
  

  

Abstract— Based on the multi-resolution analysis and the 

wavelet transform, a wavelet network is presented for the 

control of DC motors. One of the basic advantages of wavelet 

network is that training is done using the recursive least square 

method which is suitable for online training usually required 

for adaptive control. The wavelet network is used to design 

adaptive speed controllers for a DC motor to achieve high 

performance speed control even if the motor model is unknown, 

the load characteristics are also unknown function of speed and 

the load torque changes online. Simulation and experimental 

results are presented to validate the proposed controllers. 

I. INTRODUCTION 

avelet transform is a relatively new signal processing 

tool. It is based on representing any signal as a 

weighted summation of wavelet basis functions. 

Wavelet basis functions are dilated and translated versions of 

certain function called the mother wavelet.  For certain 

function to be a valid mother wavelet, it must satisfy certain 

admissibility conditions [1]. Since its introduction as a 

specialized field in the mid 1980, wavelet transform has 

found many applications in many different fields.  

Combining both the wavelet transform and the basic ideas of 

neural networks results in a new network called wavelet 

network (WN) [2]. The objective of such network was to use 

the wavelet transform to overcome the problems arising in 

feedforward neural network especially the computationally 

heavy training and the application dependent structure. 

Actually, the network proposed in [2] was essentially an 

ordinary radial basis function network with wavelet functions 

used in the hidden units. In [3], a wavelet network which 

depends on multi-resolution analysis and wavelet transform 

is proposed. 

      The wavelet networks can be classified into orthogonal 

and non-orthogonal networks depending on the properties of 

the wavelet function used to construct the network. 

Orthogonal wavelet networks depend on generating 

orthonormal basis using the wavelet function. However, in 

order to generate an orthonormal basis, the wavelet function 

has to satisfy some restrictions [4]. The training of the 

orthonormal wavelet network is fast and the construction is 

easier. On the other hand, the non orthogonal wavelet 

network uses the so called wavelet frame [5].  The 
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orthogonal wavelet network has received more interest 

especially in control applications where the emphasis is on 

the fast training required in online training. The authors of 

[6] have proposed a general method for the use of orthogonal 

wavelet networks in nonlinear system identification. 

High performance electric drive systems are increasingly 

used in modern applications. Conventional controllers 

usually have poor performance due to their inability to 

capture the unknown load characteristics over wide operating 

region. The adaptive control could have better performance. 

The motor could be identified using a linear parametric 

model; for instance an ARMA model. But, the characteristics 

of the load are usually nonlinear. Hence, it is required to 

identify the motor based on nonlinear model. Neural 

networks have been used to control DC motors [7] with good 

results. But the main disadvantage of using neural networks 

is the back propagation training algorithm which requires a 

heavy computation load and thus not suitable for online 

training. In [8] the dynamic back propagation algorithm was 

used to improve the identification, however, the 

computational load is still heavy.     

      In this paper, we use orthogonal wavelet network to 

control the DC motor with unknown parameters and 

investigate the use of the forgetting factor in the least square 

algorithm for the online training of the wavelet network.  

II. WAVELET TRANSFORM AND MULTI         

RESOLUTION ANALYSIS (MRA) 

Essentially the MRA represents the successive 

approximation of a function in a sequence of nested 

subspaces of linear vector space [1]. Wavelet transform 

appears naturally in the context of the MRA. MRA based on 

orthogonal wavelet function is done by defining two 

function, scaling and wavelet functions. Scaling function 

{ }nj,ϕ  forms an orthonormal basis for a sequence of nested 

spaces such that: 
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where L
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 (R) is the space of square integrable functions and 

Zj ∈ where Z is the set of integers, and )(
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nj −= −ϕϕ  n is the translation parameter and j is the 

resolution (dilation) parameters. In particular, the above 
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representation means that a function f(t) in the L
2
(R) space 

could be approximated with different accuracies depending 

on the resolution of the space at which the function is 

approximated. That is:  

             )2(),()( ltljtf
j

l

j −= −
∞

−∞=

∑ ϕµ                              (4) 

where the function fj(t) denotes the approximation of the 

function f(t) at resolution j and µ(j,l) are the coordinates of 

the scaling function at this sub-space. The details added at 

each approximation are located in other subspaces [1]. These 

new subspaces Wi – which contains the details – are 

orthonormal and have an orthonormal basis which are the 

wavelet orthonormal basis  )2(, nt
j

nj −= −ψψ  

where Znj ∈, . The function ψ  is the wavelet function 

which must have the orthonormal properties. In this paper, 

Meyer scaling and wavelet functions are used. Also it could 

be proved that [1] 

jjj WVV ⊕=−1                               (5) 

where ⊕  denotes the direct sum of the two spaces. 

