
 
 

 

  

Abstract— This paper presents the development and analysis 
of a method to identify a two-channel cardiovascular system 
using two distinct peripheral blood pressure signals. The 
method is able to characterize the upper- and lower-limb arte-
rial path dynamics as well as the aortic root impedance, and 
recover the aortic blood pressure and flow signals fed to it. The 
blind system identification and input de-convolution algorithms 
for a class of two-channel infinite impulse response systems are 
developed and applied to a gray-box model of a two-channel 
cardiovascular system. Persistent excitation condition, model 
identifiability and asymptotic variance are analyzed to quantify 
the method’s validity and reliability. Experimental results based 
on 83 data segments obtained from a swine subject show that the 
cardiovascular dynamics can be identified very accurately and 
reliably, and the aortic blood pressure and flow signals are 
stably recovered from two distinct peripheral blood pressure 
signals under diverse physiologic conditions. The benefit of the 
proposed method is demonstrated by comparing it to a prede-
termined transfer function describing the cardiovascular dy-
namics at nominal physiologic conditions. 

I. INTRODUCTION 
HE physiologic state of the cardiovascular (CV) sys-

tem can be most accurately assessed by using the aortic 
blood pressure (BP) and flow (BF). However, standard 
measurement of these signals entails costly and risky surgical 
procedures. Thus, most of the practically applicable methods 
aim to monitor the CV system based on peripheral circulatory 
signals, e.g. arterial BP at a limb. These include popula-
tion-based transfer function methods for recovering the aortic 
BP signal from the upper-limb arterial BP [1], and the esti-
mation of CV parameters from arterial BP measurement [2]. 

Most of these methods exploit a single peripheral circula-
tory signal to assess the CV state based on some predeter-
mined model of the CV system. However, it has recently been 
argued that the state of the CV system cannot be uniquely 
determined from a single peripheral circulatory signal [3], 
due to the variability in the vascular geometry, vascular 
mechanical properties and cardiac ejection. These varying 
factors are averaged out in the CV parameter estimation 
methods [2] as well as the group-averaged transfer function 
methods [1], which use “nominal” parameter values derived 
from some study population. Care must be taken in applying 
these, when a subject’s physiologic condition differs sub-
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stantially from the group average or the nominal state [4]. 
In an attempt to extend the CV monitoring techniques to 

diverse physiologic conditions, this paper presents a method 
that does not use a predetermined transfer function. Instead, it 
is identified for each subject under diverse physiologic con-
ditions. In doing so this paper exploits two arterial BP signals 
observed at two distinct branches in the CV system. Based on 
the Multi-Channel Blind System Identification theory, both 
arterial path dynamics are identified, from which the aortic 
BP and BF signals are recovered adaptively. 

The previous works by the author’s group using black-box 
model structures of the CV system [5]-[6] demonstrated the 
feasibility of the approach. This paper presents and analyzes a 
significantly improved algorithm based on a gray-box model 
structure of the CV system. The validity of the method will be 
experimentally verified based on 83 data segments obtained 
from a swine subject. The challenge is to rigorously assess the 
identifiability of the CV dynamics and quantitatively evaluate 
the expected error variance. Theoretical analysis addressing 
the persistent excitation, model identifiability and asymptotic 
variance will provide a sound basis for evaluating and vali-
dating the proposed method, altogether yielding a highly 
reliable method for characterizing the CV system. 

II. THEORETICAL DEVELOPMENT AND ANALYSIS 

A. Blind Identification of a Class of 2-Channel IIR Systems 
Consider a 2-channel IIR system which creates two distinct 

output signals ( )1y n  and ( )2y n  as a result of a common 

input signal ( )u n . The dynamics of the channels 1S  and 2S , 

( )1G z  and ( )2G z , are described as follows, which are as-

sumed to be minimal realizations of 1S  and 2S : 
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Since both channels are excited by the common input signal, 
one of the following correlations between the output signals 
can be explored to identify the channels 1S  and 2S , if ( )1G z  

and ( )2G z  possess no common poles and zeros [5], [7]: 
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Equating the first and the last expressions, we have, in gen-
eral, 

( ) ( ) ( ) ( )1 1 2 2H z n H z nξ ξ=             (3) 

for proper IIR systems ( )1H z  and ( )2H z , which does not 
include the input signal. This system ID technique is called 
the “blind” system ID because it does not involve the use of 
input signal for system ID. 

