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Abstract— Incremental Sheet Forming (ISF) is a flexible
method for forming sheet metal that can be considered as an
incremental deformation process. A fast method for modeling
deformation in ISF is required that can form the basis of
a path optimisation and feedback control algorithm for the
process. This paper improves upon previous formulations for
approximately modeling ISF by incorporating bending work
and using finite element discretisation. The model is solved by
manipulating the problem into the form of a second-order cone
program (SOCP) and significant improvements are observed
in terms of numerical stability of the model allowing a full
product to be simulated. For validation purposes, a comparison
is provided between the new model and measured data.

I. INTRODUCTION

Incremental deformation is a process that applies a series

of small deflections to a material that accumulate to pro-

duce a large final deformation. Interest in the modelling of

incremental deformation has increased over the past decade

with the advent of a range of novel manufacturing techniques

that automate the incremental deformation process, allowing

shaped parts to be produced without the need for stamp-

ing. These processes, which are collectively referred to as

Incremental Sheet Forming (ISF) [1], require no specialised

tooling making them highly attractive for low volume man-

ufacturing and rapid prototyping, both economically and in

terms of flexibility [2]. The most general ISF process uses

one small indenter that is pushed into the metal by 0.2-2 mm,

causing plastic deformation. The indenter, which is 5-20 mm

in diameter at the tip, is dragged over the sheet at this depth

using a CNC sequence to create a small track. This is the

first contour of the desired product. The tool then indents

further and is tracked around to form the next contour of the

part, and so on until the desired shape is built up.

Although ISF offers more flexibility compared to stamping

processes, currently ISF does not produce components with

sufficient accuracy. ISF processes are subject to several non-

linear disturbances, such as elastic spring-back, metal work-

hardening and stretching of the ISF machinery, all of which

must be accounted for in order to ensure that the formed

sheets agree well geometrically with the desired product.

This is particularly of importance in manufacturing and

medical applications. The aim of this work is to facilitate

the development of a feedback control system that regulates

the geometric accuracy of deformation over the plane of the
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sheet. To design such a system, a computationally efficient

process model is required and is currently under develop-

ment. Earlier progress on the work is described in [3] and [4],

where the authors formulated a model for incremental form-

ing using second-order cone programming (SOCP) under

the assumption of rigid perfectly plastic material behaviour.

The model used finite differencing for spatial discretisation

and only the stretching component of work within the sheet

was modeled. In [4], some preliminary results in modeling a

CNC ISF process were presented. However, when modeling

a full incrementally formed product, the proposed model

was found to be numerically unstable except for very small

time increments. Motivated by the successful application

of the assumption of rigid plastic material behaviour in

producing efficient models for other metal forming processes

[5], the new model continues to use the assumption, but it is

otherwise completely reformulated. The new model displays

much better stability and is used to produce a full scale model

of a part, which is then validated against measurements from

a real product formed by ISF. The model also continues to

use SOCP as the solution method, which is solved efficiently

using state-of-the-art SOCP software. Furthermore, by the

application of Ilyushin theory, the model now accounts for

both membrane and bending effects within the sheet.

II. THE MODEL

The rigid perfectly plastic deformation assumption is

still commonly used in the field of limit analysis in civil

engineering, and it is there that it has seen the most re-

cent development [6]. The model presented here therefore

borrows some methods from limit analysis theory. Limit

analysis is a basis for computing an estimate of the value of

a multiplier that must be applied to a load distribution over

a solid, under the assumption of rigid plastic deformation,

in order to cause collapse [7]. Since the exact value of

this multiplier is difficult to compute, the upper and lower

bound methods are often used to provide the range of values

it may take. The upper bound approach is applied here

since for incremental deformation the material must undergo

collapse in order to achieve the required deformation. It

is therefore more appropriate to overestimate the multiplier

and guarantee collapse, rather than to use the lower bound

method and underestimate the limit load. It is noted that

unlike in limit analysis, the deformation field of the material

is of a greater interest here than the accurate computation of

the value of the load multiplier.
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A. Plate problem

