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Abstract— The problem of planning a finite time transition
of a trajectory from a non-stationary point to a stationary set-
point is addressed. As opposed to standard approaches, where
the transition functions are polynomials, the specific choice
of non-analytic function proposed may easily be trimmed to
show no overshoot and only an adjustable undershoot during
transition. The main result is a recursive formula for a simple
parametrization of the transition function, as needed in tracking
problems. Two examples underscore the ease of the approach.

I. INTRODUCTION

Consider the problem of planning the transition of a time

function y(t) on a finite time interval t ∈ [t1, t2]. Let t = t1
be the time associated with r left boundary conditions (BC)

y(i)(t1) :=
diy

dti

∣

∣

∣

∣

t=t1

= y
i
, i = 0, 1, . . . , r − 1 . (1)

Correspondingly, at t = t2 let y(t) satisfy r right BC

y(i)(t2) :=
diy

dti

∣

∣

∣

∣

t=t2

= yi, i = 0, 1, . . . , r − 1 . (2)

A straight-forward idea for tackling this problem is to use

polynomials for meeting the 2r BC of (1) and (2). The least

degree polynomial shows degree 2r−1 and is uniquely deter-

mined by the BC. Polynomials with degrees larger than 2r−1
that meet the BC may be found, as well. Various approaches

of polynomial kind are exposed in [8], for example. An

approximate optimization-based approach presents [4]. For

the planning of transitions between stationary points see [5],

where a simple to use formula for the transition polynomial is

given. An input shaping approach by means of polynomials

with additional exponential decay is derived in [7]. Recently,

trajectory generation received attention within the different

inversion-based approaches to the control of systems with

internal dynamics [1], [2], [6], [3].

In this paper, let the task be confined to the planning of the

transition from a non-stationary point of y(t), as specified in

(1), to a stationary point as given by the right BC

y(t2) = y0, y(i)(t2) = 0, i = 1, . . . , r − 1 , (3)

being a special case of the right BC (2).

It turns out that in the case of planning from non-stationary

to stationary points there are decisive drawbacks when em-

ploying polynomials: Primarily, there is no a priori criterion

to decide whether the transition polynomial resulting from

the BC in (1) and (2) will show an overshoot or undershoot.
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Standard methods as calculating the set of zeroes with respect

to the polynomial’s first time derivative give a posteriori

insight, only. Secondly, it is a well-known fact that large

absolute values of y
i

and yi give rise to polynomials with

very large degree, accompanied by the problem of a wavy

transition in course of time.

Hence, the proposal of this paper is to refrain from

polynomials, and rather employ a particular non-analytic

function. A formula for the recursive parametrization of this

function is provided that may easily be trimmed to show no

overshoot and just a reduced undershoot when adjusting one

single parameter.

The paper is organized as follows: Section II contains the

derivation of the parametrization of a non-analytic function,

adequate for solving the above-stated transition problem on

a unity time interval. Section III provides the main result

that holds for arbitrary time intervals. The paper ends with

a discussion and some examples in Section IV.

II. PARAMETRIZATION OF A NON-ANALYTIC

TRANSITION FUNCTION

Consider the transition function

y(t) =
(

c0 + c1t + . . . + cr−1t
r−1
)

e
−1

(t−1)n + y0 (4)

with even exponent n ∈ {2, 4, 6, . . .} and real coefficients

ci, i = 0, 1, . . . , r − 1. It is not difficult to show that the

ansatz (4) satisfies the stationary right BC (3) in a limit sense

lim
t→1

y(t) = y0 and lim
t→1

y(i)(t) = 0, i = 1, 2, . . . (5)

which implies that y(t) given in (4) is non-analytic at t = 1.

The coefficients ci serve to satisfy the left BC (1) at the

time instant t1 = 0. In a next step, the result to be obtained

at time instants t1 = 0 and t2 = 1 may then be generalized

to arbitrary instants of time t1 < t2, t1, t2 ∈ R.

In view of the left BC (1), the coefficients ci may be

determined by equating y(i)(0) = y
i
, i = 0, 1, . . . , r − 1.