Let ( ) ( ) ( )1
i i iH z N z D z−=  for 1,2i = , where ( )iD z  is an 

in -th order monic polynomial in z  and ( )iN z  is an im -th 
order polynomial in z , respectively. Then (3) is equivalent to 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 1 2 1 1

1 2 2 2 2

P z n D z N z n

D z N z n P z n

ξ ξ

ξ ξ

=

= =
,     (4) 

or alternatively in discrete-time domain, 
( ) ( ) ( ) ( )1 2 1 1 2 1 2 2 0n n m n n n m nξ ξ ξ ξ⎡ ⎤+ + − + + − =⎣ ⎦ p , (5) 

where 1

2

⎡ ⎤
⎢ ⎥
⎣ ⎦

p
p

p
 and ip , 1, 2i = , are vectors consisting of 

the coefficients of ( )iP z . Given ( )iG z  and ( )iP z  for 
1, 2i = , the 2-channel IIR systems considered in this paper 

are specified as follows: 
Assumption 1: The class of 2-channel IIR systems consid-

ered in this paper satisfies the following assumptions C1 and 
C2: 

C1: Let { }1 1 2 2, , ,=θ α β α β , where iα  and iβ  are coeffi-
cients of the denominator and numerator polynomials in 

( )iG z . Then there exists a predetermined constraint on θ  of 
the form: 

( ) ( ) ( ) 0F F F= = =θ p p p ,           (6) 

which yields unique non-trivial p , where p p p . 

C2: There exists a partition 1 2 L= ∪ ∪ ∪θ θ θ θ  such that 

i i i=A θ b , 1, 2,i L= ,              (7) 

where ( )1 1, ,i i i−=A A p θ θ , ( )1 1, ,i i i−=b b p θ θ . 
Now we present a blind system ID algorithm for this class 

of 2-channel IIR systems: 
Blind Identification Algorithm: The class of 2-channel IIR 

systems satisfying C1 and C2 in Assumption 1 can be identi-
fied by the following procedure: 

1) Formulate (5) into a matrix equation using the time series 
of 1ξ  and 2ξ  to form a set of over-constrained linear equa-
tions, i.e. 1 1 2 2 2N n m n m> + + + + : 
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where N  is the length of the time series used to solve (8a), 
( ) ( ) ( )1 1 2 1 1n n n m nξ ξ⎡ ⎤+ +⎣ ⎦ξ ,          (8b) 

and ( )2 nξ  is defined similarly from (5). 
2) Identify p  from (8a) using singular value decomposi-

tion: 

[ ] T
1 2− =Ξ Ξ UΣV ,              (9) 

where the column of the unitary matrix V  corresponding to 
the minimum singular value is taken as the estimate of p . 

3) Identify p  from (6) and determine =p p p . 
4) Identify θ  from (7) using p . 
Remark 1: Assumption 1 is the identifiability condition for 
( )iG z , 1,2i = . Firstly, although it is not possible to deter-

mine the length of p  from the homogeneous equation (5) 

alone, C1 allows us to find p  using the constraint equation 
(6) once p  is identified by solving (8a). In addition, C2 en-

ables us to pick out ( )iG z , 1,2i = , from ( )iP z , 1,2i = , by 
virtue of the mapping (7) between θ  and p , although in 

general decomposition of ( )1P z  into ( )2D z  and ( )1N z  as 

well as that of ( )2P z  into ( )1D z  and ( )2N z  is not unique. 

B. De-convolution Filter Design for Input Signal Recovery 
Once the 2-channel IIR system is identified, the input signal 

may be recovered by inverting ( )1G z  or ( )2G z  if at least 
one of them has stable inverse. However, de-convolution 
filtering is required to recover the unknown input if both of 
the IIR systems have unstable zeros. In this paper we develop 
an algorithm to design a de-convolution filter that is appli-
cable to multi-channel IIR systems using the notion of co-
prime transfer functions [8]. 

