
Optimal Parametric Discrete Event Control: Problem and Solution

Christopher Griffin
Oak Ridge National Laboratory

P.O. Box 2008 MS 6418
Oak Ridge, TN 37831

E-mail: cgriffin229@yahoo.com

Abstract— We present a novel optimization problem for
discrete event control, similar in spirit to the optimal parametric
control problem common in statistical process control. In our
problem, we assume a known finite state machine plant model
G defined over an event alphabet Σ so that the plant model
language L = LM(G) is prefix closed. We further assume the
existence of a base control structure MK , which may be either
a finite state machine or a deterministic pushdown machine. If
K = LM(MK), we assume K is prefix closed and that K ⊆ L.

We associate each controllable transition of MK with a
binary variable X1, . . . , Xn indicating whether the transition is
enabled or not. This leads to a function MK(X1, . . . , Xn), that
returns a new control specification depending upon the values of
X1, . . . , Xn. We exhibit a branch-and-bound algorithm to solve
the optimization problem minX1,...,Xn maxw∈K C(w) such that
MK(X1, . . . , Xn) |= Π and LM(MK(X1, . . . , Xn)) ∈ C(L).
Here Π is a set of logical assertions on the structure of
MK(X1, . . . , Xn), and MK(X1, . . . , Xn) |= Π indicates that
MK(X1, . . . , Xn) satisfies the logical assertions; and, C(L) is
the set of controllable sublanguages of L1.

I. INTRODUCTION

The supervisory control theory (SCT) for discrete event
dynamic systems (DEDS) was introduced by Ramadge and
Wonham [1]. The initial work on regular languages was ex-
tended in many subsequent publications. Examples of these
extensions can be found in [2]–[14]. In SCT a plant model is
given by a finite state machine G = 〈Q,Σ, δ, q0, Qf 〉. Here,
Q is a finite set of states; Σ is the finite event alphabet with
Σ = Σc∪Σu; q0 is the start state; Qf are the final states and
δ ⊆ Q×Σ×Q is the transition relation. The events in Σc may
be disabled by a supervisor and hence are called controllable.
A second machine, MK may be run in parallel with the plant
G, thus controlling the stream of symbols generated by G.
A complete description of SCT may be found in [1] or [15].

[12] extends the SCT to the case when the con-
troller machine MK is given by a deterministic push-
down machine (DPDM). Informally, a pushdown machine
(PDM) is a finite state machine augmented with an infinite
stack memory. Formally, A pushdown machine is a tuple
〈Q,Σ,Γ, δ, q0, Z0, Qf 〉, where Γ is a stack alphabet, Z0 is the
initial symbol on the stack and δ ⊆ Q×Σ∪{ε}×Γ×Q×Γ∗

is the transition relation in the PDM. A PDM is deterministic
if the following hold:

1A portion of this work was created as a Eugene P. Wigner Fellow
and staff member at the Oak Ridge National Laboratory, managed by UT-
Battelle, LLC, for the U.S. Department of Energy under Contract DE-AC05-
00OR22725.

1) If (q1, a, Z, q2, γ) ∈ δ and (q1, a, Z, q
′
2, γ
′) ∈ δ, then

q2 = q′2 and γ = γ′.
2) If (q1, ε, Z, q2, γ) ∈ δ, then for all a ∈ Σ, δ(q1, a, Z) =
∅.

A complete description of the use of DPDM in control can
be found in [12] and [14].

By LM(G) we mean the set of strings (language) that
cause G to transition from its start state (and stack config-
uration, if applicable) to a final state–this is valid for both
FSM and DPDM. Let L = LM(G) we denote the prefix
closure of L by L and say that a language is prefix closed if
L = L. Details of these terms may be found in [1], [15] and
[12]. Let MK be a controller machine and let G be a plant
model if K = LM(MK) and L = LM(G), we say that K is
controllable with respect to G if KΣ∗u ∩ L = K [15]. The
concept of controllability is central to the study of the SCT.

The remainder of this paper is organized as follows: In
Section II we lay out the optimal control problem we are
attempting to solve. In Section III we provide a branch-
and-bound algorithm for solving this problem. In Section IV
we provide an example of our algorithm. In Section V we
discuss how our problem relates to previous optimal control
problems considered in the literature. Finally, we provide
conclusions and future directions in Section VI.

