that ρr = ̺r = 1, m − q + 1 ≤ r ≤ m. ♦
Under Assumption 2, dT (xk) is invertible ∀x ∈ ℜn.

Let ri(xk) be the ith column of [dT (xk)]−1 and R(i)j :=

span{rvi−j , . . . , rvi
}, where vi =

∑i
j=1 ̺j .

The following lemma gives geometric conditions to trans-

form the system (9)-(10) into (11)-(14).

Lemma 1 : Under Assumption 1, the diffeomorphism ξk =
T (xk) can transform the system (9)-(10) into (11)-(14) if

and only if

I [ḡ0(xk),R(i)̺i−2] ⊂ R(i)̺i−1+R(i+1)̺i+1−1+· · ·+
R(m − q)̺m−q−1, for 2 ≤ i ≤ m − q.

II [ḡ0(xk),R(i)j ] ⊂ R(i)j+R(i+1)̺i+1−1+· · ·+R(m−
q)̺m−q−1, for 1 ≤ i ≤ m − q, 0 ≤ j ≤ ̺i − 2.

III [ḡ0(xk),R(̄i)̺ī−2] ⊂ R(1)̺1−2 + R(2)̺2−2 + · · · +
R(m−q)̺m−q−2, for m−q+1 ≤ i ≤ m, 1 ≤ ī ≤ m−q.

IV LēL
s
ḡhi = 0, for 1 ≤ s ≤ ̺i − 1, 1 ≤ i ≤ m − q.

The proof of Lemma 1 is modified from the reference [11]

and [12]. Due to the page limit, it is omitted.

It is clear that after transformation, subsystem (11) - (12)

is not affected by faults, an observer can be designed for

this subsystem to provide the estimates of z1
k and θk for

estimating the faults in the subsystem (13) - (14).

Remark 3 : In Lemma 1, the proposed transformation

method is for T-S local model. Since the fuzzy weight

coefficient only relates with the control uk−i, then Lemma 1

is suitable for the global model. Further the fault diagnosis

block strict feedback form of global model (7) - (8) is

z1
k+1 =

n∑

i=1

µi
k

{

Az1
k + γ1(z

1
k, yk)uk−i + γ2(z

1
k, yk)

+ψ1(z
1
k, uk, yk)θk

}

(17)

y1
k =

n∑

i=1

µi
kCz1

k (18)

z2
k+1 =

n∑

i=1

µi
k

{

ψ0(zk) + γ3(z
2
k, yk)uk−i + ¯̄e(zk)fk

+ψ2(zk, uk)θk

}

(19)

y2
k =

n∑

i=1

µi
kz2

k (20)

IV. FAULT DIAGNOSIS SCHEME

A. Observer design

An high gain observer as in [12] and [13] for continuous

system can be developed for continuous system with form

of (11) - (12) to estimate z1 and θ. However, little work has
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been done on the high gain observer for discrete nonlinear

systems. Combining the methods in [14] and [13], we extend

them to the modelling uncertainty case.

Considering the form of model (17) - (20), we can firstly

design the observer for local system (11) - (14), then extend

it to the global one as that of Lemma 1.

In order to design the observer, let consider the following

steps :

Step 1 : Hi =








Ci

CiAi

...

CiA
̺i−1
i








Step 2 : Define W̄i for 1 ≤ i ≤ m − q as

W̄i(z
1
k, uk−i, yk) =








Ci

CiFi(z
1
k, uk−i, yk)

...

CiF
̺i−1
i (z1

k, uk−i, yk)








where Fi(z
1
k, uk−i, yk) = Ai + Gij(z

1
k, yk)uk−i, with

Gij(z
1
k, yk) = ∂(γ̄i

kuk−i + ¯̄γi
k)/∂ξj

k for 1 ≤ j ≤ m − q.

Further, define Mi0(z
1
k, uk−i) = H−1

i Wi(z
1
k, uk−i).

Step 3 : Let

Qi(z
1
k, uk−i) = Mi0(z

1
k, uk−i)Fi(z

1
k, uk−i)M

−1
i0 (z1

k, uk−i)−
Ai,

It can be shown that Qi(z
1
k, uk−i) has the following form:

Qi(z
1
k, uk−i) =








0 · · · 0
...

