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Abstract— We present an optimal control application in
power electronics using the homotopy continuation method
for solving systems of polynomial equations. The proposed
approach breaks the computations associated with the optimal
control problem into two parts, an off-line and an on-line. In the
off-line part, the approach solves a generic polynomial system
by means of a linear homotopy and stores its solution. Then, the
on-line part uses this solution and, given the initial state value,
it calculates by means of a coefficient parameter homotopy the
optimal control input of the problem. The approach exhibits a
probability-one guarantee of finding the global optimal solution
to the problem at hand.

I. INTRODUCTION

Optimal control is a very active research area with broad

attention from industry [1]. It is among the few control

methodologies providing a systematic way to perform non-

linear control synthesis while handling at the same time

system constraints. To a great extent, it is thanks to this

capability of handling constraints on system states, inputs

and outputs that model predictive control (MPC) has proven

to be very successful in practice [2].

Model predictive control uses on-line optimization to ob-

tain the solution of the optimal control problem in real time.

For the sake of simplicity and because of implementation

issues on a digital control unit, the optimal control problem

is typically cast into a discrete time mathematical program,

whose solution yields a sequence of optimal control moves.

To ensure feedback, i.e. to deal with model uncertainties and

disturbances, only the first move of the sequence is actually

applied to the plant, and the optimization is repeated with

new data measurements. This scheme is known as receding

horizon control (RHC).

Technology and cost factors, however, make the imple-

mentation of receding horizon control difficult, if not im-

possible. In certain cases, we can circumvent these issues

by computing the solution of the optimal control problem

off-line, i.e. by solving the corresponding mathematical

program parametrically. That is, the explicit formula giving

the solution (the control inputs) of the program as a closed-

form expression of the problem parameters (the measured

state) is computed off-line. The solution then is efficiently

implemented on-line as a lookup table. This approach is also

known as the “explicit” MPC solution technique [3].

Motivated by this framework, in the present work we apply

the approach recently proposed in [4] to the optimal control
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of a power electronics circuit, the buck dc-dc converter.

The converter is first modelled as a nonlinear polynomial

system, i.e. a system whose state update equation is given

by a polynomial vector field. The homotopy continuation

method for solving systems of polynomial equations [5] is

then used to obtain the solution of a generic polynomial

system. Subsequently, given the state measurement, an on-

line algorithm uses the precomputed generic system solution

to efficiently solve the actual optimal control problem and

retrieve the optimal control input to the dc-dc converter.

In contrast to other parametric optimization approaches

based on continuation suggested mainly in the nineties (see

[6] for a more recent survey), the approach followed here [4]

is based on polynomial homotopy continuation over the field

of complex numbers. This bears the advantage of having a

deep and rich supporting theory which can be used, among

other things, to avoid singularities.

II. OPTIMAL CONTROL

Let z ∈ R
r be the decision-variable vector and x0 ∈ R

n

be the vector of parameters. The constrained optimal control

problem discussed in this paper can be formulated as a

polynomial optimization problem of the general form

min
z

J(z, x0) s.t.

{

q(z, x0) ≤ 0

h(z, x0) = 0 ,
(1)

where J(z, x0) ∈ R[z, x0] is the objective function and q ∈
R[z, x0]

M, h ∈ R[z, x0]
Λ are vector polynomial functions

representing the inequality and equality constraints. Control

systems lending themselves to such formulations are those

whose vector fields are polynomial or, in some cases like the

one studied in this paper, rational functions of the state and

control input.

A. Parametric optimization

In the optimal control context, we want to minimize the

function J(z, x0) with respect to z for any given value

of the parameter x0 ∈ X ⊆ R
n, where X is the set of

admissible parameter values. This is what we call parametric

optimization. In other words, the polynomial parametric

optimization problem consists of finding an efficient com-

putational procedure for evaluating the maps

z∗(x0) : R
n −→ R

r

x0 7−→ z∗
J∗(x0) : R

n −→ R

x0 7−→ J∗,
(2)

where

z∗ = arg min
z

J(z, x0) and J∗ = min
z

J(z, x0). (3)
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B. Posing the problem

