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Abstract— The aim of this paper is to extend the Dynamic
Programming (DP) approach to multi-model optimal control
problems (OCPs). We deal with robust optimization of multi-
model control systems and are particularly interested in the
Hamilton-Jacobi-Bellman (HJB) equation for the above class
of problems. In this paper, we study a variant of the HJB
for multi-model OCPs and examine the natural relationship
between the Bellman DP techniques and the Robust Maximum
Principle (MP) [7], [8], [9], [18]. Moreover, we describe a
concept for practical calculations in the context of multi-model
LQ-problems and derive the associated Riccati-type equation.

I. INTRODUCTION

The theory of OCPs governed by ordinary differential
equations is well established since middle of the 20-th
century, see e.g., [1], [3], [4], [5], [6], [10], [14], [16], [17]
and the references therein. For a classical OCP, the main
tools toward the contstruction of optimal trajectories, and
then optimal synthesis, are the celebrated Pontryagin MP
and the Bellman DP.

Recently robust optimization problems for multi-model
control systems have attracted a lot of attention, thus both
theoretical results and applications were developed, (see [7],
[8], [9], [18], [19]). OCPs for multi-model dynamical sys-
tems arise in the control of mechanical multibody systems,
electrical circuits and heterogeneous systems, where different
models are coupled together. The majority of applied OCPs
are problems with incomplete information on the model
structure or parameters. The multi-model control systems
provide useful theoretical models for some classes of dynam-
ical systems with the above-mentioned type of uncertainties.
In this case one of the most efficient approaches to the
optimal design of such systems is the robust optimization
technique. Optimal robust control strategies based on the
minimax algorithms have found a wide use in design of com-
plex control systems. Robust MP proposed by Boltyanski and
Poznyak (see e.g., [7], [8], [9], [18]) is the basic analytical
result for studying OCPs with multi-model controlled plants.
This result was recently extended to some effective numerical
procedures [19]. On the other hand, the Bellman DP is not
far enough advanced to multi-model OCPs.

The purpose of this paper is to apply the classic DP
techniques to a class of multi-model OCPs. First, we verify
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the Bellman principle of optimality for the class of problems
under consideration. Second, we derive a (robust) version
of the HJB equation. It should be stressed that our main
result deals with a finite parametric set involved into a model
description. We also apply the HJB equation to a multi-
model LQ-problem (see [9], [18]) and derive a parametric
Riccati equation. Moreover, the obtained theoretical facts are
considered in comparison with the corresponding theorem
resulting from the application of the Robust MP to multi-
model LQ-problems [18]. In such a manner we establish the
natural relationship between DP and the Robust MP for the
given class of LQ-problems (see e.g., [11]).

The remainder of our paper is organized as follows. Sec-
tion 2 contains a problem formulation, some basic concepts
and preliminary results. Section 3 is devoted to the main
result of this paper, namely, to a variant of the HJB equation
for multi-model OCPs. Moreover, we also deal with the
corresponding verification techniques. In Section 4 we apply
our theoretical results to the multi-model linear quadratic
problems and deduce a Riccati-formalism similar to the
classic LQ-theory. Section 5 summarizes the paper.

II. PROBLEM FORMULATION AND
PRELIMINARY RESULTS

Consider the following initial-value problem for a multi-
model control system

ẋ(t) = fα(t, x(t), u(t)) a.e. on [0, tf ], x(0) = x0 (1)

where u(t) ∈ U is a compact subset of R
m, x0 ∈ R

n is
a fixed initial state and fα : [0, tf ] × R

n × R
m → R

n for
every α from a finite parametric set A. Note that parameter
α indicates the corresponding ”model” (or ”realization”) of
the multi-model system under consideration (see [7], [8], [9],
[18], [19]). Let us introduce the set of admissible control
functions

U := {u(·) ∈ L
∞
m ([0, tf ]) : u(t) ∈ U a.e. on [0, tf ]}

Here L
∞
m ([0, tf ]) is the standard Lebesgue space of

(bounded) measurable functions u : [0, tf ] → R
m such that

ess supt∈[0,tf ] ||u(t)||Rm < ∞. In addition, we assume that
for each α ∈ A, u(·) ∈ U the realized initial-value problem
(1) has a unique absolutely continuous solution xα,u(·).
For some constructive existence and uniqueness conditions
see e.g., [5], [17], [14]. Let u(·) be an admissible control
function. This control gives rise to the complete dynamic
of the given multi-model system (1), and we can define the
(n× |A|)-dimensional ”state vector” of (1)

