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Abstract— This paper proposes a technique for reducing the
number of uncertain parameters in order to simplify robust
and adaptive controller design. The system is assumed to have
a known structure with parametric uncertainties that represent
plant dynamics variation. An original set of parameters is iden-
tified by nonlinear least-squares (NLS) optimization using noisy
frequency response functions. Using the property of asymptotic
normality for NLS estimates, the original parameter set is re-
parameterized by an affine function of the smaller number
of uncorrelated parameters. The correlation among uncertain
parameters is detected by optimization with a bilinear matrix
inequality. A numerical example illustrates the usefulness of the
proposed technique.

I. INTRODUCTION

Plant dynamics variation abounds in practical control

problems. Such variation is caused by, e.g., the change of

operational points and conditions, time-varying properties,

and limited manufacturing tolerance for cheap and massive

production. For instance, in the mass-spring-damper system,

spring and/or damper coefficients may vary depending on

the position of the mass due to nonlinearity. Also, in batch

fabrication, it is costly to try to produce millions of products

with exactly same dynamics. Taking into consideration plant

dynamics variation is crucial to achieve satisfactory control

systems for any conceivable situation.

In order to deal with plant dynamics variation, robust

and adaptive control techniques [16], [17] are known to

be powerful tools. These techniques are based on models

representing dynamics variation, and various modeling and

system identification methodologies for such models have

been developed [12], [2] by the last decades.

In modeling, we always have to consider the trade-off

between accuracy and simplicity of the model. Although a

complex model can capture system properties in detail, it

is often not preferable for controller design purpose due to

unduly high computational cost. Especially, if we employ too

many parameters to represent dynamics variation, numerical

controller design based on modern robust control techniques

often falls into computational infeasibility. Therefore, model

set simplification is an important step.

For a model set involving parametric variation, there are

mainly two ways of model simplification, i.e., model order

reduction and parameter number reduction, and the latter

is the main topic in this paper. Based on the idea of the
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principal component analysis [8], Conway et al. recently

developed a parameter reduction method using the singular

value decomposition [5]. A possible drawback is that they

do not consider the effect of noise in experimental data on

parameter reduction, while this paper discusses in detail how

the noise on frequency response function data affects the

parameter reduction stage.

This paper proposes a parameter reduction technique to

simplify robust and adaptive controller design. The system

is assumed to have a known structure with parametric uncer-

tainties caused by plant dynamics variation. An original set

of parameters is identified by nonlinear least-squares (NLS)

optimization using noisy frequency response functions. Us-

ing the property of asymptotic normality for NLS estimates,

the original parameter set is re-parameterized by an affine

function of the smaller number of uncorrelated parameters.

The correlation among uncertain parameters is detected by

optimization with a bilinear matrix inequality.

Notation used in this paper is standard. The set of positive

numbers and positive integers are denoted by R+ and Z+,

respectively. The set of p dimensional real vector is Rp, and

the set of p × q complex matrices is C
p×q . (If p = q = 1,

these indices are omitted.) For a complex matrix M , Re(M)
and Im(M) respectively mean the real and the imaginary

part of M , and MT and M∗ are respectively the transpose

and the complex conjugate transpose of M . Other notation

will be explained in due course.

II. PARAMETER ESTIMATION BY NONLINEAR

LEAST-SQUARES OPTIMIZATION

As is written in [12, page 13], the model construction

requires three basic entities, that is, the model structure, the

data, and the optimality criterion. In the following, we will

explain what these entities are in this paper. Throughout

this paper, we assume that the system to be modeled is a

scalar system, but extensions of the results in this paper to

multivariable cases are straightforward.

A. Model structure

It is assumed that we have a priori information on the

structure of a continuous-time linear time-invariant (LTI) true

system:

[G(θ)] (s), θ ∈ Θ ⊂ R
p, (1)

where θ is a parameter vector and Θ is a set determined by a

priori knowledge of parameters. (For example, we may know

that some parameters in θ must be positive.) The structure of

G may come from either physical laws or experimental data.
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Simple examples are standard first and second order transfer

functions:

[G(θ)] (s) :=
K

Ts + 1
, θ := [K, T ]

T
,

[G(θ)] (s) :=
Kω2

s2 + 2ζωs + ω2
, θ := [K, ζ, ω]

T
.

