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Abstract— This paper considers the formation control prob-
lem of multiple mobile robots with parameter uncertainty.
Decentralized adaptive control laws are proposed with the
aid of the passivity property of the system dynamics and the
results of graph theory.

I. INTRODUCTION

Decentralized control of multiple mobile robots is chal-

lenging. One of reasons is that each robot’s behavior is

affected by its neighbor’s actions and the required perfor-

mance for a group of robots is the team performance instead

of each individual performances.

Though study of a group of systems traces back many

years, there was a surge of new results in cooperative

control of multiple systems a couple of years ago [1, 2]. In

[3], a distributed smooth time-varying feedback control law

was proposed with analysis based on averaging theory for

coordinating the motion of multiple nonholonomic mobile

robots to capture/enclose a target. In [4], formation control

of several mobile robots was considered with the aid of

the dynamic feedback linearization technique, resulting in

cooperative control laws based on multiple double integrator

systems. In [5], the authors used decentralized control

theory to propose and analyze controllers for multiple co-

operating robotic vehicles. In [6, 7], the stability of multiple

mobile robots in cyclic pursuit was studied. In [8] and [9],

steering control laws were proposed for mobile robots to

achieve both rectilinear and circular formations. In [10],

hybrid control laws were proposed for formation control of

robots. In addition, several general control methods were

proposed for multiple robots. There are behavior-based

control [4, 11–13], virtual structure [14–16], and leader-

follower [17–20] methods.

In the control of multiple vehicles, results of graph theory

have been applied in cooperative control of multiple linear

systems by various authors [2, 21–25]. In these papers, the

structure of the communication network between vehicles

was described by Laplacian matrices. Each vehicle was

treated as a vertex and the communication links between

vehicles were treated as edges. The stability of the whole

system was guaranteed by the stability of each modified

individual linear system, where the modification to the

linear system accounts for the structure of the commu-

nication network. Article [26] considered the stability of

multiple agents with nonlinear models in discrete time

and time-dependent communication links. Necessary and/or

sufficient conditions for the convergence of the state of each

individual agent to a consensus vector were presented with

the aid of graph theory and convexity. These results of [26]

for discrete-time systems were extended to continuous time

systems in [27]. In [28–30], cooperative control of multiple

nonholonomic agents was considered. Cooperative control

laws were proposed for fixed and switching communication

digraphs.

In this paper, we consider the cooperative control of

multiple mobile robots with parameter uncertainty such that

they come into a desired stationary geometric pattern. Since

there is parameter uncertainty in the dynamics of each

robot, the cooperative control problem is challenging. To

solve this problem, adaptive decentralized controllers are

proposed with the aid of results of graph theory and the

passivity property of each robot’s dynamics. It is shown

that our proposed results can make the group of mobile

robots converges to a desired stationary geometric pattern.

The stability of closed-loop systems with communication

delay is also studied. It is shown that the proposed control

laws make the closed-loop system stable in the presence

of constant communication delay. The contribution of this

paper is that cooperative control of multiple wheeled mobile

robots with uncertainty in dynamics is first solved by

decentralized control laws which are robust to constant time

delays.

II. PROBLEM STATEMENT

Consider a group of m wheeled mobile robots, indexed

by j for 1 ≤ j ≤ m. For the j-th robot, assume its motion

is defined in the following form

Mj(qj)q̈j + Cj(qj , q̇j)q̇j + Gj(qj) =

Bj(qj)τj + [sin θj ,− cos θj, 0]⊤λj , (1)

ẋj sin θj − ẏ cos θj = 0 (2)

where qj = [xj , yj, θj ]
⊤ is the state of the j-th system,

Mj(qj) is an 3 × 3 bounded positive-definite symmetric

matrix, Cj(qj , q̇j)q̇j presents centripetal and Coriolis gen-

eralized forces, Gj(q
j) is gravitational force, Bj(qj) is an

3×2 input transformation matrix, τj is an 2-vector of control

input, λj is the force that ensures that the nonholonomic

constraint of eqn. (2) is satisfied, and the superscript ⊤
denotes the transpose.