Xu(t) :=
(

xα1,u(t), ..., xα|A|,u(t)
)

α∈A
, t ∈ [0, tf ]

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

FrB06.1

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 4468



In a similar way one can consider a ”trajectory” of (1) as an
absolutely continuous (n×|A|)-dimensional function Xu(·).
In the following, we will use the additional notation

F (t,X, u) :=
(

fα1(t, x, u), ..., fα|A|(t, x, u)
)

α∈A

For every α ∈ A, u(·) ∈ U we consider the cost functional

h(u(·), xα,u(·)) :=

∫ tf

0

f0(t, x
α,u(t), u(t))dt

where f0 : R × R
n × R

m → R is a continuous func-
tion (the integrand of the cost functional). Clearly, func-
tional h(u(·), xα,u(·)) is associated with the corresponding
realized model from (1). If we assume that the realized
value of the parameter α is unknown, then the worst
cost (highest cost) can be easily defined as J(u(·)) :=
maxα∈A h(u(·), x

α,u(·)). Note that the ”common” cost func-
tional J depends only on the given admissible control u(·).
Let us now formulate the robust (minimax) OCP for a multi-
model control system

minimize J(u(·)) subject to (1), α ∈ A, u(·) ∈ U (2)

Roughly speaking, in the context of problem (2) we are
interested in a control strategy which provides a ”good”
behavior for a given collection of models from (1) even in
the case of the ”worst” cost. A pair (u(·), Xu(·)), where
u(·) ∈ U , is called an admissible process for (2). Note that
we consider admissible processes defined on the (finite) time
interval [0, tf ].

Remark 1: Multi-model OCPs of the Bolza-type have
been studied in [18]. Let us examine the Bolza cost func-
tional associated with the multi-model system (1)

h̃(u(·), xα,u(·)) := φ(xα,u(tf )) +

∫ tf

0

f̃0(t, x
α,u(t), u(t))dt

where φ : Rn → R is a continuously differentiable function
(a smooth terminal term) and f̃0 is a continuous function. It
is evident that for every α ∈ A and u(·) ∈ U we have

h̃(u(·), xα,u(·)) =

∫ tf

0

fα0 (t, x
α,u(t), u(t))dt

= hα(u(·), xα,u(·))

where the new integrand fα0 of hα is defined as follows

fα0 (t, x, u) :=
∂φ(x)

∂x
fα(t, x, u) + f̃(t, x, u), α ∈ A

Here we put φ(x0) = 0. Since the common cost func-
tional J can also be defined as a maximum over all
hα(u(·), xα,u(·)), α ∈ A, we conclude that the minimax
Bolza OCP (studied in [18]) is in effect, incorporated into
the modeling framework of problem (2).

Next we introduce the concept of a local solution to (2).

Definition 1: An admissible process (uopt(·), Xopt(·)) is
called a (local) optimal solution of (2) if there exists an ε > 0
such that J(uopt) ≤ J(u(·)) for all admissible processes
(u(·), Xu(·)) with ||Xu(·)−Xopt(·)||Cn([0,tf ]) < ε.

As evident, we understand a local optimal solution of the
multi-model OCP (2) in the context of a strong minimum. We
refer to [1], [10], [17] for the necessary theoretical details.
In the following, we assume that the given OCP (2) has an
optimal solution. Let us denote all auxiliary analytic assump-
tions / hypothesis formulated above as basic assumptions. We
now present the Robust MP which establishes the necessary
conditions for an admissible control to be optimal in the
sense of our Definition 1.