We assume throughout the paper that the feasible set

defined by q(z, x0) and h(z, x0) is compact and hence

the minimum is attained. Furthermore we assume certain

regularity conditions (so-called constraint qualifications [7])

such that the optimizer is attained at a Karush-Kuhn-Tucker

(KKT) point [8], which is a point in the solution set of system

∇zJ(z, x0) +
∑M

i=1 µi∇zqi(z, x0)

+
∑Λ

i=1 λi∇zhi(z, x0) = 0
h(z, x0) = 0

µiqi(z, x0) = 0
µi ≥ 0

q(z, x0) ≤ 0 ,

(4)

where µi, i = 1, . . . ,M and λi, i = 1, . . . ,Λ are the

Lagrange multipliers (the λi are free), associated with the

inequality and equality constraints, respectively.

The assumptions made above are nontrivial. Nonetheless,

they are satisfied in many practical situations and are gen-

erally assumed in parametric optimization. Note that for the

class of problems we consider, the first three relations of

the KKT conditions (4) form a square system of polynomial

equations in z, µ and λ. We assume that the solution of KKT

system (4) is a set of isolated points.

III. HOMOTOPY CONTINUATION

Homotopy continuation is a numerical technique for find-

ing the isolated complex solutions of square polynomial

systems, i.e., those not on positive-dimensional solution com-

ponents (such as curves or surfaces). This section contains

a brief overview of homotopy continuation for polynomial

systems. As this method was employed in a similar setting

in [4], further details may be found there. Full details are

available in [5].

The first step in applying homotopy continuation to a

square system f(z) : C
r → C

r of polynomial equations

is to cast f(z) as a member of a parameterized family of

polynomial systems Fσ , where σ is the vector of parameters.

Almost all polynomial systems in any such family will have

the same number of solutions, M . Those corresponding to a

certain measure zero set χ of the parameter space could have

fewer than M solutions, but no system in the family can have

more. The key property when choosing a family Fσ for f(z)
is that Fσ must contain a polynomial system g(z) : C

r →
C

r having M known solutions. Such families often arise

naturally, based on the natural parameters of the problem,

although there are numerous ways of producing such families

artificially if necessary. Methods for constructing artificial

families are discussed in detail in Chapter 8 of [5]. Both

types of families are used in the optimal control approach

followed in this paper: naturally parameterized families are

employed in the on-line part of the algorithm, while artificial

families are used in the off-line part.

Once the family Fσ and the start system g(z) have been

chosen, the next step is to form a homotopy H(z, t) : C
r ×

R → C
r equal to g(z) at t = 1 and f(z) at t = 0. The most

common choice is the linear homotopy H(z, t) = f(z) ·(1−
t) + γ · g(z) · t, where γ ∈ C. By choosing g(z) to have M

solutions and by choosing γ randomly, there is a probability

one guarantee that every system H between t = 1 and t = 0
will have exactly M solutions, except possibly at t = 0, thus

forming M solution paths connecting the solutions at t = 1
to those at t = 0.

Beginning with the known solutions of g(z) at t = 1,

standard predictor-corrector techniques may be employed to

follow the solution paths to t = 0. In particular, an ODE

method such as Euler’s method may be used to predict to

a smaller value of t from a known point on the path, after

which Newton’s method may be used to bring the predicted

point closer to the solution path for a fixed value of t.

Specialized methods, discussed in [5], are used to handle

the presence of singularities.

All told, homotopy continuation provides a means for

finding approximations to all complex isolated solutions of

a polynomial system. It should be noted that these approx-

imations may be found as accurately as desired. Also, the

real isolated solutions can be extracted from the set of all

(complex) solutions by considering the size of the imaginary

part.

IV. THE OPTIMAL CONTROL ALGORITHM

The proposed algorithm consists of two parts: the off-line

part, where a multihomogeneous start system associated with

the KKT system (4) is used to solve a generic polynomial

system Fx̃0
, where Fx̃0

denotes the polynomial system in

family Fσ that we obtain by specializing the parameter

vector σ to the value x̃0; and the on-line part, where given

the (state measurement) value x̂0 of the (natural) parameter

x0, the precomputed solution points are tracked from Fx̃0
to

the desired Fx̂0
, in order to efficiently arrive at the optimal

solution of the original optimization problem (1), i.e., the

optimal control input to the problem at hand.