...

0 · · · 0
Qi1(z

1
k, uk−i) · · · Qi̺i

(z1
k, uk−i)








Step 4 : Define Āi(z
1
k, uk−i) = Ai + Li(z

1
k, uk−i)Ci,

where Li = col[Qi̺i
(z1

k, uk−i), · · · Qi1(z
1
k, uk−i)], with

Qi’s the entries of the matrix Qi(z
1
k, uk−i).

Step 5 : Compute W̃i(z
1
k, uk−i) =








Ci

CiĀi(z
1
k, uk−i)
...

Ā̺i−1
i (z1

k, uk−i)








,

it can again be checked that W̃i(z
1
k, uk−i) =

HiM̃i0(z
1
k, uk−i).

Step 6 : Define Mi(z
1
k, uk−i) as

Mi(z
1
k, uk−i) = W̃−1

i (z1
k, uk−i)Wi(z

1
k, uk−i)

= M̃−1
i (z1

k, uk−i)Mi(z
1
k, uk−i).

From the above procedure, we can obtain the following

special properties of matrix Mi(z
1
k, uk−i) [14]:

i) diag[Mi0(z
1
k, uk−i)] = diag[Mi(z

1
k, uk−i)] = (1, · · · , 1).

In other word, Mi(z
1
k, uk−i) is nonsingular for all z1

k, uk−i.

ii) Mi(z
1
k, uk−i)Fi(z

1
k, uk−i)M

−1
i (z1

k, uk−i) = Ai +
Li(z

1
k, uk−i)Ci and CiM

−1
i (z1

k, uk−i) = CiMi(z
1
k, uk−i) =

Ci.
iii) Mi(z

1
k, uk−i)M

−1
i (z1

k−1, uk−i−1) = I + Ri0(z
1
k, uk−i),

where Ri0(z
1
k, uk−i) is a lower triangular matrix with

diag[Ri0(z
1
k, uk−i)] = (0, · · · , 0).

Assumption 3 :

3.1 The partial derivatives of γ̄i
k w.r.t. z1

k and their respective

time derivatives are bounded.

3.2 There exists a function B(z1
k, uk, yk) ∈ ℜ(n−q)×(m−q)

such that ψ1(z
1
k, uk, yk) = Bψ̄1(z

1
k, uk, yk), where B is

Lipschitz w.r.t. z1
k, |B| ≤ b0, and |ψ̄1| ≤ q̄(z1

k, uk, yk) ≤
q0 for a function q and numbers b0, q0 > 0.

3.3 There exist matrices P = P⊤ ∈ ℜn×n =
diag[P1, . . . , Pm−q] with Pi = P⊤

i ∈ ℜ̺i×̺i

ǫ2i (Ai − KiCi)
⊤Pi(Ai − KiCi) − Pi = −Qi

where ∆ǫ = diag[∆ǫ1 , . . . ,∆ǫm−q
], ∆ǫi

=
diag[1/ǫi, . . . , 1/ǫ̺i

i ], with ǫ a design parameter.

M = diag[M1, . . . ,Mm−q], Qi = Q⊤

i > 0,

Ki ∈ ℜ̺i×1 are such that (Ai − KiCi) is stable.

♦

Remark 4 : Conditions 3.1 and 3.2 are taken instead of

Lipschitz conditions on γ1, γ2 and ψ1, that are classically

considered. Condition 3.1 is similar to Assumption 1 in [13].

Condition 3.2 relaxes the Lipschitz extension condition in

[12] where only y is allowed in q̄. Condition for chosen Pi

is given in 3.3.