Proposition 1: (Robust MP [18]) Assume that all basic as-
sumptions hold. Let (uopt(·), Xopt(·)) be an optimal solution
of (2). Then there exist non-trivial constants λ0

α ≥ 0, non-
negative real values µα, where α ∈ A, and an absolutely
continuous function Ψ : [0, tf ] → R

n×|A| satisfying the
following adjoint system:

Ψ̇(t) = −
∂H(t,Xopt(t), uopt(t),Ψ(t), λ0)

∂xα

Ψ(tf ) = 0
(3)

and the maximality condition:

H(t,Xopt, uopt(t),Ψ(t), λ0)

= max
u∈U

H(t,Xopt(t), u,Ψ(t), λ0)
(4)

for a.e. t ∈ [0, tf ], where

H(t,X, u,Ψ, λ0) := 〈Ψ, F (t,X, u)〉−

−
∑

α∈A

λ0
αf0(t, x

α,u(t), u(t)),

(t, u,X,Ψ, λ0) ∈ [0, tf ]× R
m × R

n×|A| ×Rn×|A| ×R|A|

is the Hamiltonian for (2) and λ0 := (λ0
α1
, ..., λ0

α|A|
).

Moreover, for every α ∈ A the following complementarity
slackness / transversality conditions are satisfied:

µα
(

h(uopt(·), xα,opt(·))− J(uopt(·))
)

= 0

λ0
α − µα = 0

(5)

where xα,opt(·) is the α-components of Xopt(·).

Finally, we give an easy lower estimation of the minimal
value of J in (2).

Theorem 1: Under the above-formulated basic assump-
tions, the following inequality is satisfied

max
α∈A

min
u(·)∈U

h(u(·), xα,u(·)) ≤ J(uopt(·)).

Proof: Clearly,

min
u(·)∈U

h(u(·), xα,u(·)) ≤ h(u(·), xα,u(·))

for every α ∈ A, u(·) ∈ U . Hence

max
α∈A

min
u(·)∈U

h(u(·), xα,u(·)) ≤ J(u(·))

for every u(·) ∈ U . Since uopt(·) ∈ U , it follows that the last
inequality is also satisfied for an optimal control uopt(·).

The presented result characterizes a relation between min-
imal value of J in (2) and the maximum of costs computed
over all of ”partial” OCPs formulated for every model from
the given multi-model system (1).
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III. THE ROBUST VERSION OF THE
HAMILTON-JACOBI-BELLMAN EQUATION

In this section we present our main results, namely,
a variant of the Bellman principle of optimality and the
corresponding HJB equation for the robust OCP (2).

Using the well-known (DP) techniques of the invariant
embedding (see e.g., [12], [15]), we define a family of multi-
model control systems over [s, tf ]

ẋ(t) = fα(t, x(t), u(t)) a.e. on [s, tf ], x(0) = yα (6)

where (s, yα) ∈ [0, tf )× R
n and u(·) belongs to the set

Us := {u(·) ∈ L
∞
m ([s, tf ]) : u(t) ∈ U a.e. on [0, tf ]}

Let Y :=
(

yα1 , ..., yα|A|
)

and z := (s, Y ) ∈ [0, tf )×R
n×|A|.

Similarly to Section II we also introduce the following
notations Xu

z (t) :=
(

xα1,u
z (t), ..., x

α|A|,u
z (t)

)

α∈A
and

hz(u(·), x
α,u
z (·)) :=

∫ tf

s

f0(t, x
α,u
z (t), u(t))dt

Jz(u(·)) := max
α∈A

h(u(·), xα,uz (·))

where xα,uz (·) is a solution of (6) to a control function u(·)
from Us. Moreover, we define a ”trajectory” Xu

z (·) of (6).
In parallel to (2) we also study the family of OCPs

minimize Jz(u(·)) subject to (6), α ∈ A, u(·) ∈ Us (7)

In fact, problem (7) represents OCPs parametrized by a pair
z = (s, Y ) ∈ [0, tf ) × R

n×|A|. It is evident that the initial
OCP (2) is ”embedded” in this family of problems for values
s = 0, yα = x0. Analogously to Section II we assume that
every problem (7) has an optimal solution (uoptz (·), Xopt

z (·))
(in the sense of Definition 1). Further, we define the value
function of (7)

V (s, Y ) := inf
u(·)∈Us

[

Jz(u(·))
]

∀z ∈ [0, tf )× R
n×|A|,

V (tf , Y ) = 0 ∀Y ∈ R
n×|A|

First, let us prove the Bellman optimality principle in the
case of a possible ”non-additive” cost functional J from (2).

