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Abstract— In this paper we consider the nonlinear sampled-
data stabilization control for ships. Using the nonlinear
sampled-data control theory developed by Nesic et al and the
integrator backstepping technique for the Euler approximate
model, we design both semiglobally practically asymptotically
(SPA) stabilizing state feedback laws and SPA stabilizing output
feedback controllers. We give a numerical example to illustrate
the design methods.

I. INTRODUCTION

From the beginining of 20th century, the design of con-

trol systems for ships has been actively considered. PID

contropl, linear quadratic optimal control, Kalman filtering,

H∞ control, sliding mode control, feedback linearization and

etc have been applied to design control systems for ships

(for details see [2], [12] and references therein). Recently

nonlinear backstepping design techniques ([2], [13]), the

control problems of underactuated dynamic positioning [14]

and the nonlinear observer design technique [6] for ships

have been also discussed. The analysis and synthesis of the

control problems for ships have been considered based on

linear or nonlinear continuous-time model of ships and the

design methods of continuous-time controllers have been

mainly discussed.

Practical and modern control systems usually use dig-

ital computers as discrete-time controllers with samplers

(A/D converters) and zero-order holds (D/A converters) to

control continuous-time systems [1]. Such a control sys-

tem involves both continuous-time and discrete-time signals

in a continuous-time framework and is called a sampled-

data system. For linear systems, the sampled-data control

theory has been widely studied. Specially, using so called

lifting thechnique, the design methods of sampled-data H2

controllers and sampled-data H∞ controllers have been de-

veloped [1]. On the other hand, due to the difficulty to

find equivalent and useful discrete-time models of sampled-

data nonlinear systems, the sampled-data control theory for

nonlinear systems has not been developed compared to linear

systems. But recently, the framework for design of nonlinear

sampled-data systems by discrete-time approximate models

of the nonlinear sampled-data systems is proposed ([5], [10]

and [11]). Several design methods such as the emulation,

the controller redesign of continuous-time controllers [7],

integrator backstepping for discrete-time nonlinear systems

[9] and the controller design by receding horizon methods

[8] have been proposed to guarantee the stability of nonlinear

sampled-data systems. But as mentioned in [5], case studies
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and practical implementations of the controllers designed in

the framework of the nonlinear sampled-data systems have

not been discussed in the literatures.

In this paper we consider the design of stabilization

controllers for ships in this framework. We first summarize

the framework for the design of nonlinear sampled-data

systems by its approximate model proposed in [5], [10] and

[11]. We then extend the integrator backstepping method for

nonlinear single-input discrete-time systems [9] to the case

of nonlinear multi-input discrete-time systems. We apply the

extended result to the stabilization control for ships. We first

apply the extended result directly to design semiglobally

practically asymptotically (SPA) stabilizing state feedback

laws. Following the approach [2] and [3] we then design

global asymptotical convergent nonlinear observers for the

Euler approximate model and SPA stabilizing outpu feedback

controllers. We also give a numerical example to illustrate

the design methods.

Notations: Let N, R and R≥0 be the sets of natural

numbers, real numbers and nonnegative real numbers, re-

spectively. Let C
− = {λ = α + iβ|α < 0} and D =

{λ = α + iβ|
√

α2 + β2 < 1}. Let σ(M) be the set of all

eigenvalues of a square matrix M . Let ‖ x ‖ be the norm of

a vector x given by ‖ x ‖=
√

xT x. A function α is of class

K if it is continuous, zero at zero and strictly increasing. It

is of class K∞ if it is of class K and unbounded. A function

β: R≥0×R≥0 → R≥0 is of class KL if for any fixed t ≥ 0,

the function β(·, t) is of class K and for each fixed s ≥ 0 the

function β(s, ·) is deceasing to zero as its argument tends to

infinity [4].

II. DESIGN OF NONLINEAR SAMPLED-DATA SYSTEMS

BY EULER APPROXIMATE MODEL

A. The Framework for the Design of Nonlinear Sampled-

data Systems

Here we summarize the framework for the design of

nonlinear sampled-data systems by Euler approximate model.