(2)

In what follows, we suppose that the true system is

represented as

[G(θ⋆)] (s), (3)

with the true parameter vector θ⋆ ∈ Θ.

B. Frequency domain experimental data

For the true system (3), we take noisy frequency response

function (FRF) data as

Ĝm = [G(θ⋆)] (jωm) + em, m = 1, . . . , M. (4)

where ωm ∈ R+ is the frequency of the sinusoidal input

signal, Ĝm ∈ C contains both gain and phase information,

and M ∈ Z+ is the number of frequencies. The term em is

a complex-valued white noise random variable resulting the

following property:

e :=















[

Re {e1}
Im {e1}

]

...
[

Re {eM}
Im {eM}

]















∼ N (0, σ2I2M ), (5)

meaning that e is generated by a normal distribution with

zero mean and covariance σ2I2M .

The origin of the complex-valued white noise em is from

the asymptotic normal distribution of the Fourier transform

of white noise (see more details in [1], [11]). Some of it can

be viewed as the quantization and electronic noise of the data

acquisition system. Such noise level σ can be suppressed

effectively by averaging sinusoidal output signals over many

periods. This is the major advantage for identifying LTI

systems based on FRFs.

C. Nonlinear least-squares optimization

For the given model structure (1) and FRF data
{

(ωm, Ĝm); m = 1, . . . , M
}

,

we consider to find the least-squares estimate θ̂M that

minimizes the residual sum of squares:

θ̂M := arg min
θ∈Θ

M
∑

m=1

∣

∣

∣
Ĝm − [G(θ)] (jωm)

∣

∣

∣

2

. (6)

The minimization problem (6) is in general a nonlinear

least-squares (NLS) optimization problem with a constraint

θ ∈ Θ, for which it is nontrivial to guarantee the existence

and the uniqueness of the global solution. From now on,

we assume the existence and the uniqueness of the global

minimizer (the NLS estimate of θ) of the NLS problem.

Numerically, we need to provide the optimization procedure

with a reasonably good guess of θ̂M , and have to be content

with the suboptimal, instead of optimal, minimizer.

III. ASYMPTOTIC PROPERTIES OF NONLINEAR

LEAST-SQUARES ESTIMATES

Next, we will discuss two important properties of the

NLS estimate θ̂M , i.e., strong consistency and asymptotic

normality [6].

A. Strong consistency

Our first concern is the consistency. Roughly speaking,

the consistency relates to a fundamental question: “Can we

recover the true parameter θ⋆ by minimizing the residual in

(6) for a large number of samples?” The precise definition

is given next.

Definition 1: An estimate θ̂M of θ⋆ is strongly consistent

if θ̂M converges to θ⋆ almost surely (i.e., with probability

one) as M (the number of data) goes to infinity.

Theorem 2 (Theorem 6 in [9]): Let DM be a distance

between two parameter vectors defined by

DM (θ, θ′) :=

M
∑

m=1

|[G(θ)] (jωm) − [G(θ′)] (jωm)|2 .

If the following conditions hold, then the NLS estimate θ̂M

of θ⋆ is strongly consistent.

C1: DM (θ, θ′)/M converges uniformly to a continuous

function D(θ, θ′), and

C2: D(θ, θ⋆) = 0 if and only if θ = θ⋆.

Proof: See [9].

In this paper, we consider the case when an NLS estimate

is strongly consistent.

B. Asymptotic normality

If an NLS estimate is strongly consistent, our next con-

cern is to identify the distribution of the NLS estimate. It

turns out that, under some conditions, the NLS estimate

has asymptotically normal distribution. This property will

become important later in parameter reduction. To present

our result on asymptotic normality, we will introduce the

following concept.