The observer is constructed as

ẑ1
k+1 =Aẑ1

k+1 + γ1(ẑ
1
k, yk)uk−i + γ2(ẑ

1
k, yk)

+ψ1(ẑ
1
k, yk, uk)θ̂

+M−1(ẑ1
k)[L(ẑ1

k, yk) + ∆−1
ǫ K](y1

k − ŷ1
k)

+ B̂sgn(R̂⊤)[θ0(q0 + q̄(ẑ1
k, yk))sgn(y1

k − ŷ1
k)]

︸ ︷︷ ︸

Υ

(21)

ŷ1
k =Cẑ1

k (22)

θ̂k+1 = θ̂k

+Γψ̄⊤

1 (ẑ1
k, uk, yk)R⊤(ẑ1

k, uk, yk)(y1
k − ŷ1

k) (23)

where Lk = diag[L1
k, . . . , Lm−q

k ], and K =
diag[K1, . . . ,Km−q]. The weighting matrix Γ = Γ⊤ > 0.

The design method of R(ẑ1
k, uk, yk) will be given later. sgn

represents the canonical sign function.

Denote ez1

k = [(e1
k)⊤, . . . , (em−q

k )⊤]⊤ with ei
k = ξi

k − ξ̂i
k,

1 ≤ i ≤ m − q, eθ
k = θk − θ̂k.

Theorem 1 : Under Assumption 3, the observer described

by (21) - (22) together with the adaptive algorithm (23) can

realize limk→∞ ez1

k = 0 and limk→∞ eθ
k = 0.

Proof : The proof of the theorem follows the recursive

way. Consider the first subsystem of (11) and (21), we have

e1
k+1 = A1e

1
k + (γ̄1

k − ˆ̄γ
1
k)uk−i + (¯̄γ1

k − ˆ̄̄γ
1

k)

−(M̂1
k )−1(L̂1

k + ∆−1
ǫ1

K1)C1e
1
k

+ψ11θk − ψ̂11θ̂k − Υ1
︸ ︷︷ ︸

Ψ1

(24)

where Υ = [Υ⊤
1 , . . . ,Υ⊤

m−q]
⊤ , Bsgn(R⊤)[θ0(q0 +

q̄(ẑ1, y))sgn(y1
k − ŷ1

k)]. ψ1 = [ψ⊤
11, . . . , ψ

⊤

1(m−q)]
⊤.

According to [14], consider a transformation ẽ1
k ,

∆ǫ1M̂
1
k−1e

1
k, then (24) can be changed into

ẽ1
k+1 = ǫ1(A1 − K1C1)ẽ

1
k + T11ẽ

1
k + ∆ǫ1M̂

1
k−1Ψ1

with T11 = ∆ǫ1(A1R̂10 + M̂1
k−1r

1
k(M̂1

k−1)
−1)∆1

ǫ1
, (γ̄1

k −

ˆ̄γ
1
k)uk−i + (¯̄γ1

k − ˆ̄̄γ
1

k) = G11e
1
k + r1

ke1
k.
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Choose a Lyapunov candidate function V 1
k = (ẽ1

k)T P1ẽ
1
k,

it can be shown that the time derivative of V 1
k along (24)

satisfies

∆V 1
k+1 ≤ −λmax(Q1)|ẽ

1
k|

2 + µ11|ẽ
1
k|

2

+ΨT
1 (M̂1

k−1)
T ∆T

ǫ1
P1∆ǫ1M̂

1
k−1Ψ1

+2ǫ1(ẽ
1
k)T [(A1 − K1C1) + T11]

T ∆ǫ1M̂
1
k−1Ψ1

where µ11 > 0.

Next, consider the last subsystems of (11) and (21), and

following the same way, we can get

∆V i
k+1 ≤ −λmin(Qi)|ẽ

i
k|

2 +
i∑

j=1

µij |ẽ
i
k|

2 +
i−1∑

j=1

µji|ẽ
j
k|

2

+ΨT
i (M̂ i

k−1)
T ∆T

ǫi
Pi∆ǫi

M̂ i
k−1Ψi

+2ǫi(ẽ
i
k)T (Ai − KiCi)

T ∆ǫi
M̂ i

k−1Ψi

+2ǫi

i∑

n=1

(

(ẽn
k )T TT

ni

)

∆ǫi
M̂ i

k−1Ψi (25)