Theorem 2: Let all basic assumptions from Section II
hold. Then for any z ∈ [0, tf )× R

n×|A|,

V (s, Y ) = inf
u(·)∈Us

[

max
α∈A

∫ ŝ

s

f0(t, x
α,u
z (t), u(t))dt

+ V (ŝ, Xu
z (ŝ))

]

∀0 ≤ s ≤ ŝ ≤ tf

(8)

Proof: Using the definition of the value function, we
deduce that

V (s, Y ) ≤ max
α∈A

[

∫ ŝ

s

f0(t, x
α,u
z (t), u(t))dt

+

∫ tf

ŝ

f0(t, x
opt
z (t), uoptz (t))dt

]

≤ max
α∈A

[

∫ ŝ

s

f0(t, x
α,u
z (t), u(t))dt

]

+ V (ŝ, Xu
z (ŝ))

(9)

for every control uz(t) := 1[s,ŝ)(t)u(t) + 1[ŝ,tf ](t)u
opt
z (·)

from Us. Here xoptz (·) is the α-component of Xopt
z (·) and

1τ (·) is a characteristic function of a time-interval τ . From
(9) we obtain

V (s, Y ) ≤ inf
u(·)∈Us

[

max
α∈A

∫ ŝ

s

f0(t, x
α,u
z (t), u(t))dt+

+ V (ŝ, Xu
z (ŝ))

]

(10)

On the other hand there exists a control function uδ(·) ∈ Us
with the following property (see e.g., [12])

V (s, Y ) + δ ≥ max
α∈A

[

∫ ŝ

s

f0(t, x
α,δ
z (t), uδ(t))dt

+ V (ŝ, Xδ
z (ŝ))

]

≥ inf
u(·)∈Us

[

V (ŝ, Xu
z (ŝ))

+ max
α∈A

∫ ŝ

s

f0(t, x
α,u
z (t), u(t))dt

]

(11)

where xα,δz (·) is the α-component of Xδ
z (·) (the set of

solutions to (6) corresponding to the control uδ). Combining
(10) and (11) we obtain (8).

We now turn back to the initial minimax OCP (2). Let
(∂V (t,X)/∂xα)A be the gradient of V with respect to the
vector x := (xα1 , ..., xα|A|). Using the above result, we are
able to establish the robust version of the HJB equation for
the multi-model OCP (2).

Theorem 3: Let in addition to the basic assumptions from
Section II all functions fα, α ∈ A and f0 be uniformly
continuous. Moreover, assume that fα, α ∈ A are Lipschitz
with respect to x uniformly in (t×u) ∈ [0, tf ]×U . Suppose
that V is a continuous differentiable function. Then there
exists a vector λ0 := (λ0

α1
, ..., λ0

α|A|
) ∈ SA such that V is

a solution of the following boundary value problem for the
(HJB) partial differential equation

−
∂Vt(t,X)

∂t

+max
u∈U

H
(

t,X, u,−
(∂V (t,X)

∂xα

)

A
, λ0
)

= 0

∀(t,X) ∈ [0, tf )× R
n×|A|, V (tf , X) = 0

(12)
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where H is the Hamiltonian from Proposition 1 and

SA := {λ ∈ R
|A| : λα ≥ 0 ∀α ∈ A,

∑

α∈A

λα = 1}

is a barycentric system.

Proof: Let u(t) = u ∈ U and Xu
z (·) be the correspond-

ing trajectory of (6). From (8) we deduce

1

ŝ− s

[

−
(

V (ŝ, Xu
z (ŝ))− V (s, Y )

)

−max
α∈A

∫ ŝ

s

f0(t, x
α,u(t), u)dt

]

≤ 0

(13)

Using (13) and a representation of a finite maximization
problem by an equivalent linear programm over a system
of barycentric coordinates, we obtain

1

ŝ− s

[

−
(

V (ŝ, Xu
z (ŝ))− V (s, Y )

)

− max
λ(s,ŝ)∈SA

∑

α∈A

λα(s, ŝ)

∫ ŝ

s

f0(t, x
α,u(t), u)dt

]

=
1

ŝ− s

[

−
(

V (ŝ, Xu
z (ŝ))− V (s, Y )