Definition 3: A model set G is said to be uniformly stable

for a set Θ if all the transfer functions in the set

G(Θ) := {[G(θ)] (s) : θ ∈ Θ} (7)

are stable.

In the next theorem, we use the notation

[∇G(θ⋆)](s) :=

[

∂

∂θ
G(θ)

]

θ=θ⋆

(s), (8)

to denote the gradient vector evaluated at θ⋆.

Theorem 4: Assume the following.

• θ̂M is a strongly consistent least-squares estimate of θ⋆.

• For a given compact parameter set Θ, the model set

G(Θ) is uniformly stable.

• G(θ) is smooth in Θ.

• The true parameter θ⋆ is in the interior of Θ in (7).

• Frequency points {ωm ; m = 1, . . . , M} are distributed

uniformly over a frequency range [ω, ω] such that

lim
M→∞

ΣM (θ⋆) = Σ(θ⋆), (9)
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where Σ(θ⋆) is a positive definite matrix, and ΣM is

defined by

ΣM (θ⋆) :=

M
∑

m=1

Re {[∇G(θ⋆)](jωm)[∇G(θ⋆)](jωm)∗}

M
.

(10)

Then, we have

θ̂M →d N (θ⋆, W (θ⋆)), as M → ∞, (11)

where →d denotes “converges in distribution” and

W (θ⋆) :=
σ2Σ−1(θ⋆)

M
. (12)

(In words, θ̂M is asymptotically normal with mean θ⋆ and

covariance matrix W (θ⋆).)
Proof: See Appendix A.

The error covariance matrix W (θ⋆) in (12) will play an

important role in the parameter reduction step.

Remark 5: The Fisher information matrix I(θ⋆) [10] of

the model (4) can be easily computed by

I(θ⋆) =
MΣM (θ⋆)

σ2
.

By the Cramér-Rao theorem [10], [7], the covariance matrix

of any unbiased estimator θ̂ is lower bounded by the Cramér-

Rao Lower Bound (CRLB), or the inverse of the Fisher

information matrix I(θ⋆):

E

{

(θ̂ − θ⋆)(θ̂ − θ⋆)T
}

� I(θ⋆)−1 =
σ2Σ−1

M (θ⋆)

M
. (13)

Notice that this CRLB approaches to W (θ⋆) as M increases.

Remark 6: The choice of [ω, ω] can significantly affect

the error covariance matrix W . We want to select [ω, ω] to

minimize the “size” of the covariance matrix W . The opti-

mization is usually considered in terms of the determinant

or the trace of W or I (see more details in [7]). In general,

[ω, ω] should contain all the modes of the dynamical system.

IV. PARAMETER REDUCTION

So far, we have derived the asymptotic error covariance

matrix W (θ⋆) of the nonlinear least-squares estimate θ̂1 for

a single true system G(θ⋆). In this section, by considering

multiple true systems G(θ⋆
ℓ ), ℓ = 1, 2, . . . , with the same

model structure, and a corresponding set of NLS estimates

and error covariances, we will re-parameterize the set with a

fewer number of uncorrelated parameters. This step is called

parameter reduction. Such multiple true systems represents

the dynamics variation caused by manufacturing tolerance,

change of operating points, and/or time varying nature of

the plant. A time varying correlation on parameters can be

represented by a collection of time invariant correlations with

given short time intervals.

1Hereafter, we omit the superscript M of θ̂
M for notational simplicity.

For the ℓ-th dynamical system, we denote the true param-

eter by θ⋆
ℓ , and its NLS estimate based on FRF data by θ̂ℓ.