Lemma 1: Two stable, proper, real-rational transfer func-
tions ( )1M z  and ( )2M z  are coprime if they have no com-
mon zeros outside the unit circle and at least one of them has 
zero relative degree. If ( )1M z  and ( )2M z  are coprime, 
there exist stable, proper, real rational transfer functions 

( )1W z  and ( )2W z  satisfying the Bezout identity: 

( ) ( ) ( ) ( )1 1 2 2 1M z W z M z W z+ = .          (10) 
De-convolution Algorithm: The unknown input signal 
( )u n  can always be recovered from the output signal meas-

urements ( )iy n , 1, 2i =  using the identified IIR system 
coefficients θ : 

( ) ( )
( ) ( ) ( ) ( )

( ) ( )11 2
0 1 2

2 1, ,
rz z

u n z z y n y n
z z

η η
α α

= − +
θ θ

,     (11) 

where 0 1z < , ( )2 0 , 0G z ≠θ , 1r  is the relative degree of 

( )1 ,G z θ , and ( )1 zη  and ( )2 zη  are polynomials in z  of 

order 2n  and ( )1 1n − , respectively, satisfying 

( ) ( ) ( ) ( ) ( ) ( ) ( )1
0 1 1 2 2 1 2, , , ,rz z z z z z z zβ η β η α α− + =θ θ θ θ . (12) 

Outline of Proof: From (1) ( ) ( )1
0 1 ,rz z G z− θ  is an IIR 

system with zero relative degree, and thus ( ) ( )1
0 1 ,rz z G z− θ  

and ( )2 ,G z θ  are coprime. Hence, by the above lemma, there 

exist stable proper IIR systems ( )1W z  and ( )2W z  satisfying 
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( ) ( ) ( ) ( ) ( )1
0 1 1 2 2, , 1rz z G z W z G z W z− + =θ θ .      (13) 

Constructing ( )1 ,W z θ  and ( )2 ,W z θ  as 

( ) ( ) ( )1
1 1 2, ,W z z zη α −=θ θ , ( ) ( ) ( )1

2 2 1, ,W z z zη α −=θ θ .   (14) 
Then (13) reduces to the polynomial identity (12). Multi-
plying ( )u n  to both sides of (13) yields (11). 

Since ( )1 zη  and ( )2 zη  together give 1 2 1n n+ +  un-
knowns and both sides of (12) are polynomials of order 

1 2n n+ , (12) results in a set of 1 2 1n n+ +  linear equations 
with 1 2 1n n+ +  unknowns, =Aη α  (see Fig. 1), where 

( ) ( )
( ) ( )

1 1
1

1 2
1 2

(1) (1)
0 1 0

1 2 0

,

, ,

r n
n

n n
n n

z z z z

z z z

β β β

α α α α+
+

− = + +

= + +

θ

θ θ
.        (15) 

The matrix A  should be nonsingular for the existence of η , 
the coefficients of the de-convolution filter. First, it is evident 
from the structure of A  that the columns of the sub-matrix 

2A  are linearly independent of the columns of the 
sub-matrices 1A  and 3A  as well as of each other because 

1

(1) 0nβ ≠ . It then follows that for non-singularity of A the 

sub-matrix 1 3⎡ ⎤⎣ ⎦A A  should be nonsingular. Noting that 

1 3⎡ ⎤⎣ ⎦A A  is the Sylvester matrix of ( ) ( )1
0 1 ,rz z zβ− θ  and 

( )2 ,zβ θ , these polynomials should be coprime, which is 

always guaranteed because ( )1 ,G z θ  and ( )2 ,G z θ  have no 

common poles and zeros and 0z  is chosen such that 

( )2 0 , 0G z ≠θ . Therefore, ( )u n  can always be recovered 

using (11). Q.E.D.  
 

 
Fig. 1. Matrix equation for the design of de-convolution filter. 
 

C. Persistent Excitation and Model Identifiability Analysis 

Let ( ) 2 1
2 1

(1) (1)
1 0

n m
n mP z p z p+

+= + +  and rewrite (5) as: 

( ) ( )T
1 2 1n n m nξ + + = q φ ,             (16) 

where 
2 1 2 1

1 T(1) (1) (1) T
201n m n mp p p

−

+ + −
⎡ ⎤ ⎡ ⎤
⎣ ⎦ ⎣ ⎦q p , and 

( ) ( ) ( ) ( ) T
1 2 1 1 21n n n m n nξ ξ⎡ ⎤= − + + − −⎣ ⎦φ ξ .     (17) 

Given a time series of 1ξ  and 2ξ , (16) can be formulated 
into: 

( )

( )

( )

( )