Eqn. (1) has the following two properties for each 1 ≤
j ≤ m [31].
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Property 1: Matrix Ṁj − 2Cj is skew-symmetric for a

proper definition of Cj .

Property 2: For any differentiable vector ξ ∈ R3, the left

side of eqn. (1) can be written as

Mj(qj)ξ̇ + Cj(qj , q̇j)ξ + Gj(qj) = Yj(qj , q̇j , ξ, ξ̇)aj

where aj is an inertia parameter vector, Yj is a regressor

matrix.

Property 1 is called the passivity property of the sys-

tem (1). In this paper, for each system we assume that

Yj(qj , q̇j, ξ, ξ̇) are known functions and parameter vector

aj are unknown.

The communication between the robots can be described

by the edges E of the digraph G = {V , E} where the m
mobile robots are represented by the m nodes in V [32, 33].

The existence of an edge (l, j) ∈ E means that the state q∗l

of robot l is available to robot j for control (i.e., unidirec-

tional communication). Bidirectional communication, if it

exists, would be represented by the edge (j, l) also being

in the digraph G. The symbol Nj denotes the neighbors of

node j and is the set of indices of agents whose state is

available to robot j. The information available to robot j
for the controller design is the j−th robot’s own state and

the state of each robot l such that l ∈ Nj . Due to sensor

range limitations and bounded communication bandwidth

between robots, Nj may change with time, which means

that the edge set E may be time-varying and consequently

the Laplacian matrix L corresponding to G may be time-

varying. In this paper, we make the following assumption.

Assumption 1: The communication between robots are

bidirectional and the communication graph G is strongly

connected.

Graph theoretic concepts such as spanning trees are

discussed in, for example, [33]. An important implication

of Assumption 1 is that the Laplacian matrix of the graph

has only one eigenvalue which is zero.

Given a desired geometric pattern P defined by constant

vectors [pjx, pjy ]⊤(1 ≤ j ≤ m), the control problem

discussed in this article is defined as follows.

Formation Control Problem: Design a control law τj for

system j with unknown inertia parameter vector aj using

(qj , q̇j), the relative state information between robot j and

robot l for l ∈ Nj such that

lim
t→∞

[

xi − xj

yi − yj

]

=

[

pix − pjx

piy − pjy

]

, 1 ≤ i 6= j ≤ m (3)

and

lim
t→∞













m
∑

j=1

xj

m
m
∑

j=1

yj

m













=













m
∑

j=1

pjx

m
m
∑

j=1

pjy

m













. (4)

Remark 1: In this problem formulation, the orientation

θj is not explicitly specified. The proposed control law

will result in θj(t) → w1(t) where w1 is a designer

specified signal (see the next section). In the formation

control problem, the control law for robot j is designed

based on the state of robot j and the relative information

between robot j and robot l for l ∈ Nj . Noting the

definition of the problem, eqn. (3) means that the group

of robots converges to a desired geometric pattern. Eqn. (4)

means that the desired geometric pattern is stationary and

its geometric center is ( 1

m

∑m

j=1
pjx, 1

m

∑m

j=1
pjy).

To solve the formation control problem, we convert eqns.

(1)-(2) into a more suitable form. Following the method in

[34], by eqn. (2) we have

q̇j =





cos θj 0
sin θj 0

0 1





[

v1j

v2j

]

=: gjvj (5)

where vj = [v1j , v2j ]
⊤ are suitable vectors and are deter-

mined from eqn. (1). Differentiating both sides of eqn. (5)

and substituting this expression into eqn. (1) and multiply-

ing both sides of eqn. (1) by gT (qj), we obtain

M j(qj)v̇j + Cj(qj , q̇j)vj + Gj(qj) = Bj(qj)τj (6)

where M j(qj) = g⊤j Mj(qj)gj , Cj(qj , q̇j) =

g⊤j Mj(qj)ġj + g⊤j Cj(qj , q̇j)gj , Gj(qj) = g⊤j Gj(qj),

and Bj(qj) = g⊤j Bj(qj).
System (5)-(6) describes the motion of the original j-

th system. Therefore, the formation control problem can

be considered based on system (5)-(6) instead of system

(1)-(2). In order to completely actuate each system, Bj(q)
should be have full rank. For our robots, Bj are indeed full

rank matrices.