Then, the estimation error is

ǫℓ := θ̂ℓ − θ⋆
ℓ , ℓ = 1, 2, . . . . (14)

Under the conditions in Theorem 4, ǫℓ is asymptotically

normally distributed as M goes to infinity:

ǫℓk →d N (0, Wℓ), Wℓ := W (θ⋆
ℓ ) =

σ2Σ−1(θ⋆
ℓ )

M
. (15)

Given a finite number of NLS estimates

{θ̂ℓ ∈ R
p; ℓ = 1, . . . , L}, (16)

where p is the number of parameters, and the ℓ-th asymptotic

error covariances

{Wℓ; ℓ = 1, . . . , L} , (17)

the parameter reduction problem is to find a parameter set
{

θ := θ̄ + V λ; λ ∈ R
q, ‖λ‖∞ ≤ 1

}

(18)

with q < p, or equivalently θ̄ ∈ R
p and V ∈ R

p×q , so that

the set approximates all the given estimates in (16) in some

sense. Next, we will provide a parameter reduction method

based on a bilinear matrix inequality (BMI).

Geometrically, the parameter set (18) is a q-dimensional

hyperrectangle in Rp (q < p), and the NLS estimates are

points in Rp. In order to find a hyperrectangle that passes

close to all the points, we take the following two steps:

1) Find a q-dimensional hyperplane that passes close to

all the NLS estimates.

2) Find a hyperrectangle in the obtained hyperplane so

that the size is minimized while maintaining closeness

to all the NLS estimates.

The minimization of the hyperrectangle size is important for

less conservative robust controller design.

The problem in step 1) can be written mathematically as

min
θ̄∈Rp,V ∈Rp×q,λℓ∈Rq,ℓ=1,...,L

γ

subj. to max
1≤ℓ≤L

∥

∥

∥
W

−1/2
ℓ

(

θ̂ℓ − (θ̄ + V λℓ)
)
∥

∥

∥

2

< γ.
(19)

Here, to measure the “distance” between an NLS estimate

and the hyperplane, we take into account the error covariance

matrix. In terms of matrix inequalities, we can express the

inequality constraint in (19) as
[

γILK (Θ̂ − (Θ̄ + (ILK ⊗ V )Λ))T

⋆ W

]

> 0, (20)

where ⊗ denotes the Kronecker product, and

Θ̂ := diag
[

θ̂11, · · · , θ̂1K , · · · , θ̂L1, · · · , θ̂LK

]

∈ R
pLK×LK ,

Θ̄ := ILK ⊗ θ̄ ∈ R
pLK×LK ,

Λ := diag [IK ⊗ λ1, · · · , IK ⊗ λL] ∈ R
qLK×LK ,

W := diag [IK ⊗ W1, · · · , IK ⊗ WL] ∈ R
pLK×pLK .
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This is a BMI with unknowns γ, Θ̄, V and Λ. To find a sub-

optimal solution via LMIs, we utilize a standard technique

of alternating two LMI optimization problems:

• Fix Θ̄ and V , and solve LMI with respect to γ and Λ.

• Fix Λ, and solve LMI with respect to γ, Θ̄ and V .

After finding a q-dimensional hyperplane, in step 2), to

minimize the “size” of the parameter set (18) for robust

control purpose, as well as to satisfy the constraint ‖λ‖∞ ≤
1, we should adjust the nominal parameter θ̄ and the matrix

V . The problem is to find a hyperrectangle

H :=
{

λ := λ̄ + T λ̃,
∥

∥

∥
λ̃
∥

∥

∥

∞
≤ 1

}

(21)

with shortest sides (without rotation, i.e., T is a diagonal

matrix) that contains the suboptimal solutions {λℓ}L
ℓ=1. This

problem has an explicit solution:

λ̄(i) :=

min
ℓ=1,...,L

λℓ(i) + max
ℓ=1,...,L

λℓ(i)

2
, i = 1, . . . , q,

T := diag

[

max
ℓ

∣

∣λℓ(1) − λ̄(1)
∣

∣ , · · · , max
ℓ

∣

∣λℓ(q) − λ̄(q)
∣

∣

]

.

The following inclusion relation holds:
{

θ := θ̄ + V λℓ, ℓ = 1, . . . , L
}

,
⊂

{

θ := θ̄ + V λ, λ ∈ H
}

,

=
{

θ := θ̄new + Vnewλ̃,
∥

∥

∥
λ̃
∥

∥

∥

∞
≤ 1

}

,
(22)

where θ̄new = θ̄ + V λ̄ and Vnew = V T . In this way, we have

obtained the set (18) that approximates all the NLS estimates.