T
1 2 1

T
1 2 1

n n m n

n n m N n N

ξ

ξ

⎡ ⎤⎡ ⎤+ +
⎢ ⎥⎢ ⎥

= ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥+ + − −⎢ ⎥⎣ ⎦ ⎣ ⎦

φ
q Φq

φ

.      (18) 

where 1 1 2 2 2N n m n m> + + + + . It can be solved for q  

using the least-squares method if TΦ Φ  is nonsingular, 
which means that 1ξ  and 2ξ  persistently excites the system 
so that p  is determined to scale. Therefore, the PE condition 

is given by the positive definiteness of TΦ Φ : 

( ) ( )T1 1
1 1

n

k n N

k k
N N= −

= >
+ +∑ Tφ φ Φ Φ 0 .       (19) 

Once the PE condition is satisfied, the MI condition be-
comes trivial: the model structure (16) is always identifiable, 
since it is a moving-average model [9]. 

D. Asymptotic Variance Analysis 
In 2-channel blind IIR system ID, the model coefficients are 

determined by minimizing the error associated with (3): 

( ) ( ) ( ) ( ) ( )1 1 2 2
ˆ ˆ ˆ, , ,n H z n H z nε ξ ξ−θ θ θ ,     (20) 

which is defined as the empirical measurement error. Fol-
lowing [9] it can be shown that the variance of ( )nε  in es-
timating θ  asymptotically converges to  

( ) ( ) ( )

( ) ( ) ( )

0 0 0

1
T

0 0 0
1
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N N

N
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⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦
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where ( ) ( )2

1

1 ,
N

N
n

n
N

λ ε
=

∑θ θ  is the empirical measurement 

error variance, ( ) ( ),
,

d n
n

d
ε θ

ψ θ
θ

 is the sensitivity of 

( ),nε θ  to θ , and ( )NS θ  is the inverse of the sensitivity 
covariance matrix. The variance is not computable since it is 
evaluated at 0θ . However, the following empirical ap-

proximation using the estimate θ̂  suffices in many applica-
tions: 

( ) ( ) ( )0
1ˆ ˆ ˆvar N NN

λ− ≅θ θ θ S θ ,         (22) 

The variance ( ) ( )( )0
ˆvar , ,i iG z G z−θ θ , 1,2i = , of estimat-

ing ( )1G z  and ( )2G z  can then be obtained as follows [9]: 

( ) ( )( ) ( ) ( ) ( )T 1

0 0

ˆ ˆ, ,
ˆ ˆvar , , var

i i
i i

dG z dG z
G z G z

d d

−

− ≅ −
θ θ

θ θ θ θ
θ θ

. 

(23) 

III. METHODS 

A. Gray-Box Model of 2-Channel Cardiovascular System 
The blind IIR system ID algorithm developed in this paper 

is applicable to a class of CV system models. The “asym-
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metric T-tube” model [11], which meets the basic assump-
tions, C1 and C2, of the algorithm, is used as an exemplary 
case study. It is noted, however, that the algorithm may be 
extended to more complex representations of the CV system, 
possibly with additional CV signal measurements as well as 
increased computational cost. 
 

 
Fig. 2. Asymmetric T-tube model of a 2-channel CV system. 
 

The “asymmetric T-tube” model represents the CV system 
by a parallel connection of two distinct transmission lines 
(TL’s) with associated terminal load impedances (see Fig. 2). 
The TL’s describe the proximal vessels, whereas the load 
impedances represent the resultant effect of the distal circu-
lation, i.e. the small extremity vessels. In Fig. 2, ( )aP n , 

( )1P n , ( )2P n  and ( )aQ n , ( )1Q n , ( )2Q n  are the BP and 
BF signals at the aortic, upper-limb and lower-limb locations. 
Note that the subscripts 1  and 2  represent the upper-limb 
and lower-limb quantities. The parameters 1n  and 2n  are the 
time delays (in number of samples) associated with the BP 
and BF wave propagation from aortic to peripheral locations, 

1cZ  and 2cZ  are the characteristic impedances, 1C  and 2C  
are the terminal compliances, 1R  and 2R  are the terminal 
resistances, and 01R  and 02R  are the high-frequency 
matching resistances [11]. 