)

−

− max
λ(s,ŝ)∈SA

∑

α∈A

λα(s, ŝ)

∫ ŝ

s

f0(t, x
α,u(t), u)dt

]

≤ 0

(14)

where λ(s, ŝ) ∈ SA for every 0 ≤ s ≤ ŝ ≤ tf . We
now take the limit as ŝ → s in (14). Since {λ(s, ·)} is
a bounded sequence, there exists at least one accumulation
point λ1(s) ∈ SA of this sequence (see e.g.,[20]). Using the
continuity/differentiability properties of f0 and V , we obtain
the inequality

−
∂V (s, Y )

∂t
−

〈

(∂V (s, Y )

∂xα

)

A
, F (s, Y, u)

〉

−
∑

α∈A

λ̂1
α(s)f0(s, y

α, u) ≤ 0
(15)

for all u ∈ U . Here λ̂1(s) ∈ SA is a solution of the following
linear programm maxλ(s)∈SA

∑

α∈A λα(s)f0(s, y
α, u) for

every s ∈ [0, tf ]. Note that this linear programm is a
consequence of the limiting process (as ŝ → s) applying
to the maximization-procedure in (14). Since we deal with
a linear programm over the barycentric set SA, the value
λ̂1
α(s) for all s ∈ [0, tf ] belongs to the set of vertexes of SA.

Recall that the existence of an optimal solution to every (7)
is assumed. Since (15) is satisfied for all u ∈ U , we deduce

the next inequality

−
∂V (s, Y )

∂t

+max
u∈U

H
(

s, Y, u,−
(∂V (s, Y )

∂xα

)

A
, λ̂1(s)

)

≤ 0

(16)

Alternatively, for any δ > 0 and for a small (ŝ− s), there
exists a control function uδ(·) ∈ Us such that (see e.g., [12])

V (s, Y ) + δ(ŝ− s) ≥ max
α∈A

∫ ŝ

s

f0(t, x
α,δ
z (t), uδ(t))dt

+ V (ŝ, Xδ
z (ŝ))

where xα,δz (·) is the α-component of Xδ
z (·) (the set of

solutions to (6) corresponding to the control uδ). Applying
the above-mentioned representation of a finite maximization
problem by an equivalent linear programm over a system of
barycentric coordinates, we get

− δ ≤
1

ŝ− s

[

−
(

V (ŝ, Xδ
z (ŝ))− V (s, Y )

)

−max
α∈A

∫ ŝ

s

f0(t, x
α,δ
z (t), uδ(t))dt

]

=
1

ŝ− s

[

−
(

V (ŝ, Xδ
z (ŝ))− V (s, Y )

)

− max
λ(s,ŝ)∈SA

∑

α∈A

λα(s, ŝ)

∫ ŝ

s

f0(t, x
α,δ
z (t), uδ(t))dt

]

(17)

This implies the following

− δ ≤
1

ŝ− s

∫ ŝ

s

[

−
∂V (t,Xδ

z (t))

∂t

−

〈

(∂V (t,Xδ
z (t))

∂xα

)

A
, F (t,Xδ

z (t), u(t))

〉

−
∑

α∈A

λ2
α(s, ŝ)f0(t, x

α,δ
z (t), uδ(t))

]

dt

=
1

ŝ− s

∫ ŝ

s

[

−
∂V (t,Xδ

z (t))

∂t

+H
(

t,Xδ
z (t), uδ(t),−

(∂V (t,Xδ
z (t))

∂xα

)

A
, λ2(s, ŝ)

)]

dt

where λ2
α(s, ŝ) is the α-component of the vector function

λ2(s, ŝ) ∈ SA which is a solution of the linear programm
in (17). Since we deal with a linear programm over the
barycentric set SA, the value λ2(s, ŝ) belongs to the set of
vertexes of SA. Consequently,

− δ ≤
1

ŝ− s

∫ ŝ

s

[

−
∂V (t,Xδ

z (t))

∂t

+max
u∈U

H
(

t,Xu
z (t), u,−

(∂V (t,Xu
z (t))

∂xα

)

A
, λ2(s, ŝ)