II. PROBLEM STATEMENT

Assume we are given a finite state machine plant model
G defined over an event alphabet Σ so that the plant
model language L = LM(G) is prefix closed. Further,
suppose we have a function MK(X1, . . . , Xn) that returns
a collection of machines (either DPDM or FSM) so that
LM(MK(X1, . . . , Xn)) ⊆ L is prefix closed as well. We
study the following problem:

min
X1,...,Xn

max
w∈K

C(w)

s.t. MK(X1, . . . , Xn) |= Π
K = LM(MK(X1, . . . , Xn))
K ∈ C(L)
(X1, . . . , Xn) ∈ B

(1)

In the following sections we define the objective func-
tion, the function MK(X1, . . . , Xn) and the constraints
MK(X1, . . . , Xn) |= Π and K ∈ C(L).

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

WeB14.4

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 1166

A. Objective Function

In [8] Sangupta and LaFortune proposed the minimax
objective function for a regular language L. For each event,
the authors assumed an enabling cost κα(a) and an execution
cost for each event a ∈ Σ, κρ(a). Given a string w accepted
by a finite state machine G and a supervisor ϕ, the cost of
the string w could be computed by inductively determining
which events were enabled during string execution and which
events in w had actually been executed. A detailed account
of this cost function is described in [8]. We will not reiterate
the details since they are expertly defined in this reference.

It is clear that a similar definition extends readily to
deterministic pushdown machines. In order to guarantee
a convergent optimization theory, Sangupta and LaFortune
assumed that all closed loops in the given plant model G
had zero net cost. (Otherwise, when considering arbitrarily
many loops, the controller could easily produce an infinite
cost.) We do not make this restriction.

Instead, we apply a depreciation constant β to each string.
Let w = a1 · · · an be a string and MK be a FSM/DPDM.
Define

κα(MK |w(i− 1)) =
∑

a∈Σ,w(i−1)a∈LM(MK)

κα(a)

where w(i − 1) is the string a1a2 · · · ai−1 and we define
w(0) = ε. Then the cost of string w is:

C(w) =
n∑
i=1

βi−1(κα(MK |w(i− 1)) + κρ(ai)) (2)

Trivially for β ∈ [0, 1), there is a supremal value C∗ such
that for all w ∈ L, c(w) ≤ C∗. Hence we need not concern
ourselves with questions of convergence.

Remark 1: One negative point about abandoning San-
gupta and LaFortune’s approach is the effect a short term
time horizon has on the overall objective function. We
appreciate that this violates the principle of infinite opera-
tion embedded in the controllability predicate, however we
counter that many real world optimal control problems often
contain either a finite time horizon, (in which case strict
controllability is not needed) or they use a depreciation
constant in an infinite time horizon. Therefore, we do not feel
that this is in anyway detrimental to our theory. Further, we
believe it opens a new avenue of research for those interested
in pursuing an extension of the results we present here with
β = 1.

B. The Function MK(X1, . . . , Xn)

In our formulation, let MK be a machine providing a
prefix closed sublanguage of LM(G), for the fixed plant
model G. Suppose that MK has controllable transitions
τ1, . . . , τn. For binary variable Xi, we have Xi = 1 if
and only if τi is enabled in MK . Hence, we may define
MK(X1, . . . , Xn) to be the machine obtained from MK

by enabling or disabling the appropriate transitions. Clearly,
MK = MK(1, 1, . . . , 1).

C. Constraint: MK(X1, . . . , Xn) |= Π

For the remainder of this paper, we will assume that the
sentences of Π are formed from the logical language [16]:

〈{q0, . . . , qn, σ1, . . . , σm, Z0, . . . , Zk} ∪ {δ,Qf}, ∅,∈〉 (3)

That is to say, logical sentences may use constants (nouns)
from Q = {q0, . . . , qn}, Σ = {σ1, . . . , σm}, Γ =
{Z0, . . . , Zk} and the sets Qf and δ and they may relate
these two elements together using the ∈ relation. The empty
set symbol indicates that there are no functions in this logic.
An example sentence,

∃p((q0, σ1, Z0, p, Z0) ∈ δ ∧ (q0, σ2, Z0, p, Z0) 6∈ δ)

is a simple sentence saying there is a transition from the start
state q0 on input σ1 with top stack symbol Z0 to state p, but
no such transition on input symbol σ2.