Repeating this equation successively we reach the following 

equation: 

                ..........)( 101
2 ⊕⊕⊕⊕= − WWWRL                   (6)                                     

That is, the orthonormal wavelet basis generates an 

orthogonal decomposition of the L
2
 space. It is noted in 

Equation (4) that, as the parameter of resolution – j – 

decreases, the approximation gets finer. Thus for a given 

constant 0>ε  there exists an integer j0 and a function  
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where ε<− ),()( 0

^

jtftf  and )2( 0 lt
j −−ϕ denotes the 

scaling function with certain resolution j0 [6] and the 

functional norm is the L
2
 norm. Moreover if the function f(t) 

is defined over a small region, then we can truncate the 

above summation and write (9) as 
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The choice of the parameters U, L depends on the region 

over which the function is defined. In other words, noting 

that the distance between two successive functions in the 

above series equals 02
j

and denoting the period over which 

we try to approximate the function f as [X1, X2] then, 
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Equation (8) represents a wavelet network which provides an 

approximation of a given function in single resolution j0. 

Fig.(1) shows a structural representation of equation (8). The 

problem of approximating a single dimension function at 

certain predetermined resolution is reduced to the problem of 

finding the constants ),( 0 ljµ  of equation (8) by iterative 

method using the input and output data only. Note that the 

parameters ),( 0 ljµ appear linearly in equation (8). Thus the 

problem of finding the best constants ),( 0 ljµ – which 

corresponds to the training of the network – could be solved 

easily using recursive least square algorithms. The extension 

of the wavelet network to the multi-dimensional case is 

straightforward. This is achieved by defining multi-

dimensional scaling functions as follows   

                      )(),...,,( 21 Xxxx n ϕ=Φ                             (10) 

where (.)ϕ  is the scaling function in one dimension and 

X  denotes the Euclidean norm [5]. Thus, after defining 

the multidimensional scaling or wavelet functions, the 

process of approximating a multidimensional function is 

typical to the case of single dimension function as discussed 

in last section. However, the approximation of multi-

dimensional functions is more difficult due to the curse of 

dimensionality problem [4].  

III. SYSTEM IDENTIFICATION USING WAVELET NETWORK 

For certain dynamical system, let y(t) and u(t) denote the 

output and input of a given system respectively at time t. 

Collecting the values of input and output at discrete 

instances, one should have the following data   

    )](),...,1(),(),...,1([)( btutuatytyt −−−−=φ               (11) 

where a, b are positive integers. In the identification setup, 

we are looking for a model which would map the past 

data )(tφ  to the next output of the form 

                               ))(( tfy φ=
)

                                (12)  

The non-linear mapping )(tf is a function from R
d 

to R, 

where d = a + b, represents the number of elements of the 

)(tφ  vector. The choice of a and b is application dependent 

and any prior information should be utilized to determine a 

and b. The unknown function )(tf could be approximated by 

the wavelet network of equation (8). The training of the 

network is carried out, for example, by injecting a random 

signal to the system and the input-output pairs are used by 

the least square algorithm to improve the parameters of the 

network. Fig.(2) shows a schematic block diagram 

representing the training process. 

 
Fig.(1) Wavelet network 

(.)ϕ

(.)ϕ

 

.   .   .   .   .   .  

02
j−

 

02
j−

 

U 

L 

L+1 

(.)ϕ  Lµ  

Uµ  

1+Lµ  

02
j−

 

t + 

+ 

+ 

_ 

_ 

_ 

f̂  

2493



  

 
Fig.(2) Block diagram of the training process 

IV. ADAPTIVE SPEED CONTROL OF DC MOTORS USING 

WAVELET NETWORKS 

       DC motors are characterized by stable and straight 

forward characteristics and hence they are used to test and 

implement advanced control algorithms. From the control 

point of view, the DC motor can be considered as SISO 

plant, thereby eliminating the complications associated with 

multi-input drive systems [7]. The dynamics of a separately 

excited DC motor is described by the following equations:            
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where  

ω    :  rotor speed in rad/s,    V(t) : terminal voltage.  

ia(t)  : armature current.  K    :  torque and back emf constant.  

D    : damping constant.    Ra   : rotor resistance.  

La   : rotor inductance.      J     : total inertia of motor. 

TL   : load torque. 