A. Off-line Part

Assume that we want to solve problem (4) for all possible

values of the parameter x0. As a first step we ignore all

inequality constraints to get a naturally parametrized family

Fnat
x0

of square systems of polynomial equations parametrized

by x0 ∈ X :

Fnat
x0

(w) :



















∇zJ(z, x0) +
∑M

i=1 µi∇zqi(z, x0)

+
∑Λ

i=1 λi∇zhi(z, x0) = 0
µiqi(z, x0) = 0

h(z, x0) = 0 ,
(5)

where w ∈ C
r+M+Λ denotes the compound vector con-

sisting of all z, µi and λi appearing in (5). We now want

a generic member of the family of naturally parametrized

polynomials Fnat
x0

. Therefore, we fix x0 to a random complex

value x̃0 ∈ C
n to obtain instance Fnat

x̃0
. System Fnat

x̃0
is

generic in the family of naturally parametrized polynomial

systems Fnat
x0

because we have chosen a generic (i.e., random)

parameter value x̃0.
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To solve Fnat
x̃0

, we embed it in a multihomogeneous family

Fmhom
σ and, by choosing an appropriate start system g(w) ∈

Fmhom
σ , we construct the homotopy

H(w, t) = (1 − t)Fnat
x̃0

(w) + γtg(w) (6)

to trace the solutions of g(w) to those of Fx̃0
(w). Please

refer to §8.4 of [5] regarding the construction of g(w).

The off-line part of the algorithm then solves the generic

system Fnat
x̃0

by means of homotopy (6) and stores the

finite solution points, denoted with w̃(j) ∈ C
r+M+Λ, j =

1, . . . , ñw, as well as the corresponding x̃0. A summary of

the off-line algorithm appears in Algorithm 1.

Algorithm 1 Off-line Part: Compute the solution of a generic

instance Fnat
x̃0

of the family Fnat
x0

of polynomial systems

Input: Parametrized family of systems Fnat
x0

Output: x̃0 ∈ C
n and w̃(j) ∈ C

r+M+Λ, j = 1, . . . , ñw.

1: Choose a random x̃0 ∈ C
n and form Fnat

x̃0
.

2: Construct an appropriate start system g(w) ∈ Fmhom
σ .

3: Find solutions to g(w), denoted with w
(j)
g , j =

1, . . . , ng (≥ ñw).

4: Track solution paths from w
(j)
g to obtain solutions

w̃(j), j = 1, . . . , ñw of system Fnat
x̃0

.

B. On-line Part

Given the solutions w̃(j), j = 1, . . . , ñw of system Fnat
x̃0

,

the on-line part of the approach takes the measurement value

x̂0 of the parameter x0 and computes the optimum J∗(x̂0)
and an optimizer z∗(x̂0). The three main steps of the on-line

part are:

1) Solve system Fnat
x̂0

, using coefficient parameter homo-

topy with Fnat
x̃0

as the start system;

2) Remove non-real and infeasible (with respect to the

inequalities in (4)) solutions; and

3) Among the remaining feasible, real solutions, select

the one that induces the minimum cost in the objective

function.

The on-line part of the algorithm considers system Fnat
x̃0

as the start system and, given the on-line state measurement

x0 = x̂0, it constructs a coefficient parameter homotopy from

x̃0 to x̂0 in order to solve Fnat
x̂0

via continuation from the

solutions of Fnat
x̃0

. This is possible, because we have already

computed the solutions to Fnat
x̃0

in the off-line part of the

algorithm.

After system Fnat
x̂0

has been solved, we check all its

solutions w(j) ∈ C
r+M+Λ, j = 1, . . . , nw and keep the ones

that are both real and feasible with respect to the inequalities

in (4).

Let the set of real feasible solutions w with respect to

the constraints in (4) be S. Furthermore, let the set of all

z(j) contained in the compound vectors w(j) ∈ S form the

set Sz . The optimizer z∗(x̂0) for parametric optimization

problem (1) can then be determined by selecting that z ∈ Sz ,

which induces the minimum cost in the objective function,

i.e.,

z∗(x̂0) = arg min
z∈Sz

J(z, x̂0) ,

where the optimal cost is

J∗(x̂0) = min
z∈Sz

J(z, x̂0) .

A summary of the on-line part of the proposed approach can

be seen in Algorithm 2.