Clearly, if we restrict our attention to this class of sen-
tences Π, then for all functions MK(X1, . . . , Xn) whose
range consists of FSM/DPDM, MK(X1, . . . , Xn) |= Π is
decidable for fixed X1, . . . , Xn.

Let ψ1, . . . , ψm be a set of sentences in the logic given
in Equation 3. We will say that MK(X1, . . . , Xn) |= Π for
fixed values of X1, . . . , Xn if and only if each sentence in
Π is true in the automaton MK(X1, . . . , Xn). That is, the
graph structure of MK satisfies sentences in Π [17].

Suppose that ψ is a sentence Π and fix values for
X1, . . . , Xn Suppose that MK(X1, . . . , Xn) 6|= ψ; that is,
ψ is not true in MK(X1, . . . , Xn). We will say that ψ is
reachable from MK(X1, . . . , Xn) if there is a finite set
of variables Xi1 = · · · = Xik = 1 so that when we
set Xi1 = · · · = Xik = 0, then MK(X1, . . . , Xn) |=
ψ. Alternatively, ψ is reachable if there is a finite set of
controllable transitions τ1, . . . , τk in MK(X1, . . . , Xn) that
can be disabled and thus make the new structure satisfy ψ.
The concept of reachability will be important in our branch-
and-bound optimization algorithm.

D. Constraint: K ∈ C(L)

By K ∈ C(L) we simply require that the resulting lan-
guage of the supervised system be controllable with respect
to the plant language L = LM(G).

III. BRANCH-AND-BOUND ALGORITHM

We present a branch-and-bound algorithm to solve Prob-
lem (1). A driving subroutine of our algorithm is Kumar’s
supremal controllable sublanguage identification algorithm
[4] or Griffin’s variation of Kumar’s algorithm for DPDM
controllers.

A. Supremal Controllable Sublanguage Computation

In [2] Ramadge and Wonham introduced the notion of the
supremal controllable sublanguage. Let K = LM(MK) and
let L = LM(G). If K is not controllable with respect to
L, then the supremal controllable sublanguage of K with
respect to L is the language supC(K) ⊆ K such that (i)
supC(K) is controllable with respect to L and (ii) if K ′ ⊆

1167

K and K ′ is controllable with respect to L, then K ′ ⊆
supC(K).

[1] showed that when K and L are both generated by
finite state machines, then so is supC(K). In [4], Kumar
et al. provided an elegant algorithm to modify the structure
of MK to generate supC(K) when MK and G are both
finite state machines and K and L are prefix closed. [14]
showed how to extend Kumar’s algorithm to the case when
K is generated by a DPDM and L is generated by a finite
state machine and again, K and L are prefix closed. Note, if
supC(K) = ∅, we will say that these two algorithms return
∅. Otherwise, they return a new machine M ′K that generates
supC(K).

We will make use of one of these two algorithms (depend-
ing upon whether MK is a FSM or DPDM) in the branch-
and-bound algorithm presented in the next section. We refer
to this algorithm as the Kumar/Griffin Algorithm and assume
the reader will know to use Griffin’s variation when MK is
a DPDM.

B. The Algorithm

We provide a depth first search branch-and-bound algo-
rithm below. At each node of the branch-and-bound tree, we
will have a set of fixed variable indexes, I (for immutable).
These are variables that are fixed in value and cannot be
modified.

The algorithm we provide operates as follows. Initially,
all variables are initialized to 1. This means that every
controllable transition in MK is enabled. We test to see
whether the parametric control problem is solvable with
MK(X1, . . . , Xn). If not, then we stop. We also test to see
if Π is reachable; if not we stop. In each case, we stop
because we’ve determined we can never find a substructure
of MK(X1, . . . , Xn) that is controllable with respect to
the plant model and that satisfies Π. We use Algorithm
D to solve the parametric control problem. If Algorithm
D disables some transitions in MK(X1, . . . , Xn), then we
identify the new values for X1, . . . , Xn. If possible, we
determine an incumbent solution. At this point, we are ready
to descend. We choose a (non-zero) variable (say X1) and
set it to zero. This disables a transition in the base structure
MK . We add 1 to the immutable set I. With 1 in I this
means we cannot change the value of X1 at any node below
level 1 of the tree.