The form of the function )(ωH depends on the nature of the 

load. The discrete model of the motor is obtained by first 

combining equations (13) and then replacing the continuous 

differentials with finite differences [9]:   

)()1()()1()()1( kVkTkTkkk LL ζδγβωαωω +−++−+=+  

                                            (15) 

where ζδγβα ,,,, are constants depending on the motor 

parameters K, D, Ra, La, J and the sampling period T and  k 

denotes the k
th

 time step. Note that in the model of (15) if TL 

is nonlinear function of speed, then the whole model will be 

nonlinear. Two controllers are designed based on wavelet 

network for the speed control of DC motor as discussed 

below: 

A. One step Ahead Controller  

   In this control scheme the control voltage is assumed to 

affect the plant linearly. The model of equation (15) satisfies 

this requirement. However, the value of ζ  must be known to 

calculate the control voltage. As mentioned above the value 

of ζ depends on motor parameters only and does not depend 

on the load. Thus, it is fair enough to assume that the value 

of ζ is known and is constant. However, in section (VI.B) 

we shall introduce an algorithm to identify ζ  directly from 

motor measurements. Thus the model of the motor given in 

equation (15) could be written as follows:  

      )())1(),(()1( kVkkgk ζωωω +−=+                  (16) 

Last equation represents a model which consists of two parts; 

an unknown function g(.) which is a function of the present 

and previous speed only and a linear term which is function 

of the input control voltage.   

A wavelet network is used to emulate the unknown function 

g(.). Now assume that it is required to make the speed of the 

motor follow certain reference r(k). Then, the one step ahead 

control voltage could be calculated as:  

     
ζ

ωω ))1(),((ˆ)1(
)(

−−+
=

kkgkr
kV                        (17) 

where (.)ĝ denotes the output of the wavelet network and 

r(k+1) is assumed to be known at instant k. If the function 

(.)ĝ  accurately approximates the unknown function g(.), 

then the speed )1( +kω  will follow the reference r(k+1). 

B. Inverse Controller  

    In this scheme the motor parameters are assumed to be 

unknown. Thus the value of ζ is unknown. Hence, the model  

given in equation (15) could be written as:  

))(),1(),(()1( kVkkhk −=+ ωωω            (18) 

To apply the inverse control, the inverse model of the plant 

should be obtained. Thus a wavelet network is trained to 

approximate the inverse of the unknown function h(.), that is  

          ))1(),(),1((ˆ)( −+= kkkhkV ωωω                (19)  

where (.)ĥ denotes the output of the wavelet network. Now 

assume that it is required to make the speed of the motor 

follow certain reference r(k). Then, the control voltage could 

be calculated using the following control law:  

   ))1(),(),1((ˆ)( −+= kkkrhkV ωω                (20) 

where again the value of r(k+1) is known at instant k. 

V. SIMULATION RESULTS 

A separately excited DC motor with name plate rating of 1 

hp, 220 V, 550 rpm is used in the following simulation. The 

parameter values associated with the motor are [7]: 

J = 0.068 Kg m
2 
, K = 3.475 NmA

-1
, Ra = 7.56 Ω,  

La = 0.055 H, D = 0.03475 Nm s  

The sampling period is 40 ms and the load torque is: 

                             TL(t) = µ ω
2
(t) sign(ω). 

The value of µ  is 0.0039. 

Using the above constants and equation (15), the motor 

model is given by:  

)(228.0)1())(( 09024.0

)())(( 586.0)1(1534.0)(3436.0)1(
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2
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The range of motor speed and voltage are defined as follows: 
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Experiment 1 

A random input signal in the range of [-100,100] is used as 

the training input. Then, the corresponding motor speed is 

mapped between -2 and 2. These training samples are used 

once to train a two-input one output network to emulate the 

unknown function (.)ĝ  in control law (17), and once to train 

a three input one output network to emulate the unknown 

function (.)ĥ in control law (19). The two controllers are 

used online and the load torque is increased after 150 

samples by 10 times. The online training algorithm is the 

least square algorithm with forgetting factor equal to 0.98. 

Figures (3,4) show the results 

  Fig.(3) response of the one step ahead controller Experiment 1. 

Fig.(4) response of the inverse controller  Experiment 1 

 

VI.   EXPERIMENTAL IMPLEMENTATION  

       In this section the experimental implementation of the 

adaptive control of DC motor using wavelet network is 

presented. The experimental installation employs the 

laboratory Feedback® PC based analog and digital trainer 

kit shown in Fig.(5), while Fig.(6) shows the mechanical 

unit.  

The motor used in this setup is a permanent magnet DC 

motor. Permanent magnet DC motors – ideally – have linear 

characteristics. Also the load is a brake magnet which 

produces a torque linearly proportional with speed. But, 

practically there exists a nonlinearity produced by the belt. 

Thus, the load torque-speed characteristic is nonlinear as 

shown in Fig.(7). In the identification procedure we consider 

motor voltage as the input and the tachogenerator voltage as 

the output. The constant of the tachogenerator is known to be  

2.5 volt /1000 rpm. Motor nameplate indicates that the range 

of input voltage is -10 to 10 volt. Corresponding to this 

range, the reading of the tachogenerator ranges from -7 to 7 

volts. 

