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Abstract— This paper deals with approximate value iteration
(AVI) algorithms applied to discounted dynamic (DP) program-
ming problems. The so-called Bellman residual is shown to
be convex in the Banach space of candidate solutions to the
DP problem. This fact motivates the introduction of an AVI
algorithm with local search that seeks an approximate solution
in a lower dimensional space called approximation architecture.
The optimality of a point in the approximation architecture is
characterized by means of convex optimization concepts and
necessary and sufficient conditions to global optimality are
derived. To illustrate the method, two examples are presented
which were previously explored in the literature.

I. INTRODUCTION

Dynamic Programming (DP), e.g. [5] is a very elegant

and powerful tool devised to solve (stochastic) sequential

decision and planning problems. However, the solution to

large scale DP problems can become prohibitively demand-

ing, see [12]. Approximate Dynamic Programming (ADP)

algorithms, e.g. [7], [13], [14], offer a plausible alternative

of finding approximate solutions to DP problems that would

otherwise be intractable. This paper explores a very popular

ADP technique of incorporating a function approximation

scheme into the problem and searching an approximate solu-

tion in a lower dimensional space. This approach has proved

successful in real-world applications, e.g. [15]. Nevertheless,

convergence is not one of its intrinsic properties. In fact,

authors have striven to produce robust and convergent ADP

algorithms, e.g. [2], [9].

Convergent ADP algorithms often rely on specific prop-

erties of the approximation architecture and/or the pro-

jection/fitting operator, i.e. the operator that converts el-

ements in the Banach space of value function candidates

into elements (approximate solutions) in the approximation

space. The non-expansion based algorithm in [9] applies to

non-expansive projection mappings. Residual and gradient

descent algorithms, see [2] and [3], respectively, were de-

rived for problems with a differential mapping from value

function to approximation parameters. These algorithms seek

to decrease the so-called Bellman residual at each iteration.

Although convergence is guaranteed, not much can be in-

ferred about the accumulation point. A convergent algorithm

for general approximation architectures under a class of

expansive projection mappings was introduced in [1]. It was
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shown to converge to the projection of a local solution to

the DP problem in the approximation space under suitable

conditions.

This work introduces an algorithm similar in nature to the

residual algorithm and addresses its properties. In contrast

to the latter algorithm, where the objective is to guarantee

convergence and the nature of the accumulation point is

to some extent immaterial, the proposed algorithm seeks to

minimize the Bellman residual in the approximation space.

This is motivated by the fact that the Bellman residual is in

fact an estimate of the distance between any value function

candidate and the true value function. Moreover, since the

value function is not known a priori, an evaluation based on

a given error criterion with respect to it is impractical.

This paper also studies properties of the Bellman residual.

An appropriate function of the Bellman residual is shown

to be convex in the Banach space of real-valued functions.

Given that convexity implies strictly quasi-convexity, this

makes it possible to introduce a derivative-free local search

(line search) procedure (e.g. Fibonnacci search or Golden

Section, see [4][Chapter 8]) in the proposed algorithm, in

order to identify descent directions for the desired function.

Hence, in contrast to residual algorithms, the proposed proce-

dure does not require the existence of a differential mapping

from real-valued functions (i.e. value function candidates)

to approximation parameters. Furthermore, convex program-

ming theory can be applied to derive sufficient conditions

for the optimality of any given element in the approximation

space. For more details regarding the optimization of convex

functions, see [4].

II. PRELIMINARIES

Let S be the state space of the dynamic programming (DP)

problem P. Let B be the space of non-negative real valued

functions V : S → R. A standard approach to solving P is

to define a contraction mapping T in the supremum norm

that maps B into itself, e.g. [12]. The unique fixed point

of mapping T , which is denoted by V ∗ and coincides with

the solution to P, can be computed recursively by the value

iteration algorithm

V0 ∈ B
Vk+1 = TVk.