For details see [5], [10] and [11].

Consider the nonlinear continuous-time system

ẋ = f(x, u), x(0) = x0 (1)

where x ∈ R
n is the state, u ∈ R

m is the control

input realized through a zero-order hold, i.e., u(t) = u(k),
∀t ∈ [kT, (k + 1)T ) and T > 0 is a sampling period. Here

we assume that for each initial condition and each constant

control, there exists a unique solution of (1) defined on some

bounded interval of the form [0, τ). We also assume that the

sampling period is a design parameter and can be assigned

arbitrarily.
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The difference equations corresponding to the exact

discrete-time model and the Euler approximate model of (1)

are denoted by

x(k + 1) = F e
T (x(k), u(k)), (2)

x(k + 1) = FEuler
T (x(k), u(k)) (3)

respectively, where x(k) := x(kT ) to avoid the complexity

of notations and F e
T , FEuler

T are given by

F e
T (x(k), u(k)) = x(k) +

∫ (k+1)T

kT

f(x(s), u(k))ds,

and FEuler
T (x(k), u(k)) = x(k) + Tf(x(k), u(k)), respec-

tively. To define semiglobal practical asymptotic (SPA) sta-

bility and SPA stability Lyapunov functions, we consider the

following discrete-time system

x(k + 1) = FT (x(k), uT (x(k))). (4)

Definition 2.1: The system (4) is semiglobal practical

asymptotic (SPA) stable if there exists β ∈ classKL such

that for any strictly positive real numbers (D, d), there exists

T ∗ > 0 such that for all T ∈ (0, T ∗) and all initial

state x(0) with ‖ x(0) ‖≤ D, the solution of (4) satisfies

‖ x(k) ‖≤ β(‖ x(0) ‖, kT ) + d.

Definition 2.2: Let T̂ > 0 be given and for each T ∈
(0, T̂ ) let function VT : R

n → R≥0 and uT : R
n → R

m

be defined. Then (uT , VT ) is called a SPA stabilizing pair

for FT if there exist α1, α2, α3 ∈ classK∞ such that for

any strictly positive real numbers (∆, δ) there exist strictly

positive real numbers (T ∗, L, M) with T ∗ < T̂ such that for

all x, z ∈ R
n with max{‖ x ‖, ‖ z ‖} ≤ ∆ and T ∈ (0, T ∗)

α1(‖ x ‖) ≤ VT (x) ≤ α2(‖ x ‖), (5)

VT (FT (x, uT (x))) − VT (x) ≤ −Tα3(‖ x ‖) + Tδ, (6)

|VT (x) − VT (z)| ≤ L ‖ x − z ‖, (7)

‖ uT ‖≤ M. (8)

Theorem 2.1: If (uT , VT ) is a SPA stabilizing pair for

FEuler
T , then uT SPA stabilizes F e

T .

Remark 2.1: 1) If the sampling period is sufficiently small

and F e
T is locally Lipschitz, then uT , which SPA stabilizes

F e
T , SPA stabilizes (1), i.e, the system ẋ = f(x, uT (x(k))),

t ∈ [kT, (k + 1)T ) is SPA stable ([5], [11]).

2) If uT SPA (or globally asymptotically (GA)) stabilizes

FEuler
T , then uT SPA stablizes (1) under the conditions that

the sampling period T > 0 is sufficiently small and F e
T is

locally Lipschitz.

3) If the original nonlinear system has a strictly feedback

form, then its Euler approximate model also has a strict

feedback form.

B. Integrator Backstepping

Consider the nonlinear system of a strict feedback form

ẋ1 = f(x1) + g(x1)x2, ẋ2 = u (9)

where x1 ∈ R
n, x2 ∈ R

m, f(0) = 0, f , g are differentiable

sufficiently many times and the control input u(t) is realized

through a zero-order hold. Then the Euler approximate model

of (9) is given by

x1(k + 1) = rT (x1(k), x2(k)), (10)

x2(k + 1) = x2(k) + Tu(k) (11)

where rT (x1, x2) = x1 +T [f(x1)+g(x1)x2]. Next theorem

is an extension of the result in [9] to the multi-input nonlinear

discrete-time system (10) and (11). The proof of this theorem

is given in Appendix.