)]

dt
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Using the uniform continuity of the functions fα, α ∈ A, f0

and the boundness of the function λ2(s, ŝ) we can define the
accumulation points in the right hand side of the previous
inequality as ŝ→ s. Thus, we deduce the inequality

0 ≤ −
∂V (s, Y )

∂t
+max

u∈U
H
(

s, Y, u,−
(∂V (s, Y

)

∂xα

)

A
, λ̂2(s)

)

We now consider the procedure mint∈[0,tf ]minver(SA)

for the left hand side of (16) and the procedure
maxt∈[0,tf ]maxver(SA) for the right hand side of the last
inequality, where ver(SA) is the set of all vertexes of
the system SA. Note that the Hamiltonian is a continuous
function of time and the above procedures are consistent in
the sense of the minimization with respect to the time value.
Let now λ̂01, λ̂02 ∈ verSA are solutions of the corresponding
minimization and maximization procedures. This implies that

−
∂V (s, Y )

∂t
+max

u∈U
H
(

s, Y, u,−
(∂V (s, Y )

∂xα

)

A
, λ̂01

)

≤ 0

0 ≤ −
∂V (s, Y )

∂t
+max

u∈U
H
(

s, Y, u,−
(∂V (s, Y

)

∂xα

)

A
, λ̂02

)

for some λ̂01, λ̂02 ∈ ver(SA) and all s ∈ [0, tf ]. The
Hamiltonian H is a continuous (linear) function with respect
to the last variable. Therefore, from the last two inequalities
and from the generalization of the Bolzano Theorem we
deduce the existence of a constant vector λ0 ∈ SA such
that the HJB in (12) is satisfied.

Using some techniques of the classic Bellman DP, one
can establish the relationship between Robust MP and the
HJB from Theorem 3. This relationship is analogous to the
standard result from the classic optimal control theory (see
e.g., [3], [4], [15])).

Theorem 4: Let in addition to the assumptions of The-
orem 3 all functions fα, α ∈ A and f0 be continuously
differentiable with respect to x and the derivatives are
Lipschitz with respect to x uniformly in (t × u) from
[0, tf ] × U . Suppose that V is a continuous differentiable
function and that its derivative ∂V (t, ·)/∂t is continuous dif-
ferentiable. Let Ψ(·) be the adjoint variable from Proposition
1 and (uopt(·), Xopt(·)) be an optimal solution of (2). Then
−(∂V (t,Xopt(t))/∂xα)A = Ψ(t) for all t ∈ [0, tf ].

The main motivation of the introducing DP is that one
might be able to compute an optimal control strategy via
the value function. Recall that the classic result which gives
a way to construct an optimal control is called verification
theorem. Let us now formulate the corresponding result for
the multi-model OCP (2).

Theorem 5: Let all assumptions of Theorem 3 hold. Sup-
pose that there exists a vector λ0 ∈ SA such that v (a veri-
fication function) is a continuously differentiable solution of
(12). An admissible process (uopt(·), Xopt(·)) is an optimal
solution of (2) if and only if

∂vt(t,X
opt(t))

∂t

= max
u∈U

H
(

t,Xopt(t), u,−
(∂v(t,Xopt(t))

∂xα

)

A
, λ0
)

= H
(

t,Xopt(t), uopt(t),−
(∂v(t,Xopt(t))

∂xα

)

A
, λ0
)

for a.e. t ∈ [0, tf ].

Finally, note that Theorem 5 is an immediate consequence
of Theorem 3 and some standard techniques from the classic
Bellman DP (see e.g., [3], [4], [15]).

IV. DYNAMIC PROGRAMMING APPROACH TO
MULTI-MODEL LQ-TYPE PROBLEMS

In this section we apply the obtained theoretic results,
namely, Theorem 3 and Theorem 5 to a multi-model LQ-
problem. Let us consider the following special case of (2)
(see [18], [19] for details)

minimize J(u(·)) subject to

ẋα(t) = Aα(t)x(t) +Bα(t)u(t) + dα(t), x(0) = x0

(18)

where d(t) ∈ R
n, Aα(t) ∈ R

n×n, Bα(t) ∈ R
n×m for all

α ∈ A, t ∈ [0, tf ]. The control region U in (18) coincides
with the full space R

m and the admissible control functions
are assumed to be square-integrable. We also assume that
functions Aα(·) and Bα(·) are continuous and introduce the
quadratic cost functional

h(u(·), xα,u(·)) :=
1

2

∫ tf

0

xα(t)TQxα(t) + u(t)TRu(t)dt

where Q is a symmetric positively semidefinite matrix and
R is symmetric positively definite matrix. Note that the
general LQ-problem of the Bolza type for a linear multi-
model system can be reduced to the OCP (18) in the sense
of the above Remark 1.