(1)

This algorithm can be deemed as an unconstrained subgradi-

ent algorithm that takes at any iteration k a descent direction

dk = TVk − Vk. Both the convergence and uniqueness of

the fixed point of Algorithm (1) follow from the contraction

property, which states that
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||TV − V ′|| ≤ α||V − V ′||, ∀V, V ′ ∈ B, (2)

where || · || denotes the supremum norm.

When the state space is prohibitively large, an alternative is

to substitute Algorithm (1) for an approximate value iteration

(AVI) algorithm that seeks an approximate solution in a

parametric approximation space A ⊂ B. The approximate

algorithm applies mapping T to a subset of S and projects the

samples thus obtained into the approximation space by means

of a projection operator PA : B → A. Such an algorithm and

can be defined by the recursion below

V0 ∈ A

Vk+1 = Vk + PA(TVk)− Vk.
(3)

The goal is to find the solution to the auxiliary problem

min
V∈A

f(V) := min
V∈A

d(V, V ∗), (4)

where d : A→ R is some distance function defined a priori.

Hence, the approximate algorithm seeks the best available

approximation (in A) to V ∗, according to some error criterion

defined a priori. However, considering the V ∗ is not known a

priori, the evaluation of f in (4) is impractical, and therefore

the optimality of any element in A cannot be verified unless

the original DP problem is solved to optimality.

In contrast to pure DP algorithms, which converge to

the optimal solution and monotonically decrease the so-

called ‘Bellman’ residual (||TV − V ||, V ∈ B, where || · ||
denotes the supremum norm), AVI algorithms can present a

divergent behavior, e.g. [8]. Moreover, the Bellman residual

is no longer guaranteed to monotonically decrease. In order

to overcome this difficulty, residual gradient algorithms,

introduced in [2], alter the update in (4) to make sure that the

residual is decreased at each update, based on the derivative

of the residual with respect to the approximation parameters.

However, the properties of the accumulation point of such

an algorithm remain poorly understood and not much can

be inferred about the quality of the approximate solution

obtained.

This work introduces an alternative AVI algorithm that

seeks to minimize a semi-norm function of the Bellman

residual, which can be deemed as an upper bound to f (4),

and is indicative of the quality of any given value function

approximation. This algorithm comprises a derivative-free

local search procedure that makes sure that this norm func-

tion is decreased at each iteration, thereby eliminating the

need for a differential mapping from real-valued functions

to approximation parameters.

III. FORMULATION AND DEFINITIONS

Let P be a discounted DP problem and B be the Banach

space of value function candidates for this problem. Let S

denote the state space of the discounted DP problem and

R(V ) := TV −V, V ∈ B be the Bellman residual associated

to V . It is known that the solution to P is unique, e.g. [6] and

that a necessary and sufficient condition for the optimality

of V ∗ ∈ B is R(V ∗) = 0. Therefore, problem P can be

equivalently formulated as

min g(V ) = min ||R(V )||s = min ||TV − V ||s, V ∈ B.

(5)

where || · ||s denotes the span semi-norm, given by

||V ||s = max
x∈S

V (x)−min
x∈S

V (x).

The following equations hold.

||V ∗ − V || ≤ ||TV ∗ − TV ||+ ||TV − V ||

≤ α||V ∗ − V ||+ ||TV − V ||,

where the first equation results from the triangular inequality,

noting that V ∗ = TV ∗; and the last inequality follows from

(2). The above expressions imply

||V ∗ − V || ≤
||TV − V ||

1− α
. (6)

Hence, considering the definitions of the supremum norm

and the span semi-norm, at any point V ∈ B it holds that

||V ∗ − V || ≤
g(V )

1− α
+ C, (7)

where α is the linear convergence rate of the VI algorithm,

and

C = min
x∈S

TV (x)− V (x)

1− α

Therefore g(V ) is, up to a constant, indicative of the proxim-

ity between V and the exact solution V ∗ to the DP problem.