III. DECENTRALIZED CONTROLLER DESIGN

To facilitate the control law design, we introduce the

following change of states for 1 ≤ j ≤ m [29]






























z1j = θj −
∫ t

0
w1(s)ds

z2j = (xj − pjx) cos θj + (yj − pjy) sin θj

+βw1z3j

z3j = (xj − pjx) sin θj − (yj − pjy) cos θj

u1j = v2j

u2j = v1j − z3jv2j

(7)

where w1 = ǫ sinωt, and the constants β, ǫ, and ω are all

positive. Taking derivative of eqn. (7), we have






















ż1j = u1j − w1

ż2j = u2j + βẇ1z3j − β2w2

1
u1jz3j

+βw1u1jz2j

ż3j = −βz3jw
2

1
+ w1z2j

+(u1j − w1)(z2j − βw1z3j)

(8)

M̃ju̇j + C̃juj + G̃j = B̃jτj (9)

where uj = [u1j , u2j]
⊤, M̃j = φ⊤

j M jφj , C̃j = φ⊤
j M j φ̇j +

φ⊤
j Cjφj , G̃j = φ⊤

j Gj , B̃j = φ⊤
j Bj , and

φj =

[

z3j 1
1 0

]

.
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For the dynamics of eqn. (9), we have the following

properties.

Property 3: Matrix
˙̃M j − 2C̃j is skew-symmetric.

Property 4: For any differentiable vector ξ ∈ R2,

M̃j(qj)ξ̇ + C̃j(qj , q̇j)ξ + G̃j(qj) = Ỹj(qj , q̇j , ξ, ξ̇)aj

where Ỹj(qj , q̇j , ξ, ξ̇) =

(g(qj)φj)
⊤Yj

(

qj , q̇j , g(qj)φjξ,
d

dt
(g(qj)φjξ)

)

.

We design the control laws in two steps by backstepping.

In the first step, we consider uj as virtual control inputs

and design cooperative control laws such that eqn. (3) is

satisfied. In the second step, we design control laws τj such

that eqn. (3) is satisfied with the aid of the results in the

first step. In the first step, we have the following result.

Lemma 1: For system (8), under Assumption 1, the con-

trol laws u1j = η1j and u2j = η2j for 1 ≤ j ≤ m make

(3) hold, where

η1j = −
∑

l∈Nj

bjl[z1j − z1l + z3j(z2j − βw1z3j)

−z3l(z2l − βw1z3l)] + w1 (10)

η2j = −
∑

l∈Nj

bjl(z2j − z2l) − βẇ1z3j

+β2w2

1
η1jz3j − βw1η1jz2j (11)

the control parameters bjl = blj , β, ǫ, and ω are each

positive.

In order to prove Lemma 1 we need the following lemma.

Lemma 2: Let L be the Laplacian matrix of communica-

tion graph G which satisfies Assumption 1 and has weight

matrix B = [bjl] with bjl = blj > 0. For any vector function

ξ(t) ∈ Rm, if limt→∞ ξ⊤(t)Lξ(t) = 0, then

lim
t→∞



ξ(t) −
m
∑

j=1

ξj(t)

m
1



 = 0 (12)

where 1 = [1, . . . , 1]⊤.

Proof: Noting the definition of L, by the Gerschgorin

Circle Theorem, each λi(L) is contained in the union of

the m Gerschgorin circles |z −Ljj | ≤ Ljj for 1 ≤ j ≤ m.

Therefore, either λj(L) > 0 or λj(L) = 0 for 1 ≤ j ≤
m. Since G is strongly connected, there is only one zero

eigenvalue [35], i.e., λ1 = 0 and λm ≥ · · · ≥ λ3 ≥ λ2 > 0.