The transfer function from ( )aP n  to ( )iP n  becomes: 

( ) ( )
( )

( )
( )

1

2 1

1,
,

, 1

i i

i i

n n
i i si

i n n
i i s i s

z a b F zz
G z

z z a F z b F

β
α

+

+

⎡ ⎤+ + −⎣ ⎦=
+ − +

Θ
Θ

Θ
,   (24) 

where { }1 2, ,n nΘ θ , { }1 2 1 2, , ,a a b bθ , and 

( )
0

0 0

2
2

i i
i

i i i i

R R
a

R C R R
+

+
, 

( )0 02
i

i
i i i i

R
b

R C R R+
.      (25) 

The parallel arrangement of the TL’s in the asymmetric 
T-tube model suggests that the root impedance at the aorta is 
given by ( ) ( ) ( )1 2, , // ,aZ z Z z Z z=Θ Θ Θ : 

( ) ( ) ( )2 2, 1 , 1 ,i in n
i ci i iZ z Z z z z z−⎡ ⎤ ⎡ ⎤+ Γ − Γ⎣ ⎦ ⎣ ⎦Θ Θ Θ .   (26) 

where 0

0

i i i
ci

i ii

P R R
Z

R RQ

+

+
=

+
 [11]. Then ( ),aZ z Θ  becomes: 

( ) ( ) ( )
( ) ( ) ( ) ( )

1 2 1 2

1 1 2 2 1 2

, ,
,

, , , ,
c c

a
c c

Z Z z z
Z z

Z z z Z z z
α α

α α α α+

Θ Θ
Θ

Θ Θ Θ Θ
,  (27) 

where ( ) ( )2 1, 1i in n
i i s i sz z a F z b Fα + + − −Θ , 1, 2i = .  

Remark 2: It is easy to prove that the transfer functions 
( )iG z , 1,2i = , are indeed identifiable. Considering ( )2P z , 

( ) ( ) ( )
1 1 1

1 1

2 1 2
(2) (2) (2) (2)2 2 2 1 2

1 02 1 2
n n n

n n

P z z z

z p z p z p z p

α β
+ +

+= + + + +
,    (28) 

where 
1

(2)
2 2 1np + =  since ( )2 zβ  is monic, which satisfies  C1. 

In addition, 1a  and 1b  are uniquely determined from 2p : 

1

(2) (2)
12

1 (2)
0

1n
s

p p
a F

p

⎡ ⎤
⎢ ⎥= +
⎢ ⎥
⎣ ⎦

, (2)
1 1sb F p= .          (29) 

Using ( ) ( ) ( )1 2 1P z z zα β , we obtain 
1

(2)
2 2 1np + = , and 2a  

and 2b  are uniquely determined from 1p , which, together 

with (29), means that C2 is also satisfied. Therefore, ( )iG z , 
1,2i = , are identifiable. 

B. Experimental Protocol 
Under the experimental protocol #01-055 approved by the 

Massachusetts Institute of Technology Committee of Animal 
Care, invasive CV BP and BF signals were collected from an 
anesthetized pig, details of which can be found in [6]. 

C. System Identification and Aortic Signal Recovery 
From the experimental data obtained from the pig, totally 

83 segments of data, each having 2,000 samples of aortic BP 
and BF as well as radial and femoral BP, were collected. In 
order to apply the blind system ID algorithm developed in this 
paper to these data, the following challenges specific to (24) 
and (27) had to be taken care of: 

1) The blind system ID is applicable only to the ID of dis-
tinct channel dynamics [5], although the CV system model  
has ( ),aZ z Θ  as common dynamics. Therefore, we identified 
the CV system model in two steps: first we used our blind 
system ID algorithm to identify (24) using ( )1y n  and ( )2y n , 
after which we used Θ  to identify (27). 

2) In the absence of aortic measurements, the time delays 
1n  and 2n , which determine the orders of (24), are unknown 

prior to ID. Using the peripheral BP measurements, however, 
the “differential” time delay, 2 1n n n∆ − , can be measured 
as the end-diastolic or foot-to-foot interval between the pe-
ripheral BP signals. This n∆  plays a crucial role in accu-
rately identifying ( )iG z , 1, 2i = , by imposing a restriction 
on their orders. We iteratively applied our blind system ID 
algorithm to (24) and optimized the solution over a range of 
physiologically relevant values of 1n , with 2n  restricted to 

2 1n n n= + ∆ . 
3) By virtue of the physical implications of the coefficients 

in the asymmetric T-tube model, Θ  parameterizing (24) can 
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be constrained as follows: 
{ }1 0, 0, 0, , 1, 2i i i in a b a b i∈ = > > > > =ΘΘ D Θ ,     (30) 

which, together with the use of n∆  mentioned above, results 
in the constrained least-squares formulation (31): 