Now, consider the Lyapunov candidate function as

W (ez1

k , eθ
k) = V

ez1

k

+ Veθ
k

for the overall system, where

V
ez1

k

=
∑m−q

i=1 V i
k , Veθ

k
= (eθ

k)⊤Γ−1eθ
k. Denote ẽk =

[(ẽ1
k)⊤, . . . , (ẽm−q

k )⊤]⊤. The time derivative of W along

(11), (21) and (23) is

∆Wk+1 ≤

m−q
∑

i=1

(

(−λmin(Qi) +

m−q
∑

j=1

µij)|ẽ
i
k|

2

)

+ΨT (M̂k−1)
T ∆T

ǫ P∆ǫM̂k−1Ψ

+2ǫ(ẽz1

k )T [(A − KC) + T ]T ∆ǫ1M̂k−1Ψ

−2θ̃T
k ψ̄1RCez1

k + (ez1

k )T CT RT ψ̄T
1 Γψ̄1RCez1

k

where T = [
∑m−q

i=1 T1i

∑m−q
i=2 T2i · · ·

∑m−q
i=m−q T(m−q)i].

Further, from Assumption 3.2, we can obtain that if

R(ẑ1
k, uk, yk) is chosen such that

ǫM̂T
k−1∆

T
ǫ [(A − KC) + T ]T ∆ǫM̂k−1B − CT R ≤ 0 (26)

Then, we further have

∆Wk+1 ≤ −η|ẽz1

k |2 (27)

where ǫi, 1 ≤ i ≤ m − p, is chosen such that η > 0.

Since M and ∆ǫ are all bounded and nonsingular, inequal-

ity (27) implies the stability of the origin ez1

= 0, θ̃ = 0
and the uniform boundedness of ez1

and θ̃. According to

Barbalat’s Lemma [16], one can get limk→∞ ez1

k = 0. From

(23) and the uniform boundedness of θ̃, one can conclude

that limk→∞ θ̃k = 0. This completes the proof. 2

Remark 5 : Similar to the transformation in Section 3, the

observer for global T-S model can be obtained, which is

omitted here.

B. fault estimation

Supposed that ¯̄e(zk) is invertible, which implies that the

effect of faults on outputs y2
k is independent. The fault

estimates can be obtained from (13) as

f̂k = ˆ̄̄e
−1

[y2
k+1 − ψ̂0 − ψ̂2θ̂k − γ3uk−i] (28)

with ˆ̄̄e = ¯̄e(ẑk) then, we have

ˆ̄̄ef̂k−¯̄efk = (ˆ̄̄e−¯̄e)f̂k+¯̄e(f̂k−fk) = (ψ0−ψ̂0)+(ψ2θk−ψ̂2θ̂k)

Since limk→∞ ez = 0, limk→∞ θ̃k = 0, due to the continuity

of ¯̄e, ψ0 and ψ2, there always exist two numbers kz, kθ >
0 such that for all bounded zk, ẑk, if |ez| and |θ̃| are

sufficiently small (which can be achieved by observer), then

the following inequality holds

|¯̄e(f̂k − fk)| ≤ kz|ez| + kθ|θ̃| (29)

Moreover, we have limk→∞ |¯̄e(f̂k − fk)| = 0, i.e.

limk→∞ |f̂k − fk| = 0.

Remark 6 : From Eq. (28), it can be seen that the faulty

signal at time instant k can be estimated only after the

measurements from time instant (k+1) become available. It

means that there is a one step delay in the fault estimation,

whose effect on the dynamic response can be neglected for

practical application [2]. On the other hand, we can avoid

such problem via setting a new vector containing the y2(k),
as in [15]. ♦

V. AN ILLUSTRATIVE EXAMPLE

To show the effectiveness of the proposed design scheme,

we provide a PM synchronous motor whose analytic model

can be written as [17]:

ω̇r =
3

2

p2

J
λmiqs −

B

J
ωr −

p

J
TL

i̇qs =−
Rs

Ls

iqs − ωrids −
λm

Ls

ωr +
1

Ls

vqs

i̇ds =−
Rs

Ls

ids + ωriqs +
1

Ls

vds

where Rs is the stator resistance, Ls is the stator inductance,

ωr is the electrical rotor angular velocity, λm is the flux

linkage established by the permanent magnet. J is the

moment of inertia of the rotor and its attached load, B is

the viscous friction coefficient, p is the number of pole pairs,

and TL is the load torque. The rated power, speed and torque

are 400 W, 3000 rpm and 1.27 Nm, the number of poles is 4,

magnetic flux is 0.153 Wb, stator resistance and inductance

are 3.0 Ω and 10.5 mH, moment of inertia is 1.75 × 10−4

Nm · s2.