The membrane and bending effects of the sheet are treated

separately and superimposed. The latter, known as the plate

formulation, will be provided first. Two important assump-

tions will be made: firstly, stresses normal to the surface of

the sheet are considered to be negligible; secondly, under

Kirchoff assumptions, only the deflections normal to the

surface of the sheet are considered to be significant. Using

stress resultant notation, the energy dissipation within the

material due to bending moments is given as an integration

over the surface of the sheet

De =

∫

A

Mxκ̇x + Mxκ̇y + Mxyκ̇xy dA, (1)

where Mi are the bending moments defined as the through

thickness integration of the product the stresses, σi, and the

distance perpendicular to the plane of the sheet z,

Mi = −
∫

z

zσidz, i = x, y, xy. (2)

The curvature rates κ̇i are work conjugate to the bending

moments,

κ̇x =
∂2w

∂x2
, κ̇y =

∂2w

∂y2
, κ̇xy = 2

∂2w

∂x∂y
, (3)

where w is the transverse rate of deformation, or velocity,

of the sheet.

If rigid plastic material behaviour without work-hardening

is assumed, the stress distributions are rectangular during

yield and the stress resultants are given by

Mi = σi

h2

4
, i = x, y, xy, o, (4)

where σ is the material yield stress and h is the sheet

thickness. It is assumed that the non-linearity in material

behaviour can be described using J2 plasticity, so that the

stresses are bound by the von Mises yield surface,

f(Mx, My, Mxy) = M2
x −MxMy +M2

y +3M2
xy−M2

o , (5)

where f(Mx, My, Mxy) = 0 at yield, or by normalising the

stress resultants by M0 so that mx = Mx

M0

, etc,

f(mx, my, mxy) = m2
x − mxmy + m2

y + 3m2
xy − 1

= mT Hm − 1, (6)

where m = [mx my mxy]
T and H is symmetric positive

definite. Defining the factorisation, H = C−1C−T , and κ =
[κ̇x κ̇y κ̇xy]T , the internal dissipation, De, under von Mises

plasticity can be written as the integration over area of a

norm of a linear function with respect to curvature,

DI = M0

∫

A

||Cκ||dA, (7)

where the subscript I is used instead of e to emphasise that

the allowable stress state is bound by the yield criterion. This

can be derived from the principle of maximum plastic work,

from which the integrand of DI in (7) is defined as

dI = max
mT Hm≤1

mT
κ,

= max
‖C−T m‖≤1

mT
κ, (8)

the dual of which, in terms of dual variables λ, is

dI = min
λ≥0

1

4λ
κ

T H−T
κ + λ. (9)

The minimisation is performed by setting the derivative with

respect to λ of the above to zero,

λ =
1

2
(κT H−T

κ)
1

2 =
1

2
‖Cκ‖, (10)

where H−1 = H−T = CT C. The final result is obtained by

back substituting (10) into (9),

dI =
2

4

κ
T H−T

κ

‖Cκ‖ +
1

2
‖Cκ‖,

=‖Cκ‖. (11)

1) Discretisation: The transverse velocity w(x, y) is dis-

cretised by a cubic field in the form of the 9 degrees of

freedom triangular BCIZ element, which is described in

detail in [8]. There are several other choices of elements

that present the required characteristics for discretising the

model, but it is not the purpose of this paper to compare

these. The element has nodes only at the vertices and three

variables, wi,
∂wi

∂y
and −∂wi

∂x
, are stored at each node,

where i refers to the node number, 1, 2, or 3. Hermitian

interpolation is used to approximate the value of w(x, y)
at any point within the element. The interpolation field is

cubic with additional bubble functions and is given by the

shape functions provided in [9]. Through differentiation of

the appropriate shape functions, a relationship between the

curvature and the nodal variables w is produced in the form

of a linear matrix relationship. For a particular node i within

an element, the curvature is given by

κ
(e)
i = B

(e)
P,i w, (12)

where BP,i ∈ R
3×NV contains the coefficients of the re-

lationship, NV is the number of variables and w ∈ R
NV

contains all the degrees of freedom over the sheet. The

subscript P is used to emphasise that B is derived from

plate theory, and superscripts, (e), refer to element number.