Theorem 2.2: Assume that there exist T̂ > 0 and

(φT , WT ) that is defined for each T ∈ (0, T̂ ) and that is

a SPA stabilizing pair for the subsystem (10) with a vertial

control x2 ∈ R
m. Suppose

1) φT and WT are continuously differentiable for any T ∈
(0, T̂ ).
2) there exists ϕ̃ ∈ classK∞ such that ‖ φT (x1) ‖≤ ϕ̃(‖
x1 ‖) for all x1 ∈ R

n and T ∈ (0, T̂ ).
3) for any ∆̃ > 0 there exist strictly positive numbers (T̃ , M̃)
such that for each T ∈ (0, T̃ ) and ‖ x1 ‖≤ ∆̃ we have

max

{

‖ ∂WT

∂x1
‖, ‖ ∂φT

∂x1
‖
}

≤ M̃.

Then there exists a SPA stabilizing pair (uT , VT ) for (10)

and (11). In particular we can take

uT (x) = −c[x2 − φT (x1)] −
∆W̃T (x)

T
+

∆φT (x)

T
, (12)

VT (x) = WT (x1) +
1

2
‖ x2 − φT (x1) ‖2 (13)

where c > 0 is arbitrary, x = [ xT
1 xT

2 ]
T

and

∆φT (x) = φT (rT ) − φT (x1),

∆W̃T (x) =







∆W̄T (x)[x2−φT (x1)]
‖x2−φT (x1)‖2 , x2 �= φT (x1),

T gT (x1)
(

∂WT

∂x1

)T

(rT ), x2 = φT (x1),

∆W̄T (x) = WT (rT ) − WT (rφ
T ),

rφ
T = x1 + T [f(x1) + g(x1)φT (x1)].

III. NONLINEAR SAMPLED-DATA CONTROL FOR SHIPS

We first introduce the following notations to describe the

equation of motion of a ship. Let n, e and ψ be the North and

the East positions of a ship and the yaw angle (orientation)

of a ship, respectively in the Earth-fixed coordinate system

and let µ, v and r be linear velocities in surge, sway

and the angular velocity in yaw, i.e., r = ψ̇, respectively,

decomposed in the body-fixed coordinate system (Figure 1).

Let η = [ n e ψ ]
T

and ν = [ µ v r ]
T

.

In the dynamic positioning (DP) problems, the speed of a

ship is quite small (µ ≃ 0, v ≃ 0, r ≃ 0) and we can assume

that the damping forces are linear [2]. Hence the equation of

motion of a ship can be written as

η̇ = R(ψ(t))ν, (14)

ν̇ = Aν + Bu (15)
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Fig. 1. Coordinate systems

where A = −M−1D, B = M−1,

R(ψ) =





cos ψ − sinψ 0
sin ψ cos ψ 0

0 0 1





is the rotation matrix in yaw, M is the inertia matrix includ-

ing hydrodynamic added inertia, D is the damping matrix

and the control forces and moment u = [ u1 u2 u3 ]
T

are

provided by thrusters. Note that R−1(ψ) = RT (ψ) and R(ψ)
is bounded for any ψ.

If we set u(t) = u(k), t ∈ [kT, (k + 1)T ), then the Euler

approximate model of (14) and (15) is given by

η(k + 1) = η(k) + TR(ψ(k))ν(k), (16)

ν(k + 1) = ν(k) + T [Aν(k) + Bu(k)] (17)

where η(k) := η(kT ), ν(k) := ν(kT ) and ψ(k) := ψ(k).

