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Abstract—Process control of blast furnace ironmaking poses 
a great challenge because of its great complexity. As a main 
indicator of thermal state in blast furnace, silicon content in hot 
metal must be maintained at an appropriate level. In the present 
work, silicon content is taken as the output variable and the 
subspace identification method is used to identify the model 
between input and output variables. The identified model is then 
used for prediction so that future information of silicon content 
can be obtained. With the predictions of silicon content, 
predictive control of the ironmaking process becomes feasible. 
Other practical issues like dimension reduction of input 
variables and data preprocessing are also discussed. 

I. INTRODUCTION 
LAST furnace ironmaking is a critical process in the 

steel making industry. A blast furnace is a type of 
metallurgical furnace used for smelting to produce molten 
iron. In a blast furnace, fuel and ore are continuously dumped 
through the top of furnace, while air (or pure oxygen) is 
blown into the bottom of the chamber, so that the chemical 
reactions take place throughout the furnace as the material 
moves downward. The end products are usually molten iron 
and slag phases tapped from the bottom, and flue gases 
exiting from the top of the furnace. Although the efficiency of 
blast furnaces is constantly evolving, the automatic control of 
blast furnace ironmaking remains a problem. It is partly due 
to the complexity of the whole process and partly the extreme 
temperature. The temperature in the blast furnace is as high as 
1600℃  and constantly changing, making it difficult to 
maintain at a stable level. As a main indicator of thermal state 
in blast furnace and the most important index of pig iron 
quality, silicon content in hot metal must be kept at an 
appropriate level to facilitate the production of high quality 
pig iron and stable running of the ironmaking process. 
Therefore, to better control the process, we need an accurate 

predictive model whose prediction is consistent with the 
observed silicon content in pig iron. Much work has been 
done on this issue; among them are stochastic models like 
regressive models [1], neural network models [2], [3], [4] and 
deterministic models like mechanism mathematical models 
[5], [6]. It seems these models work quite well in some 
situations while not so well in other conditions. As it is 
common knowledge that large-scale industrial processes are 
influenced by all kinds of noise, models combined of 
stochastic and deterministic may be more robust. For this 
reason, the current work adopts combined 
deterministic-stochastic subspace identification algorithm to 
establish the predictive model.   
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II. SUBSPACE IDENTIFICATION METHOD 
System identification is the process of constructing 

mathematical models of dynamical system using measured 
input and output data. Until now, numerous time-domain and 
frequency-domain algorithms have been well developed and 
a class of identification method-subspace identification has 
received much attention [7]. Compared to other iterative 
methods like prediction error method (PEM), this is a fast and 
numerically reliable way [8]. During the recent 10 years, 
subspace identification has enjoyed great development both 
in theory and practice. Subspace identification methods have 
been applied to various industrial processes from chemical 
engineering to robot arm control. Three basic subspace 
identification methods are established, including N4SID [9], 
MOESP [10] and CVA [11]. The first and third algorithms 
have been seen more applications in practical industrial 
systems, and we choose the N4SID for implement in our 
application here.  

Consider the following combined deterministic-stochastic 
linear time-invariant system: 

1k k kx Ax Bu ω+ = + +   (2.1) 

k k ky Cx Du kυ= + + ,   (2.2) 
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where R n nA ×∈ , R n mB ×∈ , ,R l nC ×∈ R l mD ×∈ ,
R n lS ×∈ , R l lR ×∈ . The input vectors 1Rm
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mean, white noise vector sequences. Here E  is the expected 
value and δ  is the Kronecker delta. The identification 
problem can then be stated as follows:  

Given  input and output measurements and the fact that 
the two sequences are generated by the unknown combined 
deterministic-stochastic model (2.1)-(2.3), find the order of 
system and the system matrices

N

, , , , , ,A B C D Q R S . 
Let the input space denote by U and the output space 

denoted by . Consider the orthogonal projection of 
onto U such that  

( )y t
( )y t

( ) { ( ) | }dy t E y t U= %     (2.4) 

Where  denotes the orthogonal projection, thenE% ( )dy t is 

called the deterministic component of . Also, the 

complementary projection 

( )y t
( ) ( )sy t y t= − { ( ) | }E y t U% is 

called the stochastic component of . ( )y t
The approach of N4SID is then used to identify the model. 

First a state sequence is determined from the projection of 
input-output data; this projection retains all the information 
(deterministic and stochastic) in the past that is useful to 
predict the future. Then the state space matrices are 
determined from the state sequence and with regression we 
then get other system matrices. A detailed description of 
algorithm can be found in [12]. 