Since L is symmetric and λ1 = 0, there exists an

orthogonal matrix Q = [Qij ] with its first column being

1/
√

m such that

Q⊤LQ = diag[0, λ2, . . . , λm].

So,

lim
t→∞

ξ⊤Lξ = lim
t→∞

(Q⊤ξ)⊤diag[0, λ2, . . . , λm](Q⊤ξ) = 0.

Let y = [y1, y2, . . . , ym]⊤ = Q⊤ξ, then limt→∞ yi = 0 for

2 ≤ i ≤ m. Noting y1 = 1√
m

∑m

l=1
ξl and

lim
t→∞

(

ξ − 1

m

m
∑

l=1

ξl

)

= lim
t→∞

(

Qy − 1√
m

y11

)

= lim
t→∞

[

m
∑

l=2

Q1lyl, · · · ,
m
∑

l=2

Qmlyl

]⊤

= [0, · · · , 0]
⊤

.(13)

Therefore, the lemma is proved.

Proof of Lemma 1: Applying control laws u1j and u2j

to system (8), we have







































ż1j = −
∑

l∈Nj

bjl[z1j − z1l + z3j(z2j − βw1z3j)

−z3l(z2l − βw1z3l)]

ż2j = −
∑

i∈Nj

bji(z2j − z2i)

ż3j = −βz3jw
2

1
+ w1z2j

+(u1j − w1)(z2j − βw1z3j)

(14)

where

u1j − w1 = −
∑

i∈Nj

bji(z1j − z1i + ∆j − ∆i) (15)

∆j = z3j(z2j − βw1z3j). (16)

Define the positive definite Lyapunov function

V =
1

2

m
∑

j=1

3
∑

i=1

z2

ij . (17)

Differentiating V along the solutions of eqn. (14), we have

V̇ = −
m
∑

j=1

βw2

1
z2

3j −z⊤
2∗Lz2∗−(z1∗+∆)⊤L(z1∗+∆) ≤ 0

where z2∗ = [z21, . . . , z2m]⊤, z1∗ = [z11, . . . , z1m]⊤,

∆ = [∆1, . . . ,∆m]⊤, L is the Laplacian matrix of the

graph G with weight matrix B = [bjl]. Therefore, V is

bounded. Hence, zij are bounded. By Barlalat’s Lemma

[36], limt→∞ V̇ = 0. So

lim
t→∞

w2

1
z2

3j = 0, 1 ≤ j ≤ m

lim
t→∞

z⊤
2∗Lz2∗ = 0, lim

t→∞
(z1∗ + ∆)⊤L(z1∗ + ∆) = 0.

By Lemma 2, we have limt→∞(z2∗(t) − c2(t)1) = 0 and

limt→∞(z1∗(t) + ∆(t) − c1(t)1) = 0 where c1 and c2 are

bounded and are defined as

c2 =
1

m

m
∑

l=1

z2l, c1 =
1

m

m
∑

l=1

(z1l + ∆l).

Therefore, limt→∞(z2j −z2l) = 0 and limt→∞(z1j +∆j −
z1l − ∆l) = 0 for 1 ≤ j 6= l ≤ m. Furthermore, we can

prove that limt→∞(z3j − z3l) = 0 for 1 ≤ l 6= j ≤ n.

Therefore, limt→∞(z1j − z1l) = 0 for 1 ≤ j 6= l ≤ m. By

the definitions of the variables, eqn. (3) holds.
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The virtual control laws in Lemma 1 cannot make eqn.

(4) hold. In order to make eqns. (3)-(4) hold, we introduce

damping terms in the virtual control laws.