Example 7: We illustrate the proposed parameter reduc-

tion method with an example, taken from the book [3,

Ch. 11]. Consider the following set of true system dynamics:

S :=

{

G(s) =

5
∏

m=1

[Gm(δ)] (s) : δ ∈ [−0.2, 0.2]

}

, (23)

[G1(δ)] (s) =
0.64013

s2
,

[G2(δ)] (s) =
0.912s2 + 0.4574s + 1.433(1 + δ)

s2 + 0.3592s + 1.433(1 + δ)
,

[G3(δ)] (s) =
0.7586s2 + 0.9622s + 2.491(1 + δ)

s2 + 0.7891s + 2.491(1 + δ)
,

[G4(δ)] (s) =
9.917(1 + δ)

s2 + 0.1575s + 9.917(1 + δ)
,

[G5(δ)] (s) =
2.731(1 + δ)

s2 + 0.2613s + 2.731(1 + δ)
.

(Frequency is scaled by 10−4; see [3, eq.(11.4)].) For each

of five δ-values, δ = 0, 0.05, 0.1,±0.2, we took noisy FRF

data with noise variance σ2 = 0.01.

By regarding eight parameters as components of uncertain

θ, the NLS estimates were obtained as
{

θ̂ℓ ∈ R
8 : ℓ = 1, . . . , 5

}

. (24)

We also computed the approximated asymptotic error covari-

ances:

{Wℓ : ℓ = 1, . . . , 5} . (25)

Here, we selected q = 1 and performed parameter reduc-

tion. In Figure 1, it is shown the noisy FRF data (blue lines),

and Bode plots of transfer functions obtained by optimally

perturbing one uncertain parameter λ (red lines). As can be

seen in the figure, a model set with one parameter can capture

the FRF data quite well, which indicates that the original 8

parameters were redundant to represent the uncertain system.

This parameter reduction will lead to the reduction of the

burden and the conservativeness in robust controller design.
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Fig. 1. The noisy FRF data (blue lines), and Bode plots of transfer functions
obtained by optimally perturbing one uncertain parameter λ (red lines).

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a new parameter reduction

technique for robust and adaptive control. The technique has

been developed based on asymptotic properties of nonlin-

ear least squares estimates, that is, strong consistency and

asymptotic normality, and utilized optimization involving a

bilinear matrix inequality to detect the correlation of original

parameters.

The essential necessary assumption in this paper is that

we know the structure of the true system, which is not

realistic in many applications. Important future work is

automatic detection of the structure of the true system from

the combination of a priori information and experimental

frequency response function data.

APPENDIX

A. Proof of Theorem 4

To prove Theorem 4, we first review the known result,

presented in [15], on asymptotic normality of NLS estimates.

Then, we apply this result to our problem formulation.
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1) A result in [15]: Consider a general NLS optimization

problem to find a true parameter θ⋆ ∈ Θ:

θ̂N := arg min
θ∈Θ

N
∑

n=1

(yn − fn(θ))
2
, (26)

where yn := fn(θ⋆) + en ∈ R and fn : Θ → R are given,

and en ∈ N (0, σ2) is a real random process with a normal

distribution. For a functional fn, we denote its gradient and

the Hessian by ∇fn : Θ → Rp and ∇2fn : Θ → Rp×p,

respectively. In addition, let Σ̃N : Θ × R → Rp×p be an

operator defined by

Σ̃N (θ, τN ) :=
1

τN

N
∑

n=1

∇fn(θ)∇fn(θ)T , (27)

where {τN}∞N=1 is a positive sequence that satisfies

lim
N→∞

τN = ∞. (28)

The following result [15] is available for asymptotic

normality of NLS estimates.