Algorithm 2 On-line part: Requires system Fnat
x̃0

and its

solutions w̃(j), j = 1, . . . , ñw.

Input: Parameter value x̂0.

Output: Optimal cost J∗(x̂0) and an optimizer z∗(x̂0).
1: Construct the coefficient parameter homotopy from Fnat

x̃0

to Fnat
x̂0

and solve it to obtain solutions w(j), j =
1, . . . , nw of Fnat

x̂0
.

2: Keep the real feasible solutions respecting the inequal-

ities of the optimality conditions and store them in set

S.

3: Form the discrete set Sz of all candidate optimizers.

4: Compare values J(z, x̂0) for all z ∈ Sz and select opti-

mizer z∗(x̂0) and corresponding optimal cost J∗(x0).

Remark 1: One important feature of the presented ap-

proach lies in the fact that it scales well with the dimension

of the parameter vector x0, in contrast to similar existing

methods [9]. This is due to the fact that parameter x0 is not

treated symbolically - therefore its dimension is relatively

irrelevant regarding the computational complexity of the

approach – because a specific value (x̃0 or x̂0) is always

assigned to it.

V. MODELLING OF THE DC-DC CONVERTER

In this paper the controller synthesis problem of the fixed-

frequency buck dc-dc converter is considered (Figure 1). The

semiconductor switches are operated by a pulse sequence

with constant switching frequency fs (resp. period Ts) so

that it is then possible to regulate the dc component of

the output voltage vo (lower in value than the available dc

voltage source vs, hence the name buck) by appropriately

commutating the switches.

More specifically, as a consequence of its switched topol-

ogy the buck converter features two operation modes with

two different affine dynamics. At the beginning of each pe-

riod k, switch S1 is conducting, S2 is not, and the controller

selects the control input, the duty cycle d(k) = t1(k)
Ts

with

t1(k) ≤ Ts, determining when the switch from the first

mode to the second takes place. During the time interval

kTs ≤ t < (k + d(k))Ts, power is transferred from the

voltage source to the load through S1. At the end of this

interval S1 is switched off and S2 is switched on so that vs

is now disconnected from the circuit. Subsequently, at the

end of the period, switch S1 (S2) is switched on (off) and

the procedure is periodically repeated. On the basis of this
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iℓ
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S2

ℓ

Fig. 1. Topology of the buck converter. ro denotes the output load
resistance, rc and rℓ are the parasitic resistances of the capacitor and
the inductor and c and ℓ represent the capacitance and inductance of the
converter.

principle of operation, d(k) is physically constrained to lie

in the interval [0, 1].
For the two possible modes of operation the evolution

of the system can be respectively described in terms of the

following set of differential equations:

ẋ = Ax + B, S1 is on (7)

ẋ = Ax, S2 is on (8)

where matrix A and vector B are obtainable through el-

ementary circuit theory and the chosen state is x(t) =

[i′ℓ(t) v′
o(t)] = [ iℓ(t)

vs

vo(t)
vs

]T , i.e., the inductor current and

the output voltage normalized over the voltage source.

A. Nonlinear control model

The principle of operation of the circuit naturally lends

itself to formulating a discrete time model of the system with

sampling interval Ts. In particular, through a forward Euler

approximation over Ts of (7), (8) one has the expressions

x(k + 1)mode 1 = x(k) + (Ax(k) + B)Ts (9)

x(k + 1)mode 2 = x(k) + (Ax(k))Ts , (10)

respectively valid for the system update if the duty cycle

were 1 (circuit always with S1 in conduction) or 0 (circuit

always with S2 in conduction). The control model dynamics

then assume the form

x(k + 1) = x(k + 1)m1d(k) + x(k + 1)m2(1 − d(k))

= Φ(ro)x(k) + Ψ(ro)d(k) (11a)

0 ≤ d(k) ≤ 1 , (11b)

wherein the two discrete time modes are averaged over the

period according to their effective duration and where it can

be easily verified that matrix Φ(ro) and vector Ψ(ro) depend

on a nonlinear (rational) function of the load ro.

Remark 2: To deal with the rational expressions appearing

in relations (11) and make them conform to the polynomial

framework presented in Section II, we clear denominators

from their right-hand side. This does not pose any limi-

tations, since the quantities appearing in the denominators

are nonzero physical quantities. We then obtain polyno-

mial equations, representing the state-update rational relation

(11a), which are in turn used as equality constraints in the

associated optimal control problem formulation (1).