A. Design of SPA Stabilizing State Feedback Laws

We first assume that both η and ν are available to the

controller. Using the input transformation u = B−1(ua −
Aν), (16) and (17) can be rewritten as

η(k + 1) = η(k) + TR(ψ(k))ν(k), (18)

ν(k + 1) = ν(k) + Tua(k). (19)

Then a state feedback law φT (η) which globally asymp-

totically stabilizes the subsystem (18) with ν viewed as

a vertial input and the corresponding Lyapunov function

WT (η) are given by φT (η) = RT (ψ)Lη and WT (η) =
1
2ηT η, respectively, where L can be chosen such that L =
diag{l1, l2, l3} with |1 + T li| < 1. Since R(ψ) is bounded

for any ψ, it is obvious that φT (η) and WT (η) satisfy all

conditions in Thereom 2.2 and we have rφ
T = (I + TL)η

and ∂WT /∂η = ηT . The feedback law which SPA stabilizes

(18) and (19) is given by

uaT (x) = −c[ν − φT (η)] − ∆W̃T (x)

T
+

∆φT (x)

T
(20)

where c > 0 is arbitrary, x = [ ηT νT ]
T

and

∆φT (x) = φT (η + TR(ψ)ν) − φT (η),

∆W̃T (x) =

{

∆W̄T (x)[ν−φT (η)]
‖ν−φT (η)‖2 , ν �= φT (η),

TRT (ψ)[η + TR(ψ)ν], ν = φT (η),

∆W̄T (x) = WT (η + TR(ψ)ν) − WT ((I + TL)η).

Note that

φT (η(k) + TR(ψ(k))ν(k))

= RT (ψ(k + 1))L[η(k) + TR(ψ(k)ν(k)]

and ψ(k + 1) is given by ψ(k + 1) = ψ(k) + Tr(k). Hence

the state feedback controller

u(x(k)) = B−1[uaT (x(k)) − Aν(k)] (21)

SPA stabilizes (16) and (17), i.e., the closed-loop system

z(k + 1) = Φ(x(k))z(k) is SPA stable where z =
[ xT zT

2 ]
T

, z2 = ν − φT (η) and

Φ =































[

I + TL TR(ψ)

0 (1 − cT − ∆W̄T (x)
‖z2‖2 )I

]

,

ν �= φT (η),
[

I + TL TR(ψ)
−TRT (ψ)(I + TL) (1 − cT − T 2)I

]

,

ν = φT (η).

(22)

B. Design of Output Feedback SPA Stabilizing Controllers

Since the position η is usually available to the controller

in the control problems of a ship, we introduce the sampled

observation y(k) = η(k) for (14) and (15). We assume

that A is stable, i.e., σ(A) ⊂ C
−. This is a technical

assumption, but some small size or middle size ships satisfy

this assumption [2]. Then the Euler approximate model of

(14), (15) with y(k) = η(k) is given by

η(k + 1) = η(k) + TR(ψ(k))ν(k), (23)

ν(k + 1) = Adν(k) + Bdu(k), (24)

y(k) = η(k) (25)

where Ad = I + TA and Bd = TB. Since σ(A) ⊂ C
−, we

can make σ(Ad) ⊂ D \ {0} for sufficiently small T > 0.

Following the approach [2] and [3] we shall design global

asymptotical convergent observers and output feedback SPA

stabilizing controllers.

For (23)-(25) we consider the observer of the form
[

η̂
ν̂

]

(k + 1) =

[

I TR(ψ(k))
0 Ad

] [

η̂
ν̂

]

(k) +

[

0
Bd

]

u(k)

+

[

K1

K2

]

(k){y(k) − η̂(k)}. (26)

Let η̃ = η − η̂ and ν̃ = ν − ν̂. Then we have
[

η̃
ν̃

]

(k + 1) =

[

I − K1(k) TR(ψ(k))
−K2(k) Ad

] [

η̃
ν̃

]

(k). (27)

For (27) we introduce

Vo(k) =
1

2

[

η̃
ν̃

]T

(k)

[

P1 0
0 P2

] [

η̃
ν̃

]

