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Abstract— Motivated by network controller design applica-
tions, we develop several majorization results for the dominant
eigenvector of an irreducible nonnegative matrix.

I. INTRODUCTION

Recent efforts on network control and design have made

clear that graph-theoretic characterization of eigenvector

components is critical, for both undirected and directed

graphs (which correspond to symmetric and asymmetric

topology matrices). However, graph-theoretic characteriza-

tion of eigenvalues and especially eigenvectors of asymmet-

ric matrices is very limited. Here, we study the structure

of the eigenvector associated with the dominant eigenvalue,

for the broad class of irreducible nonnegative matrices (see

e.g. [1]). More precisely, we characterize the dependence of

the dominant-eigenvector components on individual entries

in the matrix (equivalently, edge weights in an associated

graph), as well as on row scalings (Section 2). Motivated
by network design tasks in particular, we also briefly study

the dependence of dominant eigenvector components on

simultaneous modifications in multiple rows (Section 3).
Our particular motivation for studying the dominant eigen-

vectors of positive matrices stems from our efforts in decen-

tralized controller design [2], [3]. From another viewpoint,

this work also contributes to the extensive research on

positive dynamical systems and the associated nonnegative

matrices (see e.g [1], [4]), by further characterizing the

eigenvector associated with the dominant eigenvalue. We

ask the reader to see the extended document [6] for further

development of these motivations.

II. MAJORIZATIONS FOR SINGLE-ROW

INCREMENTATIONS

We are concerned in this section with understanding how

the dominant-eigenvector components of a nonnegative ma-

trix depend on individual matrix entries, and on scalings of

single rows in the matrix. In fact, we find it most convenient

to study the dependence in the case that a single row of the

matrix is incremented in an arbitrary fashion, and hence to

obtain results for single-entry changes and row scalings as

special cases.

Precisely, let us consider an n × n real irreducible non-

negative matrix G
△
= [gij ]. We consider incrementing a

single row of G, say (WLOG) the first row, by a vector

aT △
=

[
a1 . . . an

]
, where each ai ≥ 0 and a 6= 0. That
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is, we study Ĝ = G + e1a
T , where e1 is an 0–1 indicator

vector with first entry equal to 1.

We notice that Ĝ is also an irreducible nonnegative matrix.

Thus, G and Ĝ each has a real positive eigenvalue (denoted λ

and λ̂, respectively) that is non-repeated and has magnitude

at least as large as each of its other eigenvalues. The

eigenvector v (respectively v̂) associated with G (Ĝ) is

strictly positive entrywise. For the purpose of this note, we

refer to v (v̂) as the dominant eigenvector of G (Ĝ). Also,

we use the notation vi (respectively, v̂i) for the ith component

of v (respectively v̂).

Our purpose is to compare the components of the dominant

eigenvectors v and v̂. We find that incrementing the first

row increases the first eigenvector component relative to each

remaining component:

Theorem 1: Consider the dominant eigenvectors v and v̂.

Then bv1

bvj
> v1

vj
and for j = 2, . . . , n. We thus recover that,

when the eigenvector is normalized to unit length, v̂1 > v1.

Proof: It is well known, see e.g. [1], that incrementing

entries of an irreducible nonnegative matrix strictly increases

its dominant eigenvalue, so in our case λ̂ = λ + ∆ for some
∆ > 0. Also, from the positivity of the dominant eigenvec-
tors of G and Ĝ, we note that the dominant eigenvector of Ĝ

can be scaled so that its first entry is equal to the first entry

of v. Thus, the dominant eigenvector for Ĝ can be written

(for some normalization) in the form ṽ =

[
v1

v2:n + q

]
, where

vT
2:n =

[
v2 . . . vn

]
, and q is a (n− 1)-component vector

(and where we have used ṽ for the eigenvector to indicate

its particular normalization).
We shall prove that the vector q is (elementwise) strictly

positive. To do so, let us simply work from the eigenvector

equation Ĝṽ = λ̂ṽ. Let us consider the last n− 1 equations
in the system of equations. Specifically, substituting for λ̂
and ṽ, and using the eigenvector equation Gv = λv, we
find that

G2:n,2:nq = bλq + ∆v2:n,

where G2:n,2:n =




g22 . . . g2n

...
...

gn2 . . . gnn



. Rearranging, we ob-

tain (λ̂I −G2:n,2:n)q = −∆v2:n. From classical results, we

have that the dominant eigenvalue of the nonnegative matrix

G2:n,2:n is less than or equal to λ, and hence strictly less that

λ̂ [1]. Thus, λ̂I −G2:n,2:n is a nonsingular M-matrix [1]. It

is thus automatic that its inverse is elementwise nonnegative.