Lemma 3: For system (8), under Assumption 1, the con-

trol laws u1j = η1j and u2j = η2j for 1 ≤ j ≤ m make

(3)-(4) hold, where

η1j = −
∑

l∈Nj

bjl[z1j − z1l + z3j(z2j − βw1z3j)

−z3l(z2l − βw1z3l)] − µj [z1j + z3j(z2j

−βw1z3j)] + w1 (18)

η2j = −
∑

l∈Nj

bjl(z2j − z2l) − µjz2j − βẇ1z3j

+β2w2

1
η1jz3j − βw1η1jz2j (19)

the control parameters bjl = blj , β, ǫ, and ω are each

positive constant, constants µj ≥ 0 and
∑m

j=1
µj > 0.

Proof: Define the positive definite Lyapunov function

V =
1

2

m
∑

j=1

3
∑

i=1

z2

ij . (20)

Differentiating V along the solutions of the closed-loop

systems, we have

V̇ = −
m
∑

j=1

βw2

1
z2

3j − z⊤
2∗Lz2∗ − (z1∗ + ∆)⊤L(z1∗ + ∆)

−
m
∑

j=1

µjz
2

2j −
m
∑

j=1

µj(z1j + ∆j)
2 ≤ 0

where z1∗, z2∗, ∆j , and ∆ are defined in the proof of

Lemma 1. Therefore, V is bounded. Hence, zij are bounded.

By Barlalat’s Lemma [36], limt→∞ V̇ = 0. So

lim
t→∞

w2

1
z2

3j = 0, 1 ≤ j ≤ m

lim
t→∞

z⊤
2∗Lz2∗ = 0, lim

t→∞
(z1∗ + ∆)⊤L(z1∗ + ∆) = 0.

m
∑

j=1

µjz
2

2j = 0,

m
∑

j=1

µj(z1j + ∆j)
2 = 0.

By Lemma 2, we have limt→∞(z2∗(t) − c2(t)1) = 0 and

limt→∞(z1∗(t) + ∆(t) − c1(t)1) = 0 where c1 and c2 are

bounded and are defined as

c2 =
1

m

m
∑

l=1

z2l, c1 =
1

m

m
∑

l=1

(z1l + ∆l).

Since there is at least one integer p such that µp 6= 0,

limt→∞ z2p = 0 and limt→∞(z1p + ∆p) = 0. Therefore,

limt→∞ z2j = 0 and limt→∞(z1j + ∆j) = 0 for 1 ≤ j ≤
m. Furthermore, we can prove that limt→∞ z3j = 0 and

limt→∞ z1j = 0 for 1 ≤ j ≤ n. By the definitions of the

variables, eqns. (3)-(4) hold.

With the aid of Lemma 1, we can design the cooperative

control laws τj such that the group of robots come into

formation.

Theorem 1: For system (1)-(2), under Assumption 1, the

control laws

τj = B̃−1

j

(

−Kũj + Ỹj(qj , q̇j, ηj , η̇j)âj − Λ∗j

)

(21)

and update laws

˙̂aj = −ΓjỸ
⊤
j (qj , q̇j , ηj , η̇j)ũj (22)

for 1 ≤ j ≤ m make (3) hold and âj bounded, where

symmetric constant matrices K > 0 and Γj > 0, ũj =
uj − ηj , ηj = [η1j , η2j ]

⊤, η1j and η2j are defined in (10)-

(11), and

Λ∗j =

[

z1j + (1 − β2w2

1
)z2jz3j + βw1(z

2

2j − z2

3j)
z2j

]

.

Proof: With the control laws (21) and the update laws

(22), we have














































ż1j = −∑l∈Nj
bjl[z1j − z1l

+z3j(z2j − βw1z3j)
−z3l(z2l − βw1z3l)] + ũ1j

ż2j = −
∑

i∈Nj

aji(z2j − z2i) + ũ2j

−β2w2

1
ũ1jz3j + βw1ũ1jz2j

ż3j = −βz3jw
2

1
+ w1z2j

+(u1j − w1)(z2j − βw1z3j)

(23)

M̃j
˙̃uj + C̃j ũj = −Kũj + Ỹj ãj − Λ∗j (24)

˙̃aj = −Γj Ỹ
⊤
j (qj , q̇j , ηj , η̇j)ũj (25)

where ãj = âj − aj . Define the nonnegative function

V =
1

2

m
∑

j=1

(z2

1j + z2

2j + z2

3j + ũ⊤
j M̃j ũj + ã⊤

j Γ−1

j ãj).