In this work, we address a constrained version of the DP

problem, which can formulated as

min g(V) = ||R(V)||s = ||TV − V||s, V ∈ B.

subject to V ∈ A
(8)

The concepts below, extracted from [4], will be useful in the

definition of local optimality that follows.

Definition 1: Given a point V ∈ B and ǫ > 0, the set

Nǫ(V ) = {V ′ : ||V ′ − V || ≤ ǫ} is called an ǫ-neighborhood

of V .

Definition 2: V ∈ A is a local minimum to (8) if there

exists an ǫ-neighborhood Nǫ(V) around V such that R(V) ≤
R(V) for all V ∈ Nǫ(V) ∩A, for some ǫ > 0.

IV. OPTIMALITY CHARACTERIZATION

The linear convergence rate of the VI algorithm to the

optimal solution of problem (5), e.g. [6], suggests that this

problem is a well defined one. Indeed, we prove in this

section that function g : B → R, g = ||RV||s is a convex

function. Therefore, convex optimization theory yields that

any local optimum to (5) is also a global optimum and the

solution to this problem can be equivalently searched by

means of any subgradient algorithm. Moreover, for convex

approximation architectures, the same result yields that the

solution to (8) coincides with any local minimum of that

problem.
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This section proceeds with a proof that function g : B →
R is convex. It finishes with a characterization of global

optimality for Problem (8), which makes use of this result.

Let d ∈ B be an arbitrary direction, x ∈ S and V1 ∈ B
and α ∈ (0, 1) be the convergence rate of the VI algorithm.

Then, for any d ∈ B,

T (V1 + d)(x) = TV1(x) + αE[d(x1)|x0 = x].

With these elements, the following lemma can be stated.

Lemma 1: Function g : B → R is a convex function.

Proof: From the definition of R, one can easily see that

R(V1 + δ)(x) = RV1 + αE[δ(x1)|x0 = x]− δ(x), ∀x ∈ S

It follows from the above equality that

R(V1 + (1− λ)δ)(x) =RV1(x)+

(1− λ)
[

αE
[

δ(x1)|x0 = x
]

− δ(x)
]

R(V1 + (1− λ)δ)(x) =RV1(x)+

(1− λ)
[

R(V1 + δ)(x)−RV1(x)
]

R(V1 + (1− λ)δ)(x) =λRV1(x)+

(1− λ)R(V1 + δ)(x), ∀x ∈ S.

(9)

Hence, it follows that

R(λV1 + (1− λ)V2)(x) = R(V1 + (1− λ)(V2 − V1)))(x)

= λRV1(x) + (1− λ)RV2(x),
(10)

where the last equality follows from (9), with δ = (V2−V1).
By the triangular inequality,

||R(λV1 + (1− λ)V2)||s ≤ λ||RV1||s + (1− λ)||RV2||s

And that concludes the proof.

It follows from the lemma above that any local minimum

to (5) is also a global minimum. The same applies to problem

(8) when the approximation space A is convex.

Let FV = {d : (V + d) ∈ A}, V ∈ A and let

F := { d ∈ FV : g(V + λd) ≤ g(V), ∀λ ∈ (0, δ), δ > 0 }

denote the set of improving or descent directions of function

g at V .

Proposition 1 (Necessary and Sufficient Condition): V ∈
A is a global minimum to (8) if and only if F = ∅.

Proof: Suppose, in view of contradiction, that F 6= ∅.
Then, there exists a direction d ∈ F

V
: ||R(V + λd)||s ≤

||R(V)||s, ∀λ ∈ (0, δ) for some δ > 0. Therefore, V does

not meet Definition 2 and is not a local minimum (8).

Now suppose V is a local minimum to (8). Then, by

Definition 2, F = ∅. Thus, it has been shown that F = ∅ is

a necessary and sufficient condition for local optimality.

By the convexity of A, and Lemma 1, any local minimum

to (8) is also a global minimum. And that concludes the

proof.