In fact, noting that each irreducible submatrix of G2:n,2:n has

a strictly postive inverse, we obtain that (λ̂I − G2:n,2:n)−1

has at least one strictly positive entry on each row. Noting
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that v2:n is entrywise strictly positive, we thus find that q is

entrywise strictly negative. The majorizations in the theorem

statement follow immediately. �

The above theorem shows that, when a particular row of

a positive matrix is incremented (in an arbitrary way), the

associated component of the dominant eigenvector increases

relative to the other components. This results automatically

specializes to two cases of particular interest, namely 1)

the incrementation of a single entry in the matrix (which

corresponds to incrementing an edge weight in an associated

graph), and 2) the scaling of a row in the matrix (which

corresponds to scaling the “influence” of a node in the graph,

e.g. by changing a controller gain):

Corollary 1: Consider incrementing the entry at row i

and column j of an irreducible nonnegative matrix G.

Then the ratio of the ith component of the dominant right

eigenvector of G to each other component strictly increases.

Similarly, the ratio of the jth component of the dominant left

eigenvector to each other component strictly increases.

Corollary 2: Consider scaling the ith row of an irre-

ducible nonnegative matrix G by a factor α > 1 (respectively

0 < α < 1). Then the ratio of the ith component of the

dominant right eigenvector of G to each other component

strictly increases (respectively, strictly decreases).

The result for row-scaling of positive matrices also permits

us characterize the eigenvectors of nonsingular irreducible

M matrices (see [1]) upon row-scaling, using the fact that

inverses of irreducible M matrices are nonnegative (in fact,

strictly positive) matrices:

Corollary 3: Consider scaling the ith row of a

nonsingular and irreducible M matrix by a constant

α > 1 (respectively, α < 1), and consider the left

eigenvector associated with the eigenvalue of minimum

magnitude that is real. The ratio of the ith component of

this eigenvector to each other component strictly decreases

(respectively, increases) upon row-scaling.

Let us take a moment to briefly interpret the above results

for a couple applications, to illustrate their use. In the

interest of space, we shall only discuss these examples at

a conceptual level.

1) Velocity-control problems in autonomous-vehicle-

coordination applications can often be abstracted that of

designing a diagonal gain matrix K so as to optimize the

dynamics ẋ = −KHx, where H is an M -matrix (see e.g.

[2]). The above analysis clarifies that increasing the gain

for a particular vehicle not only speeds up the slow mode

of the system, but reduces the excitation caused by the

initial conditions of that vehicle (since the left eigenvector

component is depressed).

2) In virus-spreading-control applications, reducing the

flow of infectives from one region i to another j has the

effect of reducing the impact of the infectives in region i on

other regions and reducing the size of the infected population

in j (in addition to slowing the spread of the infection in

general).

III. MAJORIZATIONS FOR MULTIPLE-ROW

INCREMENTATIONS

In decentralized controller design tasks, it turns out that

understanding the dependence of eigenvector components

upon scaling of multiple rows or incrementation of multiple

diagonal entries is important [2], [3]. With these applications

in mind, here we briefly characterize the dependence of

dominant eigenvector components of nonnegative matrices

on diagonal entries of the matrices (noting that similar results

hold for other multi-row incrementations). We develop the

majorization results in two steps: first, we consider design-

ing incrementations of multiple diagonal entries to achieve

certain ratios among the dominant eigenvector components.

Second, we use this result to study arbitrary incrementations

of multiple diagonal entries. We exclude the proofs in the

interest of space, see [6] for further details.

First, here is the design result:

Theorem 2: Consider an irreducible nonnegative matrix

G, and say (WLOG) that we can increment the first m < n

diagonal entries by amounts k1, . . . , km, respectively, to ob-

tain Ĝ. Then, for each k1 > 0, we can find k2 > 0, . . . , km >

0 so that 1) bvi

bvj
= vi

vj
for i = 1, . . . ,m, j = 1, . . . ,m, and 2)

bvi

bvj
> vi

vj
for i = 1, . . . ,m, j = m + 1, . . . , n. Furthermore,

k2, . . . , km increase monotonically with increasing k1.

This theorem states that there is a way to incrementm diago-

nal entries of a nonnegative matrix so that the corresponding

m components of the dominant eigenvector remain the same

to within a scaling, while the ratios of these components to

the others increase.

Finally, the above design result yields a majorization of

eigenvector components for arbitrary diagonal incrementa-

tions, as formalized in the following theorem:

Theorem 3: Consider an irreducible nonnegative matrix

G, and say (WLOG) that we increment the first m < n

diagonal entries by amounts k1, . . . , km, respectively, to

obtain Ĝ. Then, there is i ∈ 1, . . . ,m such that bvi

bvj
> vi

vj

for all j = m + 1, . . . , n.

This theorem states that, when multiple diagonal entries of

an irreducible nonnegative matrix are incremented, at least

one corresponding components in the dominant eigenvector

becomes larger in relation to all the components correspond-

ing to non-incremented entries.
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