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Abstract— Although phase-locked loops (PLLs) are arguably
the most ubiquitous control loop designed by humans, system
theory analysis seems to lag behind the practice of implemen-
tation. In particular, full simulation of PLLs is rare. This paper
will explain the reasons for this and offer an efficient and
flexible simulator for PLLs. Part I of this paper [1] described
the simulator design. This part will describe the post processing
and show some results.

I. INTRODUCTION
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Fig. 1. Simulation block diagram for a classical digital phase locked loop.
On the left side of the diagram: data, VCO, and phase detector simulated
with component level blocks that are very efficient. On the right side of
the diagram: filters and modulation bandwidth are simulated using designs
from Matlab that are very flexible and derived from lab measurements.

The simulation of PLLs is made difficult by the stiffness

of the feedback loop. The data signals typically have sev-

eral orders of magnitude higher frequencies than the phase

modulation. Part I of this paper [1] described the simulator

design. This part will describe the post processing and show

some results.

II. DESIGN EXAMPLE
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Fig. 2. Block diagram for a Bang-Bang phase detector used in clock-data
recovery PLLs.
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The first step for any PLL design is the phase detector.

Without a means of detecting the relative phase of an input

signal and some sort of clock, there is no PLL. So, the

design of phase detectors is critical. As described in [2],

phase detectors vary greatly by the type of input signals that

they deal with. Signals that deal with modulated sinusoids

can be examined with a sinusoidal phase detector, which one

gets by mixing the input and clock signals. At the other end

of the spectrum are complex logic phase detectors such as

the Alexander (or Bang-Bang) phase detector and the Hogge

phase detector.

The Hogge detector is a linear phase detector that uses

flip-flops and gates that can recover phase from NRZ data

[3], [4]. This requires that the VCO clock period be the same

as the data (bit) period.

The Bang-Bang detector is a binary phase detector using

flip-flops that can recover phase from NRZ data [5], [6]. In

this case, the detector provides literally one bit of information

i.e., that the clock is early or late. A slight extension of

this allows that if the clock is exactly in phase with the

reference, the phase detector provides a zero output. These

detectors give up the linear performance of the Hogge

detector but gain in being easy to put into an integrated

circuit without needing manual calibration. A full rate bang-

bang detector requires that the VCO clock period be the

same as the data (bit) period. This is shown in Figure 2. A

half rate bang-bang detector uses two oscillators, working in

quadrature but at half the period as the data. This relaxation

of the oscillator requirements can become important when

the circuit technology is being pushed to accommodate fast

data rates.

What is important to note about these different phase

detectors is that some require digital logic blocks, some

require flip flops, and all require some math. By having a

class library of primitives for these components, it is fairly

easy to construct and test any of these (or other) phase

detectors.

III. FILTER FILES

As mentioned in Part I of this paper, the filter design can

be passed from Matlab to the simulation through a .flt file. A

filter file, VCOFilt1a.flt, which was used for this simulation.

is shown in Table I.

Note that all the information needed to allocate the appro-

priate data structures for the filter can be found here. The

filter file is for a SISO filter, but the filter type (IIR), sample

rate (fS = 1012 Hz), gain (1), offset (0), and order (3) are

included before the filter structure has to be allocated by the
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Name: VCOFilt1a
Type: iir
Sample rate: 1e+012
One Liner: This approximates our lab VCO with modulation BW
Gain: 1
Offset: 0
Order: 3
Coef:
a[3]: -0.99993214390113
b[3]: 0.07994108331177e-13
a[2]: 2.99986427501169
b[2]: 0.23982324993532e-13
a[1]: -2.99993213111056
b[1]: 0.23982324993532e-13
b[0]: 0.07994108331177e-13

TABLE I

FILTER FILE, VCOFilt1a.flt, WHICH WAS USED FOR THE SIMULATION IN

THIS PAPER.

simulation. The simulation then allocates a third order IIR

filter and populates it with the ai and bi values.

IV. POST PROCESSING

The simulation of the loop is accomplished with very rapid

C/C++ code. A salient feature of this simulator is that it saves

data to Matlab files for post processing using the Matlab API.

It is a great feature for several reasons:

• It dramatically expands the post processing capabilities

by using Matlab to work on vectors of simulation data.

• The simulation results can then be turned into a variety

of measurements, including time domain, frequency

domain, and histograms. based on the simulation results.

• It gives access to Matlab’s handle graphics.

A. Time Domain

The time domain processing is relatively straightforward.

One simply windows the time responses one wants to look at.

Again, the stiffness of PLLs becomes a factor. For example,

the plots in Figure 3, show including a long enough time run

to view the complete dynamics of the signal phase (bottom

plot) means that the signal plots (top plot) are essentially a

blur. To actually see the shape of the clock and reference

signals requires zooming in on the time responses as shown

in Figure 4 and 5, where Figure 4 shows the at the beginning

of the simulation and Figure 5 is at the end. All of these plots

come from a single simulation run.