The expression for curvature in equation (12) can be used

to calculate the integrand in equation (7) at the nodes, since

‖Cκi‖ = ‖CBP,iw‖. An exact integration of ‖Cκ‖ over the

area of the element would be costly in terms of numerical

efficiency. An approximate integral is calculated instead by

using the values of the integrand, ‖Cκ‖, at the nodes and

restricting it to vary linearly over the element,

‖Cκ‖ ≈ L1‖Cκ1‖ + L2‖Cκ2‖ + L3‖Cκ3‖, (13)

so that the integration of equation (13) over the element

becomes
∫

A

‖Cκ‖dA ≈ ∆

3
(‖Cκ1‖ + ‖Cκ2‖ + ‖Cκ3‖), (14)
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where ∆ is the triangle area. This approximation always

results in a value greater than or equal to the true value of the

integration ensuring an upper bound solution. The discretised

expression for internal dissipation over the sheet is a sum of

norms,

DI =
M0

3

NE
∑

e

3
∑

i=1

∆‖CBP,iw‖, (15)

where NE is the total number of elements in the finite

element mesh. It is convenient to stack the matrices BP,i into

a single sparse matrix BP ∈ R
9NE×NV . By the principle of

virtual work, the velocity field that minimises the internal

dissipation provides the dynamical path of the system. For

the first step of an incremental sheet forming process, the

sheet metal is clamped at the edges and a tool of spherical

surface indents the sheet at a single point, which leads to

min
w

DI ,

s.t. wtool ≥ Tool surface function,

wboundary = 0. (16)

wboundary ⊂ w are the set of variables that are constrained

at the boundaries. These can be implemented implicitly by

removing the corresponding variables from the optimisation.

The tool surface function describes the tool height at any

position (x, y). The function produces a vector t ∈ R
NT of

the tool height at positions over the tool surface that coincide

with nodes of the finite element mesh. The deformation

variables wtool ⊂ w also correspond to these nodes. The

above sum of norms problem can be rearranged into an

optimisation problem with a linear objective function and

quadratic conic constraints. Hence, the SOCP form of the

above optimisation problem is obtained, with the introduction

of two vectors of slack variables, η ∈ R
9NE and z ∈ R

3NE ,

as

min fT z

s.t. Ew ≥ t

CBPw = η

‖ηi‖ ≤ zi i = 1, .., 3NE, (17)

where the clamping constraints are implicit, the vector ηi =
[η1+3(i−1), . . . , η3i)], ηi and zi are individual elements of

their corresponding vectors and Ew = wtool. From (15), the

vector f contains elements that all have a value of M0

3 . Note

that ∆ in equation (15) has been incorporated into BP in

equation (17). The third set of constraints in equation (17) are

second-order cone constraints. In practice, the dual form of

the above problem implemented as it is faster to solve. Figure

1 shows the deformation field of a point loaded clamped

plate with NE = 5000. For the point loaded case, the dual

objective function contains only one variable as opposed to

3NE = 15000 in the primal problem, which is why the

dual is more efficient to solve. The problem was set up in

Matlab and solved using the commercial software package

MOSEK [10], although several open source SOCP solvers

are available and are also suitable.

Fig. 1. Deformation field of point loaded sheet obtained by solving an
upper bound plate problem using SOCP

B. Extension to shells

Unlike in plate theory, the finite elements that lie within

a shell do not all share a common plane, but can instead be

oriented arbitrarily in space with nodes at the global coor-

dinates (Xi, Yi, Zi), for i = 1, 2, 3. The bending work for

a particular element can be computed using the formulation

in the previous section by defining velocities that operate

within a local in-plane coordinate frame with respect to the

element concerned. A transformation is then performed to

align these velocities to the global reference frame. The

coordinates in the local frame will be expressed by the lower

case equivalents of the global system.

The membrane, or in-plane stretching, work component in

a shell is now considered. Firstly, three further normalised

stress resultants nx, ny and nxy are introduced, which are

defined as,

ni =
1

No

∫

z

σidz, i = x, y, xy, (18)

where No = σoh and σo is the material yield stress. The

dissipation due to in-plane stretching is then given by

DI = No

∫

A

nxǫ̇x + ny ǫ̇y + nxyγ̇xy dA, (19)

where the strain rates are calculated from the in plane

velocities u and v using the expressions,

ǫ̇x =
∂u

∂x
, ǫ̇y =

∂v

∂y
, γ̇xy =

1

2

(

∂u

∂y
+

∂v

∂x

)

. (20)