For the convenience of prediction, we design a Kalman 
filter for the system to estimate the state variables if the 
system is observable so that the system can be rewritten as: 

1k k k kx Ax Bu Ke+ = + +    (2.5)   

k k k ky Cx Du e= + +      (2.6) 

Where K  is the steady state Kalman gain that can be 
obtained from an algebraic Ricatti equation [13], innovation 

 is white noise and independent of past input and output 
data. 

ke

  Now a state space model for the blast furnace ironmaking 
process has been constructed. We need to further develop it 
into a predictive system for online prediction. The state 

transition model for the th time period to the next can be 
described as: 
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                                (2.7) 
With the equation, one can get the predictions of the future 

output from the past input variables, so that a predictive 
model is constructed. 

III. PRACTICAL CONSIDERING 

A. Selection of input variables 
The blast furnace of our concern has an internal volume of 

2500m3, together with the supporting equipment; a complex 
operating process is constructed. Due to the big volume of 

blast furnace and the complexity, there are numerous process 
variables that affect the quality and thermal state in blast 
furnace. We take silicon content as the output variable but 
selection of useful process variables needs more 
consideration. Inclusion of too many parameters will lead to a 
model of enormous size and complexity. One solution is to 
select variables and sample points that are well correlated 
with the output variable, which may reduce the dimension of 
the identified model effectively. However, such selection 
would be difficult without prior engineering knowledge and 
requires a complete residual analysis to test which 
combination of variables and sample points is the best. 

An alternative is to use some dimension reduction 
technique. In the mean-square error sense, Principal 
Component Analysis (PCA) is the best linear dimension 
reduction technique. Through PCA, one can reduce the huge 
number of process variables into a few variables that 
represents the major variance. Instead of the using principal 
components (PCs) as the new variables, here we use another 
scheme of PCA [14]. This method uses the information in 
PCs to find important variables in the original dataset. As 
before, one first calculates the PCs then studies the scree plot 
to determine the number  of important variables to keep. 
Next, one considers the eigenvector corresponding to the 
smallest eigenvalue (the least important PC) and discards the 
variable that has the largest (absolute value) coefficient in the 
vector. Then one considers the eigenvector corresponding to 
the second smallest eigenvalue and discards the variable 
contributing the largest (absolute value) coefficient to that 
eigenvector among the variables not discarded earlier. The 
process is repeated until only variables remain.  

k

k
The reason for using such a scheme of PCA, on one hand, 

is that there is much redundant information and most 
variables remain relatively unchanged, on the other hand for 
the convenience of coming control. Among the process 
variables just a few ones are frequently used by operators to 
control the process. By performing PCA we select these 
important variables out and take them as the input process 
variables and other variables are considered as disturbances. 
Therefore the process can be represented by a model with 
disturbances (combined deterministic-stochastic model). 

B. Appropriate level of silicon content 
For the purpose of process control, it is essential to use the 

future information of silicon content for process control. To 
achieve this, we need to propose an appropriate level of 
silicon content so that when prediction of future silicon 
content is available, relative control measures can be taken. In 
ironmaking process, the main control objectives are larger 
output, lower energy consumption and better quality. Thus it 
is important to estimate at which level of silicon content can 
these objectives be achieved, e.g., the range of silicon content 
that gives the largest output and consumes the least energy.  
We then take the measured temperature of hot metal ( μ ) as 
an instrument variable to get the range of silicon content ( ) 
with the largest hourly output of hot metal (

Si
θ ). After 

removing outliers, is then divided into several intervals Si

2482



  

and so is μ . So some combinations (called states here) are 
formed. We then calculate the number of datasets that fall 
into these states and the mean value of θ  in each state. The 
number of datasets here is 500. Datasets with silicon content 
more than 0.9 are deleted since those datasets are regarded to 
be measured when production conditions are poor.  Fig. 1 
gives the number of datasets that fall into each state. It can be 
seen from Fig. 1 that most datasets fall into 9 states, e.g., the 
states when is between 0.4 and 0.7 and Si μ is between 
1500 and 1530.  

From Fig. 2 it can be seen that there is little difference on 
average hourly output between each state. Bearing in mind 

the fact that the ironmaking process consumes less energy 
when silicon content and hot metal temperature are lower we 
can get the best state of production. Here the best state of 
production is when is between 0.4-0.5 and Si μ is between 
1500 and 1510.  In this state, good output together with less 
energy consumption is achieved. In practical production, 
keeping the silicon content in the selected state becomes one 
of our control objectives.  