B. Histograms and Clock Edges

Matlab code can generate histograms of the recovered

clock edges. This code takes a given signal an centers it

around 0. It then looks for sign changes in the sample signal

and interpolates between these using an estimate of the slope

at the transition to get a reasonable measure of the zero

crossing times. This is shown in Figure 6. From here, it

can separate out leading and trailing edge transitions (since

they should be interlaced) and plot these transitions (edge-

to-edge, leading edge, and trailing edge) on a histogram plot

along with their mean and standard deviation.
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Fig. 3. Time domain response of Half Rate Bang Bang PLL simulation.
Vertical fuzziness seen in phase detector output due to filters used by
Matlab’s decimation feature. The refIn signal is the data input. The clockIn
is the recovered VCO clock. The PD State is the state of the phase detector.
This is passed through two different low pass filters. The LP PD Out is low
passed with a 4 GHz bandwidth. The VLP PD Out is the phase detector
output passed through a 400 MHz bandwidth filter. In the bottom plot, the
input phase is θi and the recovered clock phase is θo.

These edges are computed relative to adjacent edges.

For example, the edge-to-edge time is computed by zero

centering the signal and measuring the time between two

successive zero crossings. The histograms of edge times are

built up from these comparisons of adjacent edges, leading

edges, and trailing edges. In other words, this generation of

histograms comes from data taking akin to that of a real

time scope. The interpolation of the zero crossing times

using the estimated slopes shown in Figure 6 also lowers the

quantization noise in computing the zero crossings. This is

an important addition to the capabilities of the simulator and

shows the importance of generating this with a systems view.

Without this interpolation, the sample rate of the simulation

would have to be increased dramatically to get the same

zero crossing accuracy. This would slow down the simulation

and lessen its practicality. By understanding that the time

quantization could be minimized with this bit of interpolation

in the post processing, the sample rate for the simulation

could be set by the dynamics of the loop components and

not the needs of the histogram measurement.

In our design example, the computed histograms are

shown in Figure 7. In it, edge-to-edge (top plot), leading edge
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Fig. 4. Time domain response of Half Rate Bang-Bang PLL simulation.
This plot is zoomed in to the beginning of the simulation time.

to leading edge (middle plot), and trailing edge to trailing

edge (lower plot) times are plotted. If there were no variation

in any of the edges, the histograms would in fact be lines.

However, the jitter manifests itself as the histogram width.

Another phenomena that is observable is a variation in edge-

to-edge times in the top plot, even though the leading edge to

leading edge and trailing edge to trailing edge times are each

clustered around 25 pS. The bimodal distributions around 12

and 13 pS mean that the leading edge to trailing edge times

are different than the trailing edge to leading edge times,

possibly an indication of a DC shift in the signal. None of this

is obvious from Figures 3 –5. Furthermore, this behavior is

completely invisible in a modulation domain only simulation.

C. Frequency Domain Measurements

Once the simulation has been completed, the frequency

content of the signals can be analyzed. Figure 8 schemati-

cally shows the spectral components of a measured sine wave

without jitter. Note that the signal is composed of a noise

floor and a spectral peak. In Figure 9, jitter has been added

to the sine wave. We see that the noise floor is unchanged,

but the spectral peak has been shortened and broadened. One

of the great strengths of having an efficient simulator is the

ability to generate enough data both with and without jitter

on the reference, so that we can measure the effect of the

loop on the output spectrums.
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Fig. 5. Time domain response of Half Rate Bang-Bang PLL simulation.
This plot is zoomed in to the end of the simulation time.

Sample Points

Signal

Zero Crossing

Fig. 6. Zero crossing interpolation. Unless the sample rates are carefully
chosen to match the clock frequency and the samples are aligned to the
signal, it is likely that zero crossings will occur between samples. Thus,
by interpolating between the signal values at sample times around a zero
crossing, one can get an improved estimate of the zero crossing time.

While it is faster to generate a spectrum using FFT

methods, there is great flexibility in simulating spectrum

analyzer calculations. Spectrum Analyzers are tools that

predate the digital instrumentation era. In modern times, their

functionality has been mimicked using digital computations.

However, they are still useful for their high frequency mea-

surement capability. The basic idea here is that a Spectrum

Analyzer (SA) uses a tracking bandpass filter to isolate a

narrow band of frequencies and gives the magnitude of that

filtered output. The terms noise Equivalent Bandwidth and
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Fig. 7. Time domain jitter measurements of Half Rate Bang Bang PLL
simulation. Top plot: edge-to-edge jitter. Center plot: leading edge to leading
edge. Bottom plot: trailing edge to trailing edge.