Theorem 8 (Theorem 5 in [15]): Let θ̂N be a strongly

consistent least-squares estimate of θ⋆. Under the regularity

conditions A1-A5 below, we have

√
τN (θ̂N − θ⋆) →d N (0, σ2Σ̃−1), (29)

where Σ̃ := limN→∞ Σ̃N (θ⋆, τN ).
2) Regularity conditions:

A1: ∇fn(θ) and ∇2fn(θ) exist for all θ in the neighborhood

of θ⋆ which is in the interior of Θ. There exists

{τN}∞N=1 satisfying (28) and

Σ̃N (θ⋆, τN ) → Σ̃, as N → ∞, (30)

where Σ̃ is positive definite.

A2: As N goes to infinity,

max
1≤n≤N

1

τN
∇fn(θ⋆)T Σ̃−1∇fn(θ⋆) → 0.

A3: As N goes to infinity, and ||θ − θ⋆|| → 0,

Σ̃N (θ, τN )Σ̃−1
N (θ⋆, τN )

converges to the identity matrix uniformly.

A4: There exists a δ > 0 such that, for any (j, k)-entry of

the Hessian ∇2fn(θ), denoted by
[

∇2fn(θ)
]

j,k
,

lim sup
N→∞

1

τN

N
∑

n=1

sup
θ∈Bδ(θ⋆)

(

[

∇2fn(θ)
]

j,k

)2

< ∞,

(31)

where Bδ(θ
⋆) := {θ ∈ Θ : ‖θ − θ⋆‖ ≤ δ} is a δ-

neighborhood of θ⋆.

A5: Take δ that satisfies (31). If, for a pair (j, k), the

following holds:

∞
∑

n=1

sup
||θ−θ⋆||≥δ

∣

∣

∣

[

∇2fn(θ)
]

j,k

∣

∣

∣

2

= ∞, (32)

then there exists a K , independent of n, such that

sup
s 6=t

s,t∈Bδ(θ⋆)

∣

∣

∣

[

∇2fn(s) −∇2fn(t)
]

j,k

∣

∣

∣

‖s − t‖

≤ K sup
θ∈Bδ(θ∗)

∣

∣

∣

[

∇2fn(θ)
]

j,k

∣

∣

∣
,

(33)

for all n.

3) Reducing our problem formulation to the form in

(26): Since the formulation in (4) and (6) contains complex

numbers, by dividing the square term into real and imaginary

parts, we can rewrite the cost function in (6) as

M
∑

m=1

(

Re
{

Ĝm

}

− Re {[G(θ)] (jωm)}
)2

,

+

M
∑

m=1

(

Im
{

Ĝm

}

− Im {[G(θ)] (jωm)}
)2

.

By comparing this equation with (26), we define N := 2M ,

and for m = 1, . . . , M ,

yn :=







Re
{

Ĝm

}

, if n = 2m − 1,

Im
{

Ĝm

}

, if n = 2m,

fn(θ) :=

{

Re {[G(θ)] (jωm)} , if n = 2m − 1,

Im {[G(θ)] (jωm)} , if n = 2m.

(34)

4) Checking the regularity conditions in our problem

formulation: In what follows, we verify the aforementioned

regularity conditions A1-A5 for the function fn(θ) defined

in (34).

A1: Let τN = N/2. Then,

Σ̃N (θ⋆, τN ) =
2

N

N
∑

n=1

∇fn(θ⋆)∇fn(θ⋆)T = ΣM (θ⋆),

which, due to the assumption (9), converges to Σ(θ⋆)
that is positive definite as N (or M ) goes to infinity.

A2: Since τN satisfies limN→∞ τN−1/τN = 1, it can be

shown (see [15]) that A2 is implied by A1.