Differentiating V along the solutions of eqns. (23)-(25), we

have

V̇ = −(z1∗ + ∆)⊤L(z1∗ + ∆) − z⊤
2∗Lz2∗

−βw2

1
z⊤
3∗z3∗ − ũ⊤

j Kũj

where we use the fact that ( ˙̃M j − 2C̃j) is skew symmet-

ric. Therefore, V is non-increasing. Following the proof

of Lemma 1, we can prove that limt→∞ ũj = 0 and

limt→∞(zij − zlj) = 0 for 1 ≤ i ≤ 3 and 1 ≤ j 6= l ≤ m.

By the definitions of the variables, it can be verified that

(3) holds.

Remark 2: Cooperative controllers (21) are decentralized

and make the group of robots come into the desired geo-

metric pattern. The control law τj consists of the relative

information between neighbors. The motion of the system is

driven by the relative positions and relative velocities among

neighbors. The performance of the closed-loop system

depends on the connectivity of the communication graph

G. The value λ2(L) (λ2 is the smallest nonzero eigenvalue

of L) affects the convergence rate of z1∗ and z2∗. It

depends on the topology of the graph G and the weights bjl.

Eigenvalue λ2(G) is known as the algebraic connectivity.

Generally, a dense interconnection of G means a larger value
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of λ2(L). Therefore, more interconnections facilitate the

cooperative performance. However, increasing the number

of interconnections does not necessarily imply a larger value

of λ2(L). Under the same topology of the communication

graph G, different weights bjl may lead to different λ2(L).
If L1 and L2 are the Laplacian matrices of the graph G with

weight B1 = [bji] and weight B2 = [ρbji] respectively, then

λ2(L2) = ρλ2(L1). Therefore, one can choose the weights

bjl to maximize λ2(L) using the methods in [37]. Also, one

can simply increase each bjl to be ρbjl (ρ > 1) to get a

large Re(λ2).

Remark 3: The estimated parameters âj generally do not

converge to their actual values. However, they are bounded.

To make the adaptive laws robust to disturbances, robust

adaptive techniques may be applied [38].

Remark 4: In the theorem, we assume that the commu-

nication graph is strongly connected during the control. In

practice, this is guaranteed by the proposed control laws

because the distances between robots are bounded and

converge to their desired values.

With the aid of Lemma 3, we can design the cooperative

control laws τj such that the group of robots come into a

stationary geometric pattern.

Theorem 2: For system (1)-(2), under Assumption 1,

control law (21) and update law (22) for 1 ≤ j ≤ m make

(3)-(4) hold and âj bounded, where symmetric constant

matrices K > 0 and Γj > 0, ũj = uj−ηj , ηj = [η1j , η2j ]
⊤,

η1j and η2j are defined in (18)-(19), Λ∗j are defined in

Theorem 1, and the other control parameters are defined in

Lemma 3.

Proof: Define the nonnegative function

V =
1

2

m
∑

j=1

(z2

1j + z2

2j + z2

3j + ũ⊤
j M̃j ũj + ã⊤

j Γ−1

j ãj).

Differentiating V along the solutions of the closed-loop

systems, we have

V̇ = −(z1∗ + ∆)⊤L(z1∗ + ∆) − z⊤
2∗Lz2∗

−
m
∑

j=1

µjz
2

2j − βw2

1
z⊤
3∗z3∗ −

m
∑

j=1

µj(z1j + ∆j)
2

−ũ⊤
j Kũj

where we use the fact that ( ˙̃M j − 2C̃j) is skew symmetric.

Therefore, V is non-increasing. Following the proof of

Lemma 3 and Theorem 1, we can prove that limt→∞ ũj = 0
and limt→∞ zij = 0 for 1 ≤ i ≤ 3 and 1 ≤ j ≤ m. By the

definitions of the variables, it can be verified that (3)-(4)

hold.