We descend down the tree repeating the testing process
above and also checking for feasible solutions that yield
an objective function value that is smaller than the current
incumbent solution. When we cannot set any more variables
to 0, we climb back up the tree and change the Xi variables
that were set to 0 to 1; we then descend with these values
fixed at 1. Ultimately, we will return to the root node and X1

will be changed from 0 to 1. The process then repeats with
X1 = 1 (and immutable). A completely expanded search tree
is shown in Figure 1

In the main body of the algorithm, there are a few
caveats. First, if Algorithm D attempts to disable a transition
corresponding to a variable with index in the immutable set,

1
X1=1
X2=1
X3=1

2
X1=0
X2=1
X3=1

6
X1=1
X2=0
X3=1

8
X1=1
X2=1
X3=0

7
X1=1
X2=0
X3=0

3
X1=0
X2=0
X3=1

5
X1=0
X2=1
X3=0

4
X1=0
X2=0
X3=0

I={}

I={1}

I={1,2,3}

I={1,2}

I={1,2}

I={1,2,3}

I={1,2,3}

Fig. 1. A fully expanded tree; nodes are labeled in order they will be
investigated. The immutable set is shown below each node.

then search along this branch is discontinued. This is because
we can be certain we have already explored this structure–
otherwise, the index would not be both in the immutable
set and have its corresponding variable set to 1. Second, we
have devised a cost bound based on the fact we are solving
a minimax problem that allows us to stop exploring a branch
when we are certain no improved solution can be obtained.

In short, the algorithm shown in Algorithm III.1. is an
exhaustive search algorithm that implicitly enumerates some
of the nodes in the search when it is clear they will not yield
an improved solution. This fact is shown in Theorem 3.

C. Proof of Convergence

Lemma 2: Let N1 and N2 be two nodes in the branch-
and-bound tree produced by Algorithm III.1 and suppose
that M1

K and M2
K are the controllable substructures of MK

generated after Step 2 for these two nodes respectively.
Finally, suppose that N1 is the parent of N2. Then:

1) minw∈LM(M1
K) C(w) ≤ minw∈LM(M2

K) C(w) and
2) maxw∈LM(M1

K) C(w) ≥ maxw∈LM(M2
K) C(w).

Proof: In obtaining M2
K from M1

K , we remove a
transition. This effectively removes a collection of strings
from LM(M1

K) to obtain LM(M2
K). If the strings produc-

ing a maximal cost were removed, then it follows that
maxw∈LM(M1

K) C(w) > maxw∈LM(M1
K) C(w); otherwise

maxw∈LM(M1
K) C(w) = maxw∈LM(M1

K) C(w). Likewise, if
the strings producing a minimal cost were removed, then it
follows that minw∈LM(M1

K) C(w) < minw∈LM(M1
K) C(w);

otherwise it is immediately clear that minw∈LM(M1
K) C(w) =

minw∈LM(M1
K) C(w).

Proposition 3: Given G and MK , if there is a substructure
M ′K of MK that is controllable, then Algorithm III.1 will find
it. Further, Algorithm III.1 will find the values of X1, . . . , Xn

that solve Problem 1.
Proof: It suffices to show that Algorithm III.1 will im-

plicitly enumerate all possible substructures of MK that can
be obtained by disabling controllable transitions. Trivially, in
Step 1 of the branching process, we remove a transition and
add this transition to the immutable transitions at node N–we
do this by adding index i to the immutable set. If we return
to Step 1 at Node N , this transition will never be removed
again in any child node of N because the immutable set

1168

Algorithm Description III.1 – Branch-and-Bound
Initialization: Given MK(X1, . . . , Xn) and G, initialize
X1 = X2 = · · · = Xn = 1.

1) If Π is not reachable from MK(X1, . . . , Xn)
then stop–there is no feasible solution. If
LM(MK(X1, . . . , Xn)) is controllable with respect to
LM(G), GOTO 3.