C. Predictive control method 
In blast furnace ironmaking, a sustainable process with 

high output, low cost and good quality is most crucial for 
production. The ideal situation is just to take small 

adjustments of input variables and keep silicon content at an 
appropriate level- the level that gives higher output and 
consume less energy. It can be expressed as the following 
equations: 

0

1 2 0 1( , , ..., ) ( ) [ ,
t

n
t

F u u u d y t y yτΔ Δ Δ = ∈∫ ]   (3.1) 

1,...,
1 1

min { ( ) ( ) }
n

N N
T

u u k k y k k k u k
k k

y y y y u uΔ Δ
= =

− Λ − + Δ Λ Δ∑ ∑% %    

                             (3.2) 
 where Δ  is the difference operator and kuΔ is the 

incremental change of the input variable ju . is the output 

variable (here 

y

y is silicon content), ky% is the predicted value 

of ky . yΛ and uΛ are chosen to assign relative importance 

to the elements in ky and kuΔ respectively. For example, 
quality control may be given a higher emphasis by giving a 
higher weighting of yΛ . In practice, operators are apt to 

adjust a few of the input variables such as temperature of blast, 
quantity of blast and so on, which makes the operation 
relatively convenient. 

IV. SIMULATION RESULTS 
Fig. 1. Number of datasets that fall into each state. 

Time series data used here is collected from blast furnace 
No. 1 in Baotou Iron and Steel Corporation with the volume 
of 2500m3. The data, with the size of 500 datasets, is divided 
into training set and validation set. The training set (with 400 
datasets) is used to identify the model and the validation set 
(with 100 datasets) is used to assess the performance of the 
model. 

Fig. 2.  Average hourly output of hot metal for different combinations 
of silicon content and hot metal temperature  

Through PCA we select out 7 process variables from 35 

variables as input variables of the subspace model. Table 1 
describes the 7 input variables from No. 6 blast furnace in 

TABLE I 
SELECTED INPUT VARIABLES 

 
No Variable  Mean Standard 

Deviation
1 quantity of 

blast  
3538.8  72.2 

2 temperature 
of blast  

1095.8 18.4 

3 pressure of 
blast  

284.8 7.3 

4 gas 
permeability 

3155.7 199.3 

5 quantity of 
coal powder 

14.2 4.4 

6 percent of 
CO2 in top 
gas 

27.6 6.0 

7 pressure of 
top gas 

175.7 41.2 
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Baotou Iron and Steel Corporation in China. As is shown in 
table 1, the input variables have widely varying mean value 
and standard deviation, it is necessary to tailor the data to 
make the calculation easier by ensuring zero mean and unit 
standard deviation for each input variable. In the present 
work all the variables have been scaled prior to model 

building by the following relation:
( )

( )
n

n
x xx

x
μ

σ
−

=% , where 

( )xμ and ( )xσ are mean and standard deviation of all data 
for the variable x .  

After the preprocessing procedures, the subspace 
framework is then used to identify the model. Fig. 3 gives the 

comparison of simulated and actual value of silicon content. 
With identified model, we can make predictions of future 
silicon content. The validation set is used to test the 
performance of the identified model. The results of prediction 
are shown in Fig. 4.  

 

  It can be seen from Fig. 4 that predictions are in good 
agreement with actual values. With the accurate prediction of 
future information of silicon content, we can take measures in 
advance to keep the production smooth. For example, if our 
prediction of silicon content is out of the appropriate level we 

obtained in 3.2, we can take adjustments of input variables 
according to the predictive control method in 3.3. 

V. CONCLUSION 
In this work, the subspace identification method is used to 

construct predictive model for ironmaking process. By 
selecting out the key input variables using a new scheme of 
PCA, an easier predictive control method is proposed. The 
method is illustrated by first obtaining the appropriate level of 
silicon content and with the desired level of silicon content as 
one of the control objectives, we propose an 
optimization-based predictive control method that is easy to 
implement.  Empirical results show that the model has 
achieved good predictive performance, it is reasonable to 
believe a smooth production can be realized.  For operators of 
blast furnace, closed-loop operation is a long-term target; 
further work should be done on the development of 
closed-loop identification method for the ironmaking 
process. 

Fig. 3.  Simulation result with comparison to actual value of silicon 
content.  
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