For (18) we can rewrite the HJB equation as follows

−
∂vt(t,X)

∂t
= max

u∈U

[

〈

(∂v(t,X)

∂xα

)

A
, F (t,X, u)

〉

+
1

2

∑

α∈A

λ0
α

(

xα(t)TQxα(t)
)

+ u(t)TRu(t)
]

where v(tf , X) = 0 and v is a (smooth) verification function.
We now define the robust optimal control

uopt(t) = −R−1
∑

α∈A

λ0
αB

α(t)T
∂v(t,X)

∂xα
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where ∂v(t,X)/∂xα is the n-dimensional α-component of
the full n× |A|-dimensional vector (∂v(t,X)/∂xα)A. Let

A(t) := diag{Aα(t)}A, B(t) := diag{B
α(t)}A,

Q := diag{Q}A, R := diag{R}A,Λ
0 := diag{λ0

α}A

be blocked diagonal matrices for all t ∈ [0, tf ] and moreover,
d := diag({dα(t)}A). Replacing u by uopt in the above
equation, we obtain

−
∂vt(t,X)

∂t
=
(∂v(t,X)

∂xα

)T

A
A(t)x+

1

2
ΛxTQx

−
1

2

(∂v(t,X)

∂xα

)T

A
B(t)TR−1B(t)T

(∂v(t,X)

∂xα

)

A

+
(∂v(t,X)

∂xα

)

A
d(t)

(19)

where x := (xα1 , ..., xα|A|), . This is the HJB equation for
the LQ-type multi-model OCP (18). Following Dreyfus [13],
we conclude that for a given vector λ0 the solution to (19)
as a quadratic function v(t, x) = 1

2x
TPλ0(t)x+ pλ0(t)Tx,

where P(t) is a symmetric positively definite matrix and
p(t) is a ”shifting” vector for all t ∈ [0, tf ]. Applying this
verification function v to (19) we obtain the main theorem
for the LQ-type multi-model OCP (18).

Theorem 6: The robust optimal feedback control for the
multi-model LQ-problem (18) has the following linear form
u(x) = −R−1BT

(

Pλ0x+pλ0

)

, where the (Riccati) matrix
Pλ0 satisfies the parametric boundary value problem

Ṗλ0 +Pλ0A+ATPλ0 −Pλ0BR−1BTPλ0+

+ΛQ = 0, Pλ0(tf ) = 0
(20)

Moreover, the shifting vector pλ0 is also a solution of the
boundary value problem

ṗλ0 +ATpλ0 −Pλ0BR−1BTPλ0

+Pλ0
d = 0, pλ0(tf ) = 0

(21)

Clearly, Theorem 6 is a variant of the verification Theorem
5 and coincides with the corresponding result from [18]. The
parametric equations from (20) and (21) provide a basis for
an effective numerical treatment of the LQ-type multi-model
OCPs (18) (see [19] for details).

V. CONCLUSIONS

This paper deals with DP techniques and with a robust
variant of the HJB equation for multi-model OCPs. We
establish the relationship between the Robust MP and the
obtained variant of the HJB equation for multi-model OCPs.
In particular, for the LQ-type OCPs we deduce the Riccati-
formalism and show that the results obtained using the robust

HJB equation coincide with consequences of the applications
of the Robust MP to the multi-model LQ-problems.

Finally, note that the main results presented in this paper
are based on the assumption that the value function and the
verification function are smooth. It is well known that this
assumption does not necessarily hold and that the viscosity
solution theory provides an excellent framework to deal with
the above problem [2]. Evidently, a generalization of the
viscosity concepts to the multi-model OCPs is a challenging
problem which provides a new perspective in the optimal
control of multi-model systems.
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