   Fig.(5) The experimental setup 

    Fig.(6) The mechanical unit 
 

The time constant of the system equals 0.5 seconds and the 

sampling time of 0.2 seconds gives acceptable results. The 

training signal shown in Fig.(8) is applied to the motor and 

the measured tachogenerator voltage is recorded. The brake 

magnet was removed during training, that is training happens 

at no-load. The measured tachogenerator voltage is 

normalized between -0.5 and 0.5 by dividing the 

tachogenerator voltage by 20. The recorded values of the 

input voltage and normalized tachogenerator output are used 

as the training examples. Three controllers are implemented 

to control the motor as discussed below: 

A. Linear Controller  

   In this control scheme, motor dynamics are assumed to be 

linear and thus the motor model is taken as:  

            )()1()()1( 321 kVakakak +−+=+ ωωω               (21) 

which could be rewritten as:    

   )1()()1()( 321 −+++= kbkbkbkV ωωω              (22) 

Training examples generated before are used here to identify 
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the parameters b1, b2 and b3 using the recursive least square 

algorithm. The resulting model is:  

)1(0381.0)(4936.0)1(6187.1)( −+−+= kkkkV ωωω     (23) 

Now, if the objective is to make motor speed follows certain 

reference trajectory r(k+1), then use this control law: 

)1(0381.0)(4936.0)1(6187.1)( −+−+= kkkrkV ωω      (24) 

where V(k) is the control voltage at time step k.   

B. One step ahead Controller  

Instead of measuring motor parameters to calculateζ , we 

identify the value of ζ directly as follows:  

a) Set TL to zero in (15) results in   

                 )()1()()1( tVkkk ζβωαωω +−+=+              (25) 

b) Identify the parameter ζ from equation (25) using the 

training examples and recursive least square algorithm.  

The resulting value of ζ  was found to be 0.6178 (see 

comments in section VII).       

A wavelet network is used to emulate the unknown function 

g(.) of equation (16). Thus a two-input one output wavelet 

network is used to cover the region of [-0.5, 0.5] in two 

dimensions. And the control law (17) is used. 
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 Fig.(7) Torque-speed characteristics of the load. 
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Fig.(8) training input voltage  

C. Inverse Controller  

    A three-input one output wavelet network is used to 

emulate the function h(.) of equation (18) and cover the 

region of [-0.5, 0.5] in the three dimensions and the control 

law (19) is used.  

VII. EXPERIMENTAL RESULTS  

       The three controllers discussed above are used online to 

control the motor. The controllers are built using 

SIMULINK/MATLAB and then run at real time using the 

Real Time Workshop. The analog output of the 

tachogenerator is converted using analog to digital converter 

and then the speed is plotted using the SIMULINK. It is 

noted in the following experiments that the speed appears 

noise-free. This is due to the analog to digital conversion 

process.  

Experiment2: 

In this experiment the online training was stopped and the 

brake magnet load was removed – this is the same situation 

at which the model was identified -. Figures (9,10, 11) show 

the results. The reference signal is taken as: 

)
10

2
sin(400)

14

2
sin(1200)(

tt
kr

ππ
+=   rpm 

Experiment 3: 

In this experiment the motor starts with no-load, then after 

20 seconds the load is changed to maximum value. Then 

after 200 seconds – from start – the motor is returned to no-

load case. The forgetting factor of the recursive least square 

algorithm is 0.98 for the linear and the inverse controller and 

is 1 for the one step ahead controller. Figures (12,13,14) 

show the results. 

 

Comments on the experimental results: 

The performance of the one step ahead controller is not so 

good. This could be explained as follows: Although, the 

value of ζ  was identified with the machine unloaded, there 

still be a load torque presented by the belt system as shown 

in Fig.(7). Unfortunately, this load torque can not be 

removed as long as the belt system is part of the 

experimental setup. Also, the value of ζ is expected to 

change online due to the variations in motor parameters 

specially the damping constant D. Thus it is not justified 

enough to assume a constant value forζ . 

Fig.(9) Performance of the linear controller for Experiment 2 
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Fig.(10) Performance of the one step ahead controller for Experiment 2 
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Fig.(11) Performance of the inverse controller for Experiment 2 
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   Fig.(12) Performance of the linear controller for Experiment 3 

VIII. CONCLUSIONS 

The results reported in this paper assure that high 

performance adaptive control of DC motors could be 

achieved by designing controllers based on wavelet networks 

even if motor parameters are unknown and load 

characteristics are also unknown function of speed and load 

torque changes online. The experimental study demonstrates 

the feasibility of the proposed techniques for practical 

applications. 
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Fig.(13) Performance of the one step ahead controller for Experiment 3 
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Fig.(14) Performance of the inverse controller for Experiment 3 
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