2) If MK(X1, . . . , Xn) is not controllable with respect
to G, apply the Kumar/Griffin Algorithm. If the Ku-
mar/Griffin Algorithm returns ∅, STOP, the problem
is infeasible. Otherwise, let A be the machine output
from the Kumar/Griffin Algorithm. Use A to determine
current values of X1, . . . , Xn. If Π is reachable from
MK(X1, . . . , Xn), then GOTO 3. Otherwise, STOP,
the problem is infeasible.

3) If MK(X1, . . . , Xn) satisfies Π, then set the incum-
bent objective value C0 to the objective value of
LM(MK). Declare the incumbent solution to be X0

1 =
X1, . . . , X

0
n = Xn. Otherwise, set C0 =∞ and set the

incumbent solution to NULL.
4) Initialize I to the set of variable indices of variables

that are currently zero.
Branching Step: Suppose we have arrived at node N with
X1, . . . , Xn and immutable set I.

1) Let Y1 = X1, . . . , Yn = Xn. Choose i from 1 to n such
that i is not in I and set Yi = 0. (Effectively, we will
delete a transition τ from MK(X1, . . . , Xn).) Move i
to I. If no such variable is available, then fathom this
node.

2) If MK(Y1, . . . , Yn) is controllable with respect to
LM(G) then GOTO 4. Otherwise GOTO 3.

3) Apply the Kumar/Griffin Algorithm MK(Y1, . . . , Yn).
If the Kumar/Griffin Algorithm returns ∅, then GOTO
1. Otherwise, let A be the machine output from the
Kumar/Griffin Algorithm. Use A to determine current
values of Y1, . . . , Yn. If any variable Yj has been set
to zero, but j is in I then GOTO 1. Otherwise, add
the indices of any of the Y1, . . . , Yn that were set to
zero by the the Kumar/Griffin Algorithm to I. GOTO
4.

4) Test that Π is reachable from MK(Y1, . . . , Yn). If not,
then GOTO 1. Otherwise GOTO 5.

5) If minw∈LM(MK(Y1,...,Yn)) C(w) > C0, then GOTO 1.
Otherwise GOTO 6.

6) If Π is satisfied by MK(Y1, . . . , Yn), and
C0 > maxw∈LM(MK(Y1,...,Yn)) C(w), then set
C0 = maxw∈LM(MK(Y1,...,Yn)) C(w) and set
X0

1 = Y1, . . . , X
0
n = Yn. GOTO 7.

7) Create a branch with Y1, . . . , Yn and a copy of the
current set I from node N . GOTO 1 on X1 =
Y1, . . . , Xn = Yn and I ′.

Convergence: When the algorithm is finished execution,
either X0

1 , . . . , X
0
n is the optimal solution or the problem

will have been identified as infeasible.

propagates down the tree as shown in Step 7. Hence, at least
we know that all branches are independent and if we only
executed these two operations we would eventually consider
all possible ways of disabling controllable transitions in MK .

In Steps 2 and 3, if neither MK(Y1, . . . , Yn) nor A is
controllable, then by the results of [4] and [14], we know that
no substructure of MK(Y1, . . . , Yn) can ever be controllable.
Hence, we may implicitly enumerate all child nodes that
occur below this node by fathoming this node. On the other
hand, suppose that an index in I (the immutable set) is
removed in creating A, then by the independence of the
branches, this structure has already been enumerated in an
earlier branch and we may ignore it.

Finally, if A is controllable and no immutable variables
have been changed, then we know by the results of [4]
and [14] that we have removed the minimum number of
transitions from MK(Y1, . . . , Yn) to achieve controllability
and we may continue.

In Step 4, if Π is unreachable from MK(Y1, . . . , Yn),
then there is no combination of transition disabling that can
force our decidable predicate constraints to be true along
the remainder of the current branch. Hence, we may fathom
away all further branches resulting from this node.

We have shown in Lemma 2 that minimal cost increases
as the tree descends. Hence, if the minimal cost of a string in
MK(Y1, . . . , Yn) is greater then the current incumbent cost,
this branch can yield no better solution and all subsequent
nodes can be immediately fathomed.

In Step 6, we identify new incumbent solutions. Hence,
whenever a new controllable and feasible substructure
MK(Y1, . . . , Yn) is identified with lower maximal cost than
the current incumbent, it is deemed the new incumbent
solution.