A simple shell finite element is produced by superimposing

a bending element, such as the BCIZ element, with a mem-

brane element. Note that it has been assumed that the shell

geometry can be suitably approximated by flat, rather than

curved, triangular elements. In this case, the Allman element

[11] is used to discretise the in-plane velocity fields and

to compute membrane strains. As with the BCIZ element,

this element has 9 degrees of freedom and three nodes, one

at each vertex. The in-plane velocities ui, vi, and in-plane

rotations θz,i, are stored at each node i = 1, 2, 3. Within

the local coordinate frame, the in-plane strains are related to

these nodal velocities via a linear matrix relationship, so that

for a node i of an element e within a finite element mesh,

ǫ
(e)
i = B

(e)
M,iu, (21)
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where ǫi = [ǫ̇x,i ǫ̇y,i 2τ̇xy,i], B
(e)
M,i ∈ R

3×NV can be

obtained from [11], and u ∈ R
NV contains all of the in-

plane variables for the element. Combining the plate and

membrane components of strain [12],
[

κi

ǫi

]

=

[

BP,i O

O BM,i

] [

w

u

]

, (22)

where the (e) superscripts have been ommitted for clarity.

In order to relate the local variables w and u to a global

coordinate frame, W and U, a transformation matrix T =
T(e) is computed for each element using the methodology

outlined in [8]. Equation (22) can then be written as
[

κi

ǫi

]

=

[

BP,i O

O BM,i

]

T

[

W

U

]

. (23)

For the plate problem, the von Mises criterion was repre-

sented by the bending stress resultants only, but now the

membrane components must also be incorporated. This can

be done by using Ilyushin theory [13].

The Ilyushin criterion can be stated in terms of the

quadratic stress intensities, QP , QM and QMP ,

QP =m2
x − mxmy + m2

y + 3m2
xy, (24)

QM =n2
x − nxny + n2

y + 3n2
xy, (25)

QMP =nxmx − 1

2
(nxmy + nymx) + nymy + 3nxymxy,

(26)

or

QP = mT Dm, QM = nT Dn, QMP = nT Dm, (27)

where,

m =[mx my mxy]
T ,

n =[nx ny nxy]T ,

and for the von Mises criterion,

D =





1 − 1
2 0

− 1
2 1 0
0 0 3



 = RT R. (28)

The Ilyushin criterion states that stress resultants must lie

within the surface defined by the inequality [14]

Q2
MP ≤ QP QM , (29)

which becomes an equality at yield, and is usually ap-

proximated by a linear equation that was also provided by

Ilyushin,

QP +
1√
3
|QMP | + QM ≤ 1. (30)

Equation (30) can be written in the form of two intersecting

ellipsoids

sT Q1s ≤ 1, sT Q2s ≤ 1, (31)

where s = [mT nT ]T , Qi is

Qi =

[

D
M2

0

(−1)i−1 1
2
√

3
D

M0N0

(−1)i−1 1
2
√

3
D

M0N0

D
N2

0

]

,

(32)

and i = 1, 2. From the principle of maximum plastic work,

dI = max
s

sT
Φ,

s.t. sT Q1s ≤ 1,

sT Q2s ≤ 1, (33)

where Φ =
[

κ
T

ǫ
T
]T

. The form of equation (33) is similar

to the equivalent expression for the plate problem in equation

(8), except there are two constraints representing the yield

function rather than one. The problem cannot be treated

analytically as in the plate problem, making the derivation of

the SOCP more complicated. In order to simplify the above

problem, a relaxation technique was applied to reduce the

two constraints to a single constraint. This single constraint

was chosen so that it optimally approximates the solution

space given by the original two constraints. This was done

by seeking an ellipsoid function of the form sT Q̂s ≤ 1 that

best fits the intersection of the two ellipsoids in (31). The

value of the approximation Q̂ was found by computing the

ellipsoid of smallest volume that contains the intersection of

the above constraints. Mathematically, if ê = {s|sT Q̂s ≤ 1},

ei = {s|sT Qis ≤ 1} for i = 1, 2, then ê is the smallest

ellipsoid that it satisfies,

ê ⊇
2

⋂

i=1

ei. (34)

In this case, ê is the so-called minimum outer ellipsoid. An

alternative was also implemented, where ê was approximated

as the maximum inner ellipsoid, but this made little differ-

ence to the solution of the model and will not be discussed

further. Both problems were cast as maximum determinant

linear matrix inequality (LMI) optimisation problems using

the procedure described by Boyd et al in [15], and solved for

Q̂ using the semidefinite program solver, SeDuMi, details of

which can be found in [16]. The resulting minimum outer

ellipsoid is

Q̂ = Q1 + Q2, (35)

which is closely related to approximations to the Ilyushin

condition applied by other researchers, as discussed in [17].