B. Control scheme

1) Control objectives: The main control objective for

the boost dc-dc converter is to regulate the (average) dc

component of the output voltage vo to its reference vo,ref ,

with an accuracy of ±1%. This regulation has to be achieved

in the presence of the hard constraints on the manipulated

variable (the duty cycle) which is bounded between 0 and

1, and on the inductor current, which must not exceed its

maximum value iℓ,max, and must be maintained in the face

of measurable variations in vs and the load ro
1. Moreover,

the controller must render a steady state operation point with

constant duty cycle, thus avoiding the occurrence of fast-

scale instabilities (subharmonic oscillations).

2) Constrained finite time optimal control: The control

model (11a) and (11b) must be augmented to account for the

constraint on the inductor current. Through simple consider-

ations [10] it can be seen that this constraint can be directly

captured by simply adding the (nonlinear) inequality

i′ℓ(k) + d(k)
1 − v′

o

ℓ
≤ i′ℓ,max , (12)

where i′ℓ,max =
iℓ,max

vs
is the maximum current scaled over

the source voltage and ℓ is the coil inductance, as can also

be see in Figure 1.

The control objectives are to regulate the output voltage to

its reference as fast and with as little overshoot as possible, or

equivalently, to minimize the quadratic scaled output voltage

error v′
o,err(k) = (v′

o(k) − v′
o,ref )2. Let ∆d(k) = (d(k) −

d(k − 1))2 indicate the quadratic value of the difference

between two consecutive duty cycles. This term is introduced

in order to reduce the presence of unwanted chattering in

the input when the system has almost reached stationary

conditions and entails adding d(k − 1) to the parameter

variables (initial state variables). The reference vo,ref may

then change during operation and since all circuit values

are represented as scaled over vs, also i′ℓ,max will change

whenever vs does; lastly, ro will also be subjected to step

variations. Summing up, v′
o,ref , i′ℓ,max and ro must thus

likewise be featured among the parameter variables.

Define the penalty matrix Q = diag(q1, q2) with q1, q2 ∈
R

+ and the vector ε(k) = [v′
o,err(k) ∆d(k)]T . Consider the

objective function

J(z, x(k), d(k − 1), v′
o,ref , i′ℓ,max, ro) =

L−1
∑

j=0

Q ε(k + j|k) ,

(13)

which penalizes the predicted evolution of ε(k + j|k) from

time-instant k on over the finite horizon L, where z =
[

XL
1 , D(k)

]

, with D(k) := [d(k), . . . , d(k + L − 1)] and

XL
1 := [x(k + 1), . . . , x(k + L)]. Vector z ∈ R

(m+n)L is

the optimization vector containing all the decision variables

(present and future states and control inputs) and x(k) ≡
x0 is the initial state (on-line measurement) vector of the

discrete-time system.

1The assumption that the load ro is effectively measurable is not
trivial in effective industrial practice and would for example require the
implementation of an extended Kalman filter.
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The control input at time-instant k is then obtained by

minimizing the objective function (13) over the sequence

of control moves D(k) = [d(k), . . . , d(k + L − 1)]T (in

practice over the space of the decision vector z) subject to the

related system equations and constraints for the model (11a),

(11b) and (12); the resulting nonlinear optimization program

is referred to as the constrained finite time optimal control

(CFTOC) problem and is solved by means of the algorithm

presented in Section IV; specifically, the augmented state

vector [x(k)T , d(k − 1), v′
o,ref , i′ℓ,max, ro]

T represents the

parameter vector x0 and constraints (11b), (12) are subsumed

by q(z, x0), as defined in (1).

Remark 3: It should be mentioned that a similar optimal

control scheme, based on a piecewise affine approximation of

the converter dynamics (11a) was presented in previous work

[10], [11], [12]. Therein however the particular modelling

framework does not allow for the inclusion of ro as a

parametric state, so that load variations have to be dealt with

through an external estimation loop appropriately adjusting

the controller reference to compensate for prediction errors.

The present approach on the other hand inherently comprises

such variations within the controller itself by directly mod-

elling the intrinsically nonlinear expression (11a), thereby

forgoing the need for an external loop.