Thus we have shown that in the absence of Steps 2-4 of the
branching process in Algorithm III.1 we would enumerate all
possible substructures of MK . We then showed that Steps 2-
5 allow us to implicitly enumerate a number of branching
steps, thus reducing the algorithm running time. Hence, it
follows that if Algorithm III.1 returns a solution it is optimal
and controllable and satisfies Π. Thus, it must be the solution
to Problem 1.

D. Discussion of Algorithm Complexity

It is clear that the branch-and-bound algorithm provided
is NP-complete. Checking for controllability is known to
be polynomial when both the plant and controller are finite
state machines. It can be shown that for the case when
the proposed control language K is accepted by a deter-
ministic pushdown machine, that the problem of deciding
controllability (and of computing the supremal controllable
sublanguage) is P -complete [18]; meaning that for arbitrarily
chosen K, any polynomial problem can be reduced to it.

In the worst case, deciding whether MK(X1, . . . , Xn) `
Π is also NP-complete since it reduces to the satisfiability
problem, which is known to be NP-complete. The power of
the algorithm comes in the judicious use of the sentences of
Π, which can significantly reduce the search space associated

1169

with the problem. Additionally, if supremal controllable
sublanguage identification algorithms are available for non-
prefix closed languages, the minimum string cost test is
effective at creating elmininating a number of non-optimal
solutions [18].

IV. EXAMPLE

In this section, we show a simple example of the branch-
and-bound tree produced when analyzing a small con-
troller. For simplicity, we assume the plant language L =
LM(MK(1, 1, . . . , 1)) and that MK(1, 1, . . . , 1) = M , the
specification. That is, we are interested in finding a substruc-
ture of the plant model that acts as an optimal controller. We
assume Σc = {b1, b2, c1, c2}.

The plant (and base controller MK(1, 1, . . . , 1)) is shown
in Figure 2

0

1 (a, 1) 3

4

 (a, 1)

 (b1, 2)

2 (c1, 1) (r1, 3)

 (b2, 2)

5
 (c2, 1)

 (r2, 7)

Fig. 2. The controller MK that begins the branch-and-bound process.

We assume the following sentences are in Π, which we
write in English for simplicity:

1) At least one of the transitions (1, b1, 0) or (1, c1, 2) is
enabled.

2) At least one of the transitions (3, b2, 4) or (4, c2, 5) is
enabled.

We have appended cost information to the transitions
in MK . There are four variables X1, . . . , X4 where X1

corresponds to the transition labeled b1 connecting State 1
and State 0; X2 corresponds to the transition labeled c1
connecting State 1 with State 2; X3 corresponds to the
transition connecting State 4 with State 3 labeled b2; and
X4 corresponds to the transition connecting State 4 with
State 5 labeled c2. The resulting branch-and-bound tree is
shown in Figure 3. In the branch-and-bound tree, we show
the variable values to the left of the tree nodes and we show
the corresponding transition that is removed along the edges
of the tree. The shade of the node indicates whether the node
is feasible or fathomed. If it is feasible, the shade indicates
whether a new incumbent solution is defined at this point. If
the node is infeasible, the shade indicates why the node was
fathomed. The resulting solution is shown in Figure 4

V. PREVIOUS WORK

Optimal control of discrete event systems has been inves-
tigated by a number of authors using various techniques.
Optimal control of discrete event systems was originally
investigated by Passino and Antsaklis [19]. This approach
modifies the basic assumptions of the Supervisory Control
Theory of Ramadge and Wonham by assuming a forced event
model instead of an enabled event model. Kumar and Garg
[20] were the first to formally study optimal supervisory
control using the enabled event paradigm. An alternate
formulation of optimal control in discrete event systems is in

1

2

remove b1

3

remove c1

4

remove b2

5

remove c2

6

remove c1

8

remove b2

7

remove c2

No Descent Possible

No Descent Possible

This node is feasible.

This node is infeasible.

This node is cost fathomed.

This node has a new incumbent.