( ) ( ) ( ) ( )
1

1 1
1 1 2 2 2

min min , ,
n

G z y n G z y n− −

∈ ∈

⎡ ⎤= −⎢ ⎥⎣ ⎦Θ ΘD θ D
Θ Θ Θ .   (31) 

4) It is evident from (25) that the asymmetric T-tube model, 
which has in , iC , iR  and 0iR , 1, 2i = , as unknowns, cannot 
be uniquely characterized by Θ , which yields only six co-
efficients pertaining to ( )iG z , 1,2i =  in (24). Noting from 

(27) that ( ),aZ z Θ  cannot be determined directly from Θ , 
additional constraints need to be augmented to Θ . The in-
competence to determine the scale of ( ),aZ z Θ  is inherent 
due to the absence of any BF measurements. However, the 
shape of ( ),aZ z Θ  can be determined by utilizing the con-
straint that its denominator should have the Windkessel pole 
as its root. To identify the shape of ( ),aZ z Θ , therefore, this 
paper estimated the Windkessel pole using the two peripheral 
BP signals and augmented the following constraint to Θ , 
which allows us to determine the relative scales of iC , iR  
and 0iR , 1, 2i = : 
 ( ) ( ) ( ) ( )1 1 2 2 1 2, , , , 0c w w c w wZ Zα λ α λ α λ α λ+ =Θ Θ Θ Θ ,  (32) 

where wλ  is the Windkessel pole. 

Once ( )1G z , ( )2G z  and ( )aZ z  were identified, the aor-
tic BP and BF signals were recovered using their inverses: 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1 1
1 1 2 2

1

ˆ , ,

ˆ ˆ,a

u n G z y n G z y n

v n Z z u n

− −

−

= +

=

Θ Θ

Θ
.       (33) 

To guarantee the identifiability of the CV dynamics (24) 
and (27), the richness of the data was evaluated by examining 
the PE condition (19) for each data segment. Furthermore, to 
assess the level of confidence on the identified CV dynamics, 
the asymptotic variance of Θ  and the resulting ( )iG z , 

1, 2i =  was evaluated by (22) and (23). 

IV. RESULTS AND DISCUSSION 
The experimental results suggest that the algorithm devel-

oped in this paper is able to identify the CV dynamics with 
fidelity and reliability, over wide-ranging physiologic condi-
tions. Fig. 3 shows a typical result of CV dynamics ID and 
aortic signal recovery, where the upper two plots show the 
true and identified frequency responses of ( )1G z  and 

( )2G z , and the lower two plots show the true and recovered 
aortic BP and BF signals. Using two distinct peripheral BP 
signals (i.e. radial and femoral in this paper), our algorithm 
could provide high-fidelity estimates of the CV dynamics as 
well as accurately recover the aortic BP and BF signals for all 
the 83 segments of data. 

To further quantify the performance of the proposed algo-
rithm, an averaged transfer function representing nominal 

upper-limb CV dynamics [1] was used as a benchmark per-
formance. The proposed and the averaged methods were 
compared using the aortic BP recovery error, ( ) ( ) 2

ˆu n u n− , 

and the accuracy of the clinical features (e.g. ejection dura-
tion and systolic BP) extracted from the recovered aortic BP 
signals  over the 83 experimental data segments. Table I 
summarizes the results with bias the standard deviation 
(STD) as evaluation metrics, which clearly suggests that the 
proposed method far outperforms the averaged method: on 
the average, the aortic BP recovery was improved by 40%; 
besides, the estimation of ejection duration and systolic BP 
was also improved, particularly in terms of the STD (50% for 
the ejection duration and 71% for the systolic BP). This sig-
nificant benefit of the proposed method suggests that the 
wide-ranging physiologic conditions of the CV system can-
not be described by a single predetermined transfer function 
that is widely used in practice [1]. 
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Fig. 3. Identified frequency responses and recovered aortic BP and BF 
signals at t=710s. Dashed and solid lines are true and identified/recovered 
quantities, respectively. True and predicted CO: 3.8lpm and 3.9lpm. 