VI. NUMERICAL RESULTS

In this section, we present simulation results demonstrat-

ing the performance of the proposed control methodology.

The circuit parameters are given by xc = 234µF , xℓ =
75µH , rc = 0.15Ω, rℓ = 0.3Ω and ro = 15Ω. If not

otherwise stated, the voltage source is vs = 50V ; the output

voltage reference is set to vo,ref = 30V and iℓ,max = 6A,

and a switching frequency of 100 kHz is assumed so that the

switching period is 10µs. For the cost function, the penalty

matrix is chosen to be Q = diag(20, 1) and the prediction

horizon is L = 2. Longer horizons are also possible but for

the considered case study they actually tend to de-tune the

controller, thereby reducing its performance. The simulation

cases considered represent different scenarios typically of

interest in practical applications.

A. Startup

The first case to be analyzed is that of the transient be-

havior during startup. Figure 2(a) and Figure 2(b) depict the

step responses of the different schemes during start-up, i.e.

when x(0) = [0, 0]T . The proposed optimal control scheme

yields an output voltage that reaches its desired stationary

value within 25 switching periods. The hard constraint on the

inductor current is respected, in that the controller succeeds

in keeping the current always below the value of 6A.

B. Voltage source and load disturbance

For the second case, results stemming from a 50% increase

in the voltage source vs during the previously attained steady

state operation and from a 90% decrease in the output load r0

are shown in Figures 3(a)-3(b); more specifically, the voltage

source increase occurs at the 90th switching period and on
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(b) Duty cycle during the startup phase

Fig. 2. Simulation results for the startup scenario

top of that, at the 145th switching period, the load decrease

kicks in. In the simulation diagrams we can see that the

controller can cope with both disturbances, guaranteeing a

constant regulated output voltage of 30V .

C. Implementation details

The method described in this paper has been implemented

as a Matlab routine which makes calls to the Bertini software

package [13] for the solution of polynomial systems. For the

off-line part of the algorithm, the Matlab routine writes a

Bertini input file containing the generic system to be solved,

which Bertini solves via a multihomogeneous start system

with the standard linear homotopy. The Matlab routine then

reads in the list of finite solutions. The finite solutions,

along with the appropriate coefficient parameter homotopy,

are written to Bertini-style input files for each step of the

on-line part of the algorithm. Matlab reads in the real, finite

solutions after each on-line step and interprets the results, as

discussed in Section IV.
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Fig. 3. Simulation results for the scenario featuring a 50% increase of vs

and a 90% decrease in the output load ro

For the off-line part of the application discussed in this

paper, there were 1392 paths to be tracked, leading to

19 finite, multiplicity one solutions. The tracking for the

off-line part of the algorithm took 88 seconds on a 3.2

GHz Pentium 4 machine. The on-line part of the algorithm

involved tracking the 19 finite solutions from the off-line part

through a coefficient parameter homotopy. The tracking for

each iteration took 0.2 seconds on the same machine. All 19

finite paths stayed finite, although in every case, two paths

landed at complex solutions while the other 17 were real.

It should be noted that these timings are highly depen-

dent upon the settings of various tracking-related tolerances

(which are too numerous to detail) and also include the file

read-write overhead. Therefore, they are meant to merely

convey the order of magnitude of time needed to solve the

example.

VII. CONCLUSIONS

In this paper, we have applied a new approach to nonlinear

constrained optimal control to a power electronics case study,

namely the control of the buck dc-dc converter. The approach

uses the homotopy continuation method for polynomial sys-

tems to precompute off-line the solution set of a generic start

system Fnat
x̃0

, associated with the optimal control problem

at hand. Then, given the value x̂0 (measured state) of the

parameter x0, the on-line stage of the algorithm utilizes co-

efficient parameter homotopy to retrieve the optimal control

input of the optimal control problem.

The approach extends to the general setting of nonlinear

parametric optimization and it exhibits a probability-one

guarantee of finding the global optimum, without relying on

approximations or convexity assumptions.

The illustrated application of the dc-dc converter is tackled

successfully by means of the proposed approach, one big

advantage of which is that the dimension of the parameter

vector no longer poses a restrictive factor - not at least to

the extent that similar methods do.
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