X1=1,
X2=1,
X3=1,
X4=1

X1=0,
X2=1,
X3=1,
X4=1

X1=1,
X2=0,
X3=1,
X4=1

X1=1,
X2=1,
X3=0,
X4=1

X1=1,
X2=1,
X3=1,
X4=0

X1=0,
X2=0,
X3=1,
X4=1

X1=0,
X2=1,
X3=0,
X4=1

X1=0,
X2=1,
X3=1,
X4=0

Fig. 3. The branch-and-bound tree resulting from Algorithm III.1 when
running on the problem given above.

0 1 (a, 1) 3 4 (a, 1) 2 (c1, 1) (r1, 3)
 (b2, 2)

Fig. 4. Solution to problem given above.

Brave and Heymann [21]. In their formulation, they attempt
to minimize the cost of keeping a state machine within a
finite set of states. Brave and Heynmann do not include
a control cost (a cost for disabling an event) and hence
there approach is not as general as [20]. The most general
study of optimal control supervisory systems is undertaken
by Sengupta and Lafortune [8]. They consider only non-
blocking supervisors. This work is carried on by Marchand,
Boivineau and LaFortune in [9]. The latest investigation into
optimal control of discrete event systems was undertaken
by Ray et al. [10], [22], [23]. In these papers, the authors
proposed a language measure. This measure is based on the
transition structure of an automaton accepting the language.

A. Relation to [8]

We mentioned that [8] uses a dynamic programming (DP)
approach to solve an optimal discrete event control problem.
We do not use a DP approach for two reasons:
• [8] assumes no a priori controller structure, only a

finite state machine plant. Their technique builds a non-
blocking finite state machine controller that minimizes
cost. This is not the problem we study in this paper.

• A backwards DP analysis relies on a knowledge of the
termination states. When MK is a DPDM, the potential
termination states are given by the final states and
all possible stack configurations and hence form an
infinite discrete (hence disconnected) set. The branch-
and-bound method proposed here seems to be a more
straight-forward approach to solving this problem. How-
ever, an open question that results from this research
is whether DP can be applied to solve the optimal
parametric control problem we’ve posed.

1170

B. When the constant β = 1
In [8] Sengupta and LaFortune do not use a constant β.

Instead, they assume that every closed cycle in the controller
has net cost zero. If we have β = 1, then this is essential to
ensure that the objective function is finite for all strings in
K, the resulting controllable language. It is not clear whether
this can be verified when MK(X1, . . . , Xn) is a DPDM and
not a FSM. Hence, for β = 1, this problem may only be
well defined and solvable when MK(X1, . . . , Xn) produces
an FSM for all values of X1, . . . , Xn.

VI. CONCLUSION AND FUTURE DIRECTIONS

In this paper we defined the optimal parametric control
problem for discrete event control. We provided a branch-
and-bound algorithm that solves this problem when the
parametric control function MK(X1, . . . , Xn) has range
properly contained in a set of DPDM or FSM and the
depreciation constant β < 1. We showed that this algorithm
was convergent.

We call this method parametric because the proposed
problem is similar to a classical optimal parametric control
problem, but rephrased for discrete event systems. Recall,
classical parametrized control asks the question, “Assuming
a PID controller is to be used what are the optimal tuning
parameters to use in order to minimize a cost function J .”
In the case of statistical parametric control, the cost function
may be the mean square error leading to MMSE parametric
control or a cost function involving the gradient of the control
function if large deviations in the controllable vector are
undesirable [24]. In this paper, we have not discussed explicit
methods for computing the objective function. In our work
we found the simplest way was to approximate it using a
secondary branch-and-bound problem. When MK is given
by a finite state machine, it may be possible to compute
a functional description of the objective function explicitly
using regular expressions for the language K. We are not
certain whether there is a way to obtain a closed form
expression when MK is a DPDM. Additionally, our current
computational experience shows that this algorithm is very
slow. Methods for speeding up problem solving should be
investigated, particularly when MK is a DPDM.

REFERENCES

[1] P. J. Ramadge and W. M. Wonham, “Supervisory control of a class
of discrete event processes,” SIAM J. Control Optim., vol. 25, no. 1,
pp. 206–230, 1987.

[2] ——, “On the supremal controllable sublanguage of a given language,”
SIAM J. Control Optim., vol. 25, no. 3, pp. 637–659, 1987.