A straightforward corollary to Proposition 1 is stated

below.

Corollary 1 (Necessary Condition): If V is a global min-

imum to (8), then V is also a global minimum in the subset

AV̄,δ = {V̄ ∈ A : V̄ = V̄ + λδ, λ ∈ R},

δ = PA(TV )− V .

Proposition 1 is very powerful, but can be difficult to

verify. When the approximation space is non-differentiable

with respect to the parameters a verification step can imply

sweeping every feasible direction around a solution candi-

date. Corollary 1 provides a weaker condition that can be

verified by the simple application of the prescribed projection

mapping and applications of the VI mapping T . At a mini-

mum, one obtains the optimal solution in the convex subset

AV̄, δ of the approximation architecture, defined above.

V. THE PROPOSED ALGORITHM

In order to exploit the results in Section IV and improve

the convergence properties of Algorithm (3), a new algo-

rithm is proposed that incorporates a unidimensional search

procedure whenever necessary. At any iteration, in case the

projection mapping does not provide a descent direction, i.e.

if the current iterate satisfies Corollary 1, unidimensional

search is applied sequentially in a prescribed set of feasible

directions until a descent direction is identified or the set is

completely swept. The idea is to find a residual decreasing

direction in the prescribed set and minimize the residual

in that direction. The algorithm terminates when no further

improvement is attained. A pseudo-code of the proposed

algorithm is presented below.

Any standard unidimensional search procedure can be

applied in Step 4 of Algorithm 1. However, for general ap-

proximation architectures, a derivative-free procedure, such

as Golden Section or Fibonacci search is advised. Observe

that the eventual function evaluations in the local search

step can make use of Equation (10). Therefore, an explicit

evaluation of g(V ) is only necessary in the end points of the

segment being evaluated. Thus, at most n+1 applications of

mapping T are required during each local search cycle (step

4) of the proposed algorithm.

VI. NUMERICAL EXAMPLE

In this section, we replicate the chain-walk problem from

[11]. The problem consists of a chain of N states, labeled 1

to N. At each state there are two actions available, “go left”

(L) and “go right” (R). The actions succeed with probability

0.9 and fail with probability 0.1; when an action fails,

the complementary action is the one actually executed; the

two boundaries of the chain are dead-ends. The “reward”

function is nil at the boundaries and unitary otherwise and

the discount factor is 0.9. The objective is to maximize the

cumulative discounted reward in an infinite horizon. Figure

1 depicts a chain walk example with N = 4.

The chain-walk example is attractive because it is simple

enough to allow a comparison between the exact and the

approximate solution. Furthermore, the simple 4-state chain
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Algorithm 1 Approximate Value Iteration with Unidimen-

sional Search

Step 1: (Initialization)

• Choose V0 ∈ A

• Choose n and tol

• k ← 0
• sp←∞
• ǫ0 = ||TV0 − V0||s

Step 2: (Projection)

• V ′ = PA(TVk)
• ǫk+1 = ||TV ′ − V ′||s

Step 3: (Descent Direction Verification)

• If (ǫk+1 < ǫk − tol)

– Vk+1 = V ′

– k ← k + 1
– Return to Step 2

• Else

– δ ← V ′ − V

• End If

Step 4: (Unidimensional Search)

• d1 ← δ

• Select Feasible Directions {d2, . . . , dn}, n <

∞
• Fd = {d1, . . . , dn}
• j ← 1, λ̄← 0
• While (λ = 0) AND j ≤ n

– λ̄← arg minλ∈[−1,1] ||R(Vk + λdj)||s
• End While

• V ′ = Vk + λ̄dj

• Vk+1 ← V
′

Step 4:(Convergence Test)

• If ||Vk+1 − Vk|| ≤ tol

– STOP

• Else

– k ← k + 1, return to step 2

• End If

Fig. 1. Four-state Chain-walk Problem

in Figure 1 was reported to offer difficulties to a policy

iteration based approximate dynamic programming algorithm

[10].