A3: Using the matrix norm || · ||, we have
∥

∥

∥
Σ̃N (θ, τN )Σ̃−1

N (θ⋆, τN ) − I
∥

∥

∥

≤
∥

∥

∥
Σ̃N (θ, τN ) − Σ̃N (θ⋆, τN )

∥

∥

∥

∥

∥

∥
Σ̃−1

N (θ⋆, τN )
∥

∥

∥
.
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By using the smoothness assumption of G, the series

expansion around θ = θ⋆ gives us
∥

∥

∥
Σ̃N (θ, τN ) − Σ̃N (θ⋆, τN )

∥

∥

∥

≤ KN ‖θ − θ⋆‖ + O(‖θ − θ⋆‖2
),

where KN is bounded. Therefore, for any ǫ > 0, there

exist a positive integer N̄ and a neighborhood of θ⋆

such that
∥

∥

∥
Σ̃−1

N (θ⋆, τN )
∥

∥

∥
is bounded by some constant

for all N ≥ N̄ (due to (30)), and
∥

∥

∥
Σ̃N (θ, τN )Σ̃−1

N (θ⋆, τN ) − I
∥

∥

∥
< ǫ, ∀N ≥ N̄ .

A4: For each (j, k), we have, as M goes to infinity,

1

τN

N
∑

n=1

sup
θ∈Bδ(θ⋆)

(

[

∇2fn(θ)
]

j,k

)2

=
1

M

M
∑

m=1

{

sup
θ∈Bδ(θ⋆)

(

[

∇2ReGm(θ)
]

j,k

)2

+ sup
θ∈Bδ(θ⋆)

(

[

∇2ImGm(θ)
]

j,k

)2
}

,

→
∫ ω

ω

{

sup
θ∈Bδ(θ⋆)

(

[

∇2Re [G(θ)] (jω)
]

j,k

)2

+ sup
θ∈Bδ(θ⋆)

(

[

∇2Im [G(θ)] (jω)
]

j,k

)2
}

dω.

Since the function G is smooth around θ⋆, and since

the integral is taken within a finite interval, the last term

becomes finite for some small δ > 0.

A5: Without loss of generality, we assume that

sup
θ∈Bδ(θ⋆)

∣

∣

∣

[

∇2fn(θ)
]

j,k

∣

∣

∣
> 0, ∀n.

In fact, if supθ∈Bδ(θ⋆)

∣

∣

∣

[

∇2fn(θ)
]

j,k

∣

∣

∣
= 0 for some

n, then the condition (33) holds irrespective of the

choice of K for that n. Under this assumption, since

the frequency range [ω, ω] is a closed set, and since

the functions supθ∈Bδ(θ⋆)

∣

∣

∣

[

∇2ReG(θ)
]

j,k
(jω)

∣

∣

∣
and

supθ∈Bδ(θ⋆)

∣

∣

∣

[

∇2ImG(θ)
]

j,k
(jω)

∣

∣

∣
are continuous with

respect to ω, there exists a constant γ > 0 satisfying

inf
n

sup
θ∈Bδ(θ⋆)

∣

∣

∣

[

∇2fn(θ)
]

j,k

∣

∣

∣
> γ. (35)

Since
[

∇3G(θ)
]

(s) is uniformly stable over θ ∈ Θ, we

have
∣

∣

∣

[

∇3fn(θ)
]

i,j,k

∣

∣

∣
≤ K1 := sup

θ∈Θ

∥

∥

∥

[

∇3G(θ)
]

i,j,k

∥

∥

∥

∞
,

where ‖·‖∞ denotes the H-infinity norm of a stable

transfer function. Here, K1 is finite due to the com-

pactness of Θ. Thus,
[

∇2fn(θ)
]

j,k
satisfies the global

Lipschitz condition for all s, t ∈ Θ such that

sup
s 6=t

s,t∈Bδ(θ⋆)

∣

∣

∣

[

∇2fn(s) −∇2fn(t)
]

j,k

∣

∣

∣

‖s− t‖ ≤ K1.

We then select K by

K :=
K1

inf
n

sup
θ∈Bδ(θ⋆)

∣

∣

∣

[

∇2fn(θ)
]

j,k

∣

∣

∣

,

which is independent of n, and positive due to (35).

From this equation, (33) is obtained. (We remark that,

in our problem formulation, (33) holds even without the

condition (32).)
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[17] K. J. Åström and B. Wittenmark, Adaptive Control: 2nd edition,

Addison-Wesley, 1995.

1303