[3] R. D. Brandt, V. K. Garg, R. Kumar, F. Lin, S. I. Marcus, and W. M.
Wonham, “Formulas for calculating supremal controllable and normal
sublanguages,” Systems Control Lett., vol. 15, pp. 111–117, 1990.

[4] R. Kumar, V. K. Garg, and S. I. Marcus, “On controllability and
normality of discrete event dynamic systems,” Systems Control Lett.,
vol. 17, no. 3, pp. 157–168, 1991.

[5] R. Sreenivas, “A note on deciding the controllability of a language k
with respect to a language l,” IEEE Trans. Autom. Control, vol. 38,
no. 4, pp. 658–662, April 1993.

[6] B. A. Brandin and W. M. Wonham, “Supervisory control of timed
discrete-event systems,” IEEE Trans. Autom. Control, vol. 39, no. 2,
pp. 329–342, Feb. 1994.

[7] K. C. Wong and W. M. Wonham, “Hierarchical control of discrete-
event systems,” Discrete Event Dynamic Systems, vol. 6, pp. 241–273,
1996.

[8] R. Sengupta and S. Lafortune, “An optimal control theory for discrete
event systems,” SIAM J. Control Optim., vol. 36, no. 2, pp. 488–541,
1998.

[9] H. Marchand, O. Boivineau, and S. LaFortune, “On the synthesis of
optimal schedulers in discrete event control problems with multiple
goals,” SIAM J. Control Optim., vol. 39, no. 2, pp. 512–532, 2000.

[10] A. Ray and S. Phoha, “A language measure for discrete event
automata,” in International Federation of Automatic Control World
Congress, Barcelona, Spain, 2002.

[11] Y. Cao and M. Ying, “Supervisory Control of Fuzzy Discrete Event
Systems,” IEEE Trans. Autom. Control, vol. 35, no. 2, pp. 366–371,
2005.

[12] C. Griffin, “A note on deciding controllability in pushdown systems,”
IEEE Trans. Autom. Control, vol. 51, no. 2, pp. 334–337, February
2006.

[13] A. E. C. da Cunha and J. E. R. Cury, “Hierarchical Supervisory Control
Based on Discrete Event Systems with Flexible Marking,” IEEE Trans.
Autom. Control, vol. 32, no. 12, pp. 2242–2253, 2007.

[14] C. Griffin, “A note on the properties of the supremal controllable
sublanguage in pushdown systems,” IEEE Trans. Autom. Control, In
Press, 2008.

[15] C. G. Cassandras and S. LaFortune, Introduction to Discrete Event
Systems. Boston, MA, USA: Kluwer Academic Publishers, 1999.

[16] S. Simpson, “Mathematical logic,” Available at:
http://www.math.psu.edu/simpson/courses/math557/logic.pdf, 2000.

[17] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to
Algorithms, 2nd ed. The MIT Press, 2001.

[18] C. Griffin, “Decidability and Optimality in Pushdown Control Sys-
tems: A New Approach to Discrete Event Control,” Ph.D. disserta-
tion, Department of Industrial Engineering, The Pennsylvania State
University, University Park, PA, December 2007.

[19] K. M. Passino and P. J. Antsaklis, “On the optimal control of discrete
event systems,” in Proc. 28th IEEE Conf. on Decision and Control,
Tampa, FL, USA, 1989, pp. 2713–2718.

[20] R. Kumar and V. Garg, “Optimal supervisory control of discrete event
dynamical systems,” SIAM J. Control Optim., vol. 33, pp. 419–439,
1995.

[21] Y. Brave and M. Heymann, “On optimal attraction of discrete-event
processes,” Inform. Sci., vol. 67, pp. 245–276, 1993.

[22] X. Wang and A. Ray, “Signed real measure of regular languages,” in
Proc. American Control Conference, Anchorage AK, USA, 2002.

[23] J. Fu, A. Ray, and C. Lagoa, “Unconstrained optimal control of regular
languages,” in Proc. 41st IEEE Conference on Decision and Control,
Las Vegas, NV, USA, December 2002, pp. 799–804.

[24] E. D. Castillo, Statistical Process Adjustment for Quality Control.
New York, NY: Wiley-Interscience, 2002.

1171