Assume that sampling time T = 0.1s, n = max(dk) = 3,

µ0 = 0.1826, µ1 = 0.2071, µ2 = 0.4776, µ3 = 0.1227.

After discretizing, we obtain a T-S model: Rule i(i =
0, 1, 2, 3): if τk is i, then the NCS model is




ωr(k + 1)
iqs(k + 1)
ids(k + 1)



 =






ωr(k) + 0.3
2

p2

J
λmiqs(k) − 0.1B

J
ωr(k) − 0.1p

J
TL

iqs(k) − 0.1Rs

Ls
iqs(k) − 0.1ωr(k)ids(k) − 0.1λm

Ls
ωr(k)

ids(k) − 0.1Rs

Ls
ids(k) + 0.1ωr(k)iqs(k)






+





0
0.1
Ls

vqs(k − i)
0.1
Ls

vds(k − i)



 +





0
0

0.1x1(k)x3(k)



 f(k)
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+





0.006
0.01(x1(k) − x3(k))2

0.01x1(k)



 θ(k)

y1(k)=ωr(k), y2(k) = ids(k)

It can be checked that Assumption 3 is satisfied. Indeed, ac-

cording to Lemma 1, a diffeomorphism is chosen as ξ1(k) =

ωr(k), ξ2(k) = ωr(k) + 0.3
2

p2

J
λmiqs(k) − 0.1B

J
ωr(k) −

0.1p
J

TL, ξ3(k) = x3(k). Then the model in ξ-coordinate can

be represented as

ξ1(k + 1)= ξ2(k) + 0.006θ(k)

ξ2(k + 1)=(1 −
0.1B

J
)(ξ2(k) + 0.006θ(k))

+
0.3

2

p2

J
λm

[(

1 −
0.1Rs

Ls

)(

ξ2(k) − y1(k)

+
0.1B

J
y1(k) +

0.1p

J
TL +

2

0.3

J

p2λm

)

−0.1y1(k)y2(k) −
0.1λm

Ls

y1(k) +
0.1

Ls

vqs(k − i)

+0.01(y1(k) − y2(k))2θ(k)

]

−
0.1p

J
TL

y1(k)= ξ1(k)

ξ3(k + 1)=y2(k) −
0.1Rs

Ls

y2(k) + 0.1y1(k)

[

ξ2(k) − y1(k)

+
0.1B

J
y1(k) +

0.1p

J
TL +

2

0.3

J

p2λm

]

+
0.1

Ls

vds(k − i)

+0.1y1(k)y2(k)f(k) + 0.01y1(k)θ(k)

y2(k)= ξ3(k)

It can be checked that Assumption 4 holds. One further have

from Section 4.1 that

L(k) =

[

−1 − 2ξ2(k)
y1(k) + 0.01(y2(k) − y1(k))2

1 + 2ξ2(k)
y2(k) + 0.01(y2(k) − y1(k))2

]

M(k) =

[

2 0

−1 − 2ξ2(k)
y2(k) + 0.01(y2(k) − y1(k))2 1

]

Choose Γ = 1.182, ǫ1 = 5, K = [3 1]T , R = 60, the

observer (21) is applied with θ̂(0) = 0. Fig. 2 shows the

estimation results of the system uncertainty and the fault.
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Fig. 2. Estimation performance

VI. CONCLUSION

In this paper, we discussed the FE problem for a class

of nonlinear networked control systems with transfer delays.

The Euler approximate method and T-S model are combined

to model the nonlinear NCSs, which is suitable to design the

observer. Furthermore, Markovian jump system modelling

method is another effective way for modelling nonlinear

NCSs. Then, the proposed method can be extended to this

model is our future work.
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