Following [10] and [11], this paper uses a linear architec-

ture to represent the value function as a combination of the

following basis functions:

φ(s) =





1
s

s2



 ,

where s is the state number. Let vt indicate the transpose

a vector v. The approximation architecture is the space of

linear combinations of the basis functions A = {φw, w ∈
R

3×1}, with

φ =







φ(1)t

...

φ(N)t






.

The projection operator PA is linear regression with least-

squares minimization. Our experiments showed that, unlike

its counterpart in [10], Algorithm 3 does not fail to converge

to the value function for the example in Figure 1, which

belongs the the approximation space. Therefore, the algo-

rithm in Section V converges without a single application of

the unidimensional search routine. This suggests that a VI-

based approach can be more adequate for this problem than

a policy-iteration based approach.

To verify the behavior of Algorithm 1 when the value

function does not belong to the approximation domain, ex-

periments with a 5-state and a 10-state chain-walk examples

were performed. In these examples, approximate solutions

with non-zero Bellman residual have to be pursued. In each

experiment, V0 = 0 and the set Fd in Step 4 of Algorithm 1

is comprised of 5 (five) elements, which are vectors pointing

from V ′ = PA(TVk) to the last 5 iterates of the algorithm,

i.e. Fd = [V ′−Vk−1 . . . V ′−Vk−5]
t. In the first 5 iterations,

Fd is completed with randomly generated feasible directions.
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Fig. 2. Bellman Residual for the 5-state Chain-walk Problem

Figure 2 plots the Bellman residual against the iteration

number for the 5-state chain-walk example. It shows that

the algorithm takes 3 iterations to converge. Observe that

the Bellman residual of the accumulation point is better

than the value function projection PA(V ∗) in terms of

Bellman residual. In Figure 3, the exact solution to the
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Fig. 3. Exact and Approximate Solutions to the 5-state Chain-walk Problem

problem is plotted against its projection in the approximation

architecture and the solution obtained by Algorithm 1.
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Fig. 4. Bellman Residual for the 10-state Chain-walk Problem

Figure 4 depicts the Bellman residual for the 10-state

chain-walk example. For this Example, Algorithm 1 con-

verges in 68 iterations. Once again, the Bellman residual is

decreased considerably if compared to its counterpart at the

value function projection PA(V ∗). However, one can observe

in Figure 5 that the solution to the proposed algorithm is

more distant from the value function than PA(V ∗) in terms

of the span semi-norm. This seemingly counter-intuitive fact

may happen when the residual is not a tight bound to the

distance to the value function, i.e. when the upper bound in

(7) not a tight bound.

1 2 3 4 5 6 7 8 9 10
8

8.5

9

9.5

10

10.5

11

Optimal and Approximate Solutions

state

(A
p

p
ro

x
im

a
te

) 
V

a
lu

e
 F

u
n

c
ti
o

n

 

 

Exact

Approximate

P
A
(V

*
)

Fig. 5. Exact and Approximate Solutions to the 10-state Chain-walk
Problem

VII. CONCLUDING REMARKS

This paper showed that the Bellman residual is a convex

function in the Banach space of real-valued functions. This

fact motivates the introduction of an approximate value

iteration (AVI) algorithm with local search devised to solve

large scale dynamic programming problems. Defining an

approximate problem with a convex objective function allows

one to use derivative-free local search procedures and extend

residual algorithms to the context of convex approximation

spaces that are non-differentiable with respect to the param-

eters.

The proposed algorithm is applied to a class of prob-

lems previously explored in the literature for the purpose

of benchmarking. The solution to the proposed problems

illustrate the strengths and drawbacks of the method. The

results illustrate the potential of the proposed algorithm to

find low-residual approximate solutions. Considering that the

objective function is an upper bound to the distance to the

value function, the quality of the approximate solution is also

a function of the tightness of this bound.
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