In the first place, observe that

y(0) = c0 e
−1

(−1)n + y0
!
= y

0
⇒ c0 = (y

0
− y0) e . (6)

Thereafter, for i = 1, 2, . . . determine the i-th time derivative

y(i)(t) =
i
∑

ν=0

(

i

ν

)

(

di−ν

dti−ν

r−1
∑

µ=0

cµtµ

)

(

dν

dtν
e

−1
(t−1)n

)

=

i
∑

ν=0

(

i

ν

)(

dν

dtν
e

−1
(t−1)n

) r−1
∑

µ=i−ν

cµ

di−ν

dti−ν
tµ

=
i
∑

ν=0

(

i

ν

)(

dν

dtν
e

−1
(t−1)n

) r−1
∑

µ=i−ν

µ!

(µ + ν − i)!
cµ tµ+ν−i (7)
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and for adaption to the left BC (1), for any i = 1, 2, . . . , r−1
at t1 = 0 we have to require that

y
i

!
= lim

t→0
y(i)(t) =

i
∑

ν=0

(

i

ν

)(

lim
t→0

dν

dtν
e

−1
(t−1)n

)

r−1
∑

µ=i−ν

µ!

(µ + ν − i)!
cµ

(

lim
t→0

tµ+ν−i
)

=

i
∑

ν=0

(

i

ν

)(

lim
t→0

dν

dtν
e

−1
(t−1)n

)

(i − ν)! ci−ν

=

i
∑

ν=0

i!

ν!
ci−ν

(

lim
t→−1

dν

dtν
e

−1
tn

)

(8)

which together with equation (6) is a linear system of equa-

tions that allows to solve for the r unknown coefficients ci

in terms of the BC y
i
, i = 0, 1, . . . , r − 1, in a unique way.

The triangular structure of equation (8) suggests to exploit

a simple recurrence scheme. Indeed, rewriting (8) yields

y
i

= i! ci

(

lim
t→−1

e
−1
tn

)

+

i
∑

ν=1

i!

ν!
ci−ν

(

lim
t→−1

dν

dtν
e

−1
tn

)

=
i!

e
ci +

i
∑

ν=1

i!

ν!
ci−ν

(

lim
t→−1

dν

dtν
e

−1
tn

)

. (9)

Thus, with (6) we derive the recurrence (i = 0, 1, . . . , r− 1)

ci = e

(

y
i

i!
−

i
∑

ν=1

ci−ν

ν!
lim

t→−1

dν

dtν
e

−1
tn

)

, c0 = (y
0
− y0) e .

(10)

The derivatives on the right hand side of (10) may be

evaluated further. To this end, use the chain rule

df(t)

dt
= f(t)

dg(t)

dt
, f(t) = eg(t), g(t) =

−1

tn
. (11)

In doing so, we may refer to Leibniz’ rule for differentiating

products again, hence

f (ν+1)(t) =

ν
∑

i=0

(

ν

i

)(

dν−i

dtν−i
f(t)

)(

di+1

dti+1
g(t)

)

(12)

and shifting ν → ν − 1 it follows that

f (ν)(t) =

ν−1
∑

i=0

(

ν − 1

i

)

f (ν−i−1)(t) g(i+1)(t), ν = 1, 2, . . .

(13)

where the ν-th time derivative of f(t) is expressed in terms

of lower order derivatives in form of a recurrence. Finally,

recalling (11) it remains to evaluate

g(i+1)(t) =
di+1

dti+1

(

−1

tn

)

= (−1)
di+1

dti+1
t−n

= (−1)(−n)(−n − 1)(−n − 2) · · · (−n − i)
1

tn+i+1

= (−1)i (n + i)!

(n − 1)!

1

tn+i+1
. (14)

A consequence is the recurrence

f (ν)(t) =

ν−1
∑

i=0

(

ν − 1

i

)

(n + i)!

(n − 1)!

(−1)i

tn+i+1
f (ν−i−1)(t)

f (0)(t) = e
−1
tn (15)

which at t = −1 yields

f (ν)(−1) =
ν−1
∑

i=0

(

ν − 1

i

)

(n + i)!

(n − 1)!
(−1)n+1f (ν−i−1)(−1)

f (0)(−1) = 1/e (16)

to be solved until index ν = r − 1, as indicated by (10).