The relaxed form of the principle of maximum plastic work

is

dI = max
s

sT
Φ,

s.t. sT Q̂s ≤ 1. (36)

This can now be treated as before, and the internal dissipation

can be cast as the integration over area of a norm by

following the steps in equations (8) to (11). This can then be

formulated as an SOCP problem after spatial discretisation.
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The final optimisation problem is

DI = min

3NE
∑

i

1

3
zi,

s.t. η = PKTx,

‖ηi‖ ≤ zi, i = 1, .., 3NE,

xtool ≥ Tool surface function,

xboundary = 0. (37)

where ηi = [η1+6(i−1), . . . , η6i)], x = [WT UT ]T , PT P =

Q̂, and K is

K =

[

∆B
(e)
P,i O

O ∆B
(e)
M,i

]

T(e). (38)

As with the plate problem, the edge boundary conditions

can be implemented implicitly and as previously the tool

constraints can be written as Ex ≥ t. In practice, it is more

efficient to solve the dual form of the problem.

Time integration is performed using a forward difference

scheme to update the deformation field at each time step [4].

The time evolution of the model follows a sequential limit

analysis [18] type scheme, which depends only on the change

in position of the tool at each time step. An assumption

about the contact conditions between the nodes of the finite

element mesh and the tool is required for the t+1 time step.

Specifically, it is assumed the nodes that coincide with the

tool at time step t can only move vertically until time step

t + 1. This assumption is not strictly valid but is required to

avoid the need for a time consuming iterative procedure to

model the contact state between the tool and the sheet.

III. RESULTS

The model in this paper was verified against a part pro-

duced on the Cambridge AISF machine [19]. The test prod-

uct, which is shown in fig. 2, was formed using 5251-H22

Aluminium alloy of 1mm thickness by the CNC tool-path

displayed in fig. 3, reaching a maximum depth of 50mm and

using a hemispherical tool with a radius of 10mm. The tool

was tracked along at 10mm.s−1 over the 175mm×175mm

sheet, which was clamped over a 140mm×140mm region.

After the part was formed, 255 measurements were taken

over the top surface of it using a coordinate measuring

machine (CMM) and used for comparison against the model.

As with the plate problem, the model was solved using

the SOCP software package MOSEK [10] for NE = 5000
on a standard desktop computer running MS Windows. The

boundary conditions matched those above, and the solution

was compared with the CMM measurements. These were

superimposed over the model, and an interpolation field

within each element was used to find the predicted deflection

directly below, or above, each of the measured points. The

results are shown in fig. 4, where the RMS vertical difference

between measured and simulated data is 0.88mm, with a

variance of 0.69mm2 and maximum deflection of 3.17mm.

The simulation took approximately 18 hours, with 60% of

the time spent in the SOCP solver. The remaining period

Fig. 2. Photograph of 5251-H22 Al alloy test product produced on the
purpose built Cambridge AISF machine
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Fig. 3. The CNC tool path used to produce the product in fig. 2

was spent in matrix assembly and can be reduced by using

a compiled script instead of Matlab. The lower limit on

simulation time is 11 hours, the time spent in the solver.

This paper provides a first evaluation of the rigid plastic

assumption for modelling ISF, and it uses recent SOCP

methods when formulating the shell problem. Further work

is required to observe the large reductions in computation

time that have been obtained from applying the rigid plastic

approximation to other processes [5]. It is not the intention

of this paper to explore all these possibilities. However, one

method, based on adaptive re-meshing, is displayed here,

which reduced the solution time by 50% by halving NE to

2528, without affecting the predicted geometry. Specifically,

a RMS vertical difference of 0.81mm was observed, with a

variance of 0.65mm2 and maximum deflection of 3.23mm

when compared to the measured data. The idea was to use a

coarse mesh that was refined within a region localised to the

tool. As the tool moved, the refined region moved with it.

Several remeshing algorithms were tried, of which the best

was found to be based on a regular mesh with one degree

of mesh refinement using the quadtree algorithm. The mesh

generator used is implemented in the open source package,

QMG [20]. The model used a base mesh that was generated

over a 30×30 grid from which the localised region was

refined to the equivalent of a 60×60 mesh, as displayed in
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Fig. 4. Simulation of test product in fig. 2 produced by solving the rigid
plastic shell problem using SOCP for a regular finite element mesh. The
superimposed black dots are measured points from the real product.