 
The examination of the PE condition (19) for the 83 seg-

ments of the radial and femoral BP data showed that the PE 
condition was met for all the 83 segments of data. The PE 
analysis also revealed that the well-posedness of the CV 
dynamics ID (31) is closely related to the heart rate (HR) 
frequency, HRF  (which represents the characteristics of the 

excitation signal), and the frequency 
2GF  at which ( )2G jω  

attains its maximum (which represents the physiologic con-
dition): the smaller 

2HR GF F− , the better the condition 

number of TΦ Φ . This finding can be interpreted as follows: 
considering that the most important feature of the frequency 
responses ( )iG jω , 1,2i = , to be identified with accuracy is 

the location 
iGF  and the magnitude ( )2

ii GG F jπ  of their 

peaks, the quality of identifying the CV system hinges upon 
how well the frequency range around 

2GF  is excited by the 

aortic BP (or, equivalently BF) signal. This suggests that care 
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must be taken when we interpret the identified CV dynamics 
associated with large 

2HR GF F− . 

 
TABLE I. PERFORMANCE OF PROPOSED AND AVERAGED METHODS 

 Proposed Method Averaged Method 

( ) ( )
2

ˆu n u n−  2.7 +/- 0.8mmHg 4.5 +/- 2.8mmHg 

Ejection Duration 
(0.21 +/- 0.07s) 

0 +/- 0.01s 
(R2=0.9109) 

0 +/-0.02s 
(R2=0.7665) 

Systolic BP 
(124 +/- 76mmHg) 

2.3 +/- 2.3mmHg 
(R2=0.9925) 

3.1 +/- 7.9mmHg 
(R2=0.9309) 

 
TABLE II. RESULTS OF ASYMPTOTIC VARIANCE ANALYSIS, N=250~2,000 

 N=250 N=500 N=1,000 N=2,000 

( )ˆ
Nλ Θ  1.92 

(2.31%) 
1.91 

(2.30%) 
1.88 

(2.26%) 
1.87 

(2.24%) 

( )ˆ
NS Θ  3262 2853 3189 3001 

[ ]1var nδ  0.019 
(0.29%) 

0.009 
(0.12%) 

0.005 
(0.07%) 

0.002 
(0.03%) 

[ ]1var aδ  94.12 
(4.68%) 

36.64 
(2.07%) 

24.19 
(1.12%) 

10.88 
(0.52%) 

[ ]1var bδ  21.23 
(0.39%) 

7.880 
(0.17%) 

4.303 
(0.09%) 

2.225 
(0.04%) 

[ ]2var nδ  0.019 
(0.08%) 

0.009 
(0.04%) 

0.005 
(0.02%) 

0.002 
(0.01%) 

[ ]2var aδ  0.801 
(1.11%) 

0.373 
(0.46%) 

0.197 
(0.28%) 

0.093 
(0.13%) 

[ ]2var bδ  0.158 
(0.34%) 

0.073 
(0.15%) 

0.033 
(0.08%) 

0.016 
(0.04%) 

 
The results of asymptotic variance analysis give more in-

sights into the reliability of the system ID. First, Table II 
summarizes the results of the asymptotic variance analysis for 
the data length of 250, 500, 1,000 and 2,000, which show that 
the asymptotic variance of Θ  decreases approximately in 
proportion to N , as predicted by the analysis. Therefore, the 
reliability of parameter estimation can be improved by in-
creasing the length of the data used for system ID. Table II 
also shows that 2n  and 1a  has the smallest and the largest 
asymptotic variance, respectively, which accords with our 
eigenstructure analysis of NS : the eigenvector associated 
with the smallest and the largest eigenvalues were mostly 
aligned with the directions of 2n  and 1a , meaning that ( )nε  

is the most and the least sensitive to 2n  and 1a , respectively. 
Hence, those elements of Θ  having large sensitivity on the 
empirical measurement error are relatively easier to identify 
than their small-sensitivity counterparts. 

Quantifying Nλ  over the 83 segments of data showed that 
its values were limited within 4% of the associated mean BP 
values, with the average of 2.3% (see Table II), suggesting 
that the asymmetric T-tube model is an efficient representa-
tion of the CV system considered in this paper. 

V. CONCLUSION 
Identifying the CV dynamics from limited peripheral BP 

observation is a challenging problem. This paper has devel-

oped an effective blind system identification algorithm for 
characterizing the CV dynamics, a de-convolution algorithm 
for stable inversion, and analysis and design tools for evalu-
ating the richness of observed signals, the estimation error 
variance and the parameter sensitivity. The utility and po-
tential applications of this identification method abound, but 
many of them are yet to be explored. 
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