Resolution Bandwidth come from these devices where

Noise Equivalent Bandwidth

≈ Resolution Bandwidth
△
= 3 dB bandwidth of the tracking bandpass filter .

In truth, the filter center frequency does not change, but the

signal is demodulated to some intermediate frequency where

the filter center frequency resides (possibly DC).

To generate a spectrum analyzer simulation in Matlab, one

has to return to what is actually being done. The tracking

filter is implemented by mixing the data signal with a

sinusoid of the desired frequency. The mixed signal is then

integrated over a finite number of periods of the desired

frequency so that only the component of the signal at the

mixing frequency remains after the integral. A further low

pass filtering step can be done to eliminate high frequency

noise or other imperfections in the integral.

One of the key steps in the integration is to make sure

that the integral is done over an integer number of periods

of the desired frequency. That is, for each chosen frequency

for which we want the spectrum we want an integral of

I =
2

MTi

∫ t0+MT

t0

s(t) sin(2πfit)dt (1)
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Fig. 8. Schematic representation of spectrum with no jitter.
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Fig. 9. Schematic representation of spectrum with jitter.

and

Q =
2

MTi

∫ t0+MT

t0

s(t) cos(2πfit)dt (2)

where Ti = 1

fi

and M is an integer. This is shown

schematically in Figure 10.

When we use a discrete approximation – as will happen

with our simulation, these integrals turn into sums.

I =
2

MTi

N∑
k=0

s(kTS) sin(2πfik
TS

Ti

) (3)

and

Q =
2

MTi

N∑
k=0

s(kTS) cos(2πfik
TS

Ti

) (4)

However, since our simulation will have a fixed sample

rate, most if not all integrals will involve the period of the

sine wave not corresponding to an integer number of sample

points i.e.,

MTi �= NTS , (5)

where M and N are both integers, TS is the sample period

of the simulation, and Ti is the period of the frequency,
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Fig. 11. Two different sine waves sampled at a constant frequency. Note
that the end of integer periods of each wave do not correspond to a sample
point.

fi for which we want to know the spectrum. This can be

seen schematically in Figure 11, where neither of the two

sine waves have periods that end on an integer number of

samples. The solution for an accurate integral is to compute

the integral over the fractional sample period, as shown in

Figure 12. This involves making a new tail end integral for

each new frequency.

The plots of Figures 13– 16 show spectrums computed

from the PLL simulations, using the spectrum analyzer sim-

ulation described above. Figure 13 and 14 show spectrums

of reference signal phase, θi, and clock phase, θo. The plot

in Figure 13 is rapidly computed using an FFT. However,

the resolution bandwidth is limited to being a power of 2

and the starting frequency bin is at 0. The highest frequency

bin is a function of the sample rate and the number of

points in the time measurement. To match the accuracy of

spectrum analyzer measurements, the Matlab based spectrum

analyzer simulation was used. This does Fourier component

calculation over specified frequencies rather than having a

fixed frequency span based on the number of points as an

Sample Points

Signal

End of last full
period of signal

Last Sample
of Simulation

Fig. 12. The tail portion of a sampled sine wave. The integral must be
adjusted for each new frequency to properly integrate over this fractional
portion of a sample.
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Fig. 13. Spectrums of input and clock phases. This plot uses FFTs.

FFT does. The cost is in considerably more computation

time. The plot in Figure 14 is computed with a spectrum

analyzer simulation – gives the user complete frequency

selectivity. This is seen in the two plots in Figures 15 and 16,

where different resolution bandwidths and start and stop

frequencies are selected.

The plot of Figure 16 shows a spectrum that is zeroed in

on the frequencies of interest with a very narrow resolution

bandwidth. In particular, a resolution bandwidth of 1 MHz

was achieved with a sample rate of 1012 Hz. This requires

a minimum number of 1 million sample points. It is also

useful to note that unlike two plots generated on a spectrum

analyzer with different frequency ranges, the plots in Fig-

ures 15 and 16 are self-consistent as the are generated from

the same time response data.
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spectrum with a 30 MHz resolution bandwidth.

V. CONCLUSIONS

Part II of this paper has discussed post processing methods

used in the PLL simulation discussed in Part I [1]. A design

example showing how a high speed Half Rate Bang Bang

PLL can be simulated so that the time domain data and the

phase response can be seen. The data can further be post

processed to show jitter results in histograms and frequency

domain results. This allows comparisons with measurements

made of circuit prototypes with laboratory instruments.

Parts I [1] and Part II of this paper have tried to show the

benefits of doing a full time domain simulation of a PLL. The

combination of efficient loop simulation and extensive post
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Fig. 16. Spectrums of input and clock signals. This plot is generated using
the spectrum analyzer simulation. This plot focuses on frequencies around
10 GHz, with a 1 MHz resolution bandwidth.

processing reveals considerable data dependent behavior of

the PLL in a way which is completely invisible to modulation

domain only simulators.
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