Fig. 5. Simulation of test product in fig. 2 produced by solving the rigid
plastic shell problem using SOCP and mesh refinement around the tool. The
tool is shown under the simulated sheet in its final position.

fig. 5.

IV. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

This paper presents a model based on the rigid perfectly

plastic assumption as a possible approximation in modelling

incremental sheet forming (ISF). It is found to perform

suitably in modelling product geometry when compared

to a product formed on the Cambridge ISF machine. The

paper firstly formulates the plate problem as a second-order

cone program (SOCP). The model is then is extended by

superposition of the plate problem with a membrane problem

to simulate the plastic deformation of shells so that it can

be used to model ISF. A relaxation of the linearised Ilyushin

yield function is used to describe the yield surface in stress

resultant space. This shell problem is also formulated as an

SOCP. SOCP methods have recently gained interest as a

possible technique for solving engineering problems, so this

model is of a wider interest as a new example where SOCP

has been applied to a modelling problem.

The simulation time is significantly shorter when com-

pared to a full elastoplastic model, but it not short enough

for real-time implementation. However, using a reasonably

coarse mesh the model is currently suitable enough to run

within an off-line tool path planning algorithm, which is in

the form of a non-linear optimal control problem. The op-

timal control problem is currently being solved numerically

using an outer optimisation algorithm that calls the model at

each iteration step.

B. Future Works

The off-line optimal tool path will be tested on the ISF ma-

chine. Further model validation tests, including comparisons

with commercial finite element software, are in progress and

some modifications to improve the efficiency of the model

are also being tested. Once computation times have been

reduced to a satisfactory level, the off-line optimal control

problem will be extended to a real-time model predictive

control problem.

V. ACKNOWLEDGMENTS

The authors are grateful to members of the Institute for

Manufacturing, Cambridge University, UK, for providing the

test product used in this paper. The UK Engineering and

Physical Sciences Research Council are thanked for their

financial support.

REFERENCES

[1] J. Jeswiet, F. Micari, G. Hirt, A. Bramley, J. Duflou, and J. Allwood.
Asymmetric single point incremental forming of sheet metal. Annals

of CIRP, 54(2):623–650, 2005.
[2] J. M. Allwood, G. P. F. King, and J. Duflou. A structured search

for applications of the incremental sheet-forming process by product
segmentation. Proc. Inst. of Mech. Eng. Part B: J. Engineering

Manufacture, 219:239–244, 2005.
[3] A. Raithatha, K. Jackson, S. Duncan, and J. Allwood. New method

for modeling plastic deformation in incremental sheet forming. Proc.

IEEE CCA, 2006.
[4] A. Raithatha, S. Duncan, K. Jackson, and Julian Allwood. Second

order cone programming in modeling incremental deformation. Proc.
26th American Control Conf., 2007.

[5] M. J. Sharan. Comparison of elastic-plastic and rigid-plastic implicit
FEM simulations in sheet forming applications. Journal of Materials
Processing Technology, 27:279–300, 1991.

[6] E. Christiansen. Limit analysis for plastic plates. Siam. J. Math. Anal.,
11:514–522, 1980.

[7] K. D. Anderson, E. Christiansen, and M. Overton. Computing limit
loads by minimising the sum of norms. SIAM J. Sci. Comput., 19:3,
1998.

[8] O. C. Zienkiewicz and R. L. Taylor. The Finite Element Method for

Solid and Structural Mechanics, 5th edition. Butterworth-Heinemann,
2000.

[9] C. A. Felippa. Web-posted lectures on advanced finite element
methods, at http://caswww.colorado.edu/courses.d/afem.d/home.html.

[10] MOSEKApS. The MOSEK optimization toolbox for MATLAB version

3.2 (Revision 8). User’s guide and reference manual. MOSEK ApS.
Denmark., 2002.

[11] D. J. Allman. A compatible triangular element including vertex
rotations for plane elasticity analysis. Computers and Structures, 19:1–
8, 1984.

[12] R. D Cook, D. S. Malkus, M. E. Plesha, and R. J. Witt. Concepts
and applications of Finite Element Analysis, 4th edition. John Wiley
& Sons, 2002.
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