III. MAIN RESULT

Simple steps of manipulation show that a possible tran-

sition function, which satisfies the 2r BC of (1) and (3) at

arbitrary instants of time t1 and t2, reads

y(t) = y
0

+ (1/e)

(

t2 − t1
t2 − t

)n

r−1
∑

i=0

ci

(

t − t1
t2 − t1

)i

(17)

with coefficients ci that result from the recurrence

ci = e

(

y
i
(t2 − t1)

i

i!
−

i
∑

ν=1

ci−ν

ν!
f (ν)(−1)

)

(18)

c0 = (y
0
− y0) e . (19)

where the values of f (ν)(−1) follow from (16).

IV. DISCUSSION AND EXAMPLES

In order to find a minimal parameter n = nmin subject to

which no overshoot occurs for t ∈ (t1, t2), note that with the

coefficients ci determined as above, the necessary condition
d
dt

y(t) = 0 for an extremal point may be written as

r−1
∑

i=0

ci (t − t1)
i (t2 − t1)

r−1−i×

(

i (t2 − t)n+1 − n (t2 − t1)
n (t − t1)

)

= 0 . (20)

In the main, two cases need to be distinguished:

1) When increasing n starting from 2, given the bottom-

up-transition y
0

< y0 and y
1

> 0 (top-down-transition

y
0

> y0 and y
1

< 0), then nmin is the first number

for which the polynomial in (20) shows no zeroes in

(t1, t2). Thus, the overshoot as depicted in the plots of

Figure 1 can be avoided by increasing n.

2) When increasing n starting from 2, given the bottom-

up-transition y
0

< y0 and y
1

< 0 (top-down-transition

y
0

> y0 and y
1

> 0), then nmin is the first number for

which the polynomial in (20) shows one single zero in

(t1, t2). In this case, besides avoiding an overshoot, one

may additionally reduce the undershoot by a further

increase of the parameter n until the undershoot falls

below a specified bound, as shown in the lower plots

of Figure 1 (see arrows).
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TABLE I

LEFT BC FOR THE PARAMETRIZATION OF THE TRANSITION FUNCTION

(17) AS DEPICTED IN FIGURE 2 AND FIGURE 3

left BC y
0

y
1

y
2

y
3

y
4

Figure 1 0 20 30 60 40

Figure 2 0 −15 200 100 40

Either of these cases is demonstrated resorting to an example

transition from t1 = 0 to t2 = 2 subject to r = 5 non-

stationary BC at t = t1 (see Table I). A stationary value of

y0 = 10 shall be reached for both transitions at t = t2.

Case 1 is illustrated in Figure 2: A calculation of the

corresponding zeroes of (20) for n = 2, 4, 6, . . . , 16 yields

that nmin = 8, where no overshoot takes place, anymore. An

increase of n further accelerates the response.

Case 2 is illustrated in Figure 3: A calculation of the

corresponding zeroes of (20) for n = 2, 4, 6, . . . , 16 yields

that nmin = 6, where no overshoot takes place, anymore. A

further increase of n helps accelerate the response and further

reduces the undershoot. Such transitions resemble behaviors

that are typical within the tracking of non-minimum phase

systems.

y
0
< y0, y

1
> 0 y

0
> y0, y

1
< 0

y
0
< y0, y

1
< 0 y

0
> y0, y

1
> 0

Fig. 1. Dependency of overshoot and undershoot on left side boundary
conditions–by increasing n in the non-analytic transition (17) the depicted
overshoots may be avoided and the undershoots (marked with arrow) are
reduced
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Fig. 2. Case 1: transition function (17) for left BC according to Table I;
n = 2 (black line), n = 4 (red line), n = 6 (blue line); for n = 8 (green
line) no overshoot occurs anymore; thin black lines show faster response
when increasing n (plotted are n = 10, 12, 14, 16)
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Fig. 3. Case 2: transition function (17) for left BC according to Table I;
n = 2 (black line), n = 4 (red line); for n = 6 (green line) no overshoot
occurs anymore; increasing n helps reduce the undershoot further (plotted
are n = 8, 10, 12, 14, 16)
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