Remark 5: Cooperative controllers in Theorem 2 are

decentralized and solve the defined problem in this paper.

On the relationship between the control parameters and the

performance of the closed-loop system, see Remark 2. The

estimated parameters âj generally do not converge to their

actual values. However, they are bounded.

IV. CLOSED-LOOP SYSTEM STABILITY WITH

COMMUNICATION DELAYS

In the previous controller design, we did not consider

communication delays in the control design and analysis.

In practice, there are always delays due to communication

and other factors. For simplicity, in this paper we assume

that all time delays are constant.

Corresponding to Theorem 2, we have the following

delayed version result.

Theorem 3: For system (1)-(2), under Assumption 1, if

the communication graph is balanced, the control laws

τj(t) = B̃−1

j (t) (−Kũj(t) − Λ∗j(t)

+ Ỹj(qj(t), q̇j(t), ηj(t), η̇j(t))âj(t)
)

(26)

and updated laws

˙̂aj(t) = −Γj Ỹ
⊤
j (qj(t), q̇j(t), ηj(t), η̇j(t))ũj(t) (27)

for 1 ≤ j ≤ m make (3)-(4) hold and âj bounded, where

symmetric constant matrices K > 0 and Γj > 0, ηj(t) =
[η1j(t), η2j(t)]

⊤, η1j and η2j are defined as

η1j(t) = −
∑

l∈Nj

bjl[z1j(t) − z1l(t − dl) + z3j(t)(z2j(t)

−βw1(t)z3j(t)) − z3l(t − dl)(z2l(t − dl)

−βw1(t − dl)z3l(t − dl))] + w1(t)

−µj(z1j(t) + ∆j(t)) (28)

η2j(t) = −
∑

l∈Nj

bjl(z2j(t) − z2l(t − dl)) − βẇ1(t)z3j(t)

+β2w2

1
(t)η1j(t)z3j(t) − βw1(t)η1j(t)z2j(t)

−µjz2j(t) (29)

di are bounded, ũj(t) = uj(t) − ηj(t), Λ∗j(t) =
[Λ1j(t), Λ2j(t)]

⊤, Λ2j(t) = z2j(t), and Λ1j(t) = z1j(t)
+(1 − β2w2

1
(t))z2j(t)z3j(t) +βw1(t)(z

2

2j(t) − z2

3j(t)).
Proof: Define the nonnegative function

V =
1

2

m
∑

j=1



z2

3j + z2

1j +
∑

i∈Nj

∫ t

t−di

bjiz
2

1i(s)ds + z2

2j

+
∑

i∈Nj

∫ t

t−di

bjiz
2

2i(s)ds + ũ⊤
j M̃j ũj + ã⊤

j Γ−1

j ãj



 .

Differentiating it along the closed-loop system, we have

V̇ =

m
∑

j=1



−1

2

∑

i∈Nj

bji[z2j(t) − z2i(t − di)]
2 − βw2

1
z2

3j

−1

2

∑

i∈Nj

bji[z1j(t) + ∆j(t) − z1i(t − di)

−∆i(t − di)]
2 − ũ⊤

j Kũj − µjz
2

2j − µj(z1j + ∆j)
2

)

where

∆j(t) = z3j(t)(z2j(t) − βw1(t)z3j(t))
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we use Property 3 and the fact that G is balanced. Therefore,

zij , ãj , and ũj are bounded. By Barbalat’s Lemma, we can

prove that ũj and z1j converge to zero for 1 ≤ j ≤ m and

1 ≤ i ≤ 3. By the definitions of the variables in (7), eqns.

(3)-(4) hold.

V. CONCLUSION

This paper discusses the cooperative control problem of

multiple mobile robots with parameter uncertainty. Adaptive

cooperative control laws are proposed with the aid of results

from graph theory. The obtained results in this paper can

be extended to systems with higher state dimension.
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