(k) (28)

where P1 and P2 are positive definite matrices. Then we

have

Vo(k + 1) − Vo(k)

=
1

2
η̃T [(I − K1)

T P1(I − K1) − P1 + KT
2 P2K2]η̃

+
1

2
ν̃T [AT

d P2Ad − P2 + T 2RT (ψ)P1R(ψ)]ν̃

+ν̃T [TRT (ψ)P1(I − K1) − AT
d P2K2]η̃.
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Here we want to find P1, P2, K1 and K2 which satisfy

(I − K1)
T P1(I − K1) − P1

+KT
2 P2K2 ≤ −Q1, (29)

AT
d P2Ad − P2 + T 2RT (ψ)P1R(ψ) ≤ −Q2, (30)

TRT (ψ)P1(I − K1) − AT
d P2K2 = 0 (31)

where Q1 and Q2 are some positive definite matrices. Since

σ(Ad) ⊂ D \ {0} for sufficiently small T > 0, there exists

P2 > 0 such that

AT
d P2Ad − P2 = −(Q2 + Q̂2) (32)

for any given Q2, Q̂2 > 0. Since σ(Ad) ⊂ D \ {0} and

P2 > 0, we can set

K2(k) = TP−1
2 A−T

d RT (ψ(k))P1(I − K1). (33)

Let

K1 = diag{k1, k2, k3} (34)

be fixed for some 0 < ki < 2, i = 1, 2, 3. Then for any

given Q1, Q̂1 > 0, there exists P1 > 0 such that

(I − K1)
T P1(I − K1) − P1 = −(Q1 + Q̂1). (35)

Since we can choose T > 0 sufficiently small such that

KT
2 P2K2 ≤ Q̂1, (36)

T 2RT (ψ)P1R(ψ) ≤ Q̂2, (37)

we obtain (29)-(31). Consequently the observer (26) with

(33) and (34) achieves the globally asymptotically conver-

gence of (η̂, ν̂) to (η, ν) for sufficiently small T > 0.

Now we consider the following state feedback law

u(x̂(k)) = B−1[ūaT (x̂(k)) − Aν̂(k)], (38)

ūaT (x̂) = −c[ν̂ − φT (η̂)] − ∆W̃T (x̂)

T
+

∆φ̄T (x̂)

T

where c > 0 is arbitrary, x̂ = [ η̂T ν̂T ]T ,

∆W̃T (x̂) =

{

∆W̄T (x̂)[ν̂−φT (η̂)]
‖ν̂−φT (η̂)‖2 , ν̂ �= φT (η̂),

TRT (ψ)[η̂ + TR(ψ)ν̂], ν̂ = φT (η̂),

∆W̄T (x̂) = WT (η̂ + TR(ψ)ν̂) − WT ((I + TL)η̂),

∆φ̄T (k) = φ̄T (k + 1) − φT (η̂(k)),

φT (η̂(k)) = RT (ψ(k))Lη̂(k),

φ̄T (k + 1) = RT (ψ̂(k + 1))L[η̂(k) + TRT (ψ(k))ν̂(k)],

WT (η̂) =
1

2
η̂T η̂

and L is chosen such that L = diag{l1, l2, l3} with |1 +
T li| < 1, i = 1, 2, 3. If we can replace φ̄T (k + 1) by

φT (k + 1) = RT (ψ(k + 1))L[η̂(k) + TRT (ψ(k))ν̂(k)],

then, by Theorem 2.2, (38) SPA stabilizes

η̂(k + 1) = η̂(k) + TR(ψ(k))ν̂(k), (39)

ν̂(k + 1) = ν̂(k) + T [Aν̂(k) + Bu(k)] (40)

and the corresponding Lyapunov function is given by

VT (x̂) = WT (η̂) +
1

2
‖ ν̂ − φT (η̂) ‖2 .

Note that ūaT (x̂) can be rewritten as

ūaT (x̂) = uaT (x̂) +
1

T
[φ̄T (k + 1) − φT (k + 1)]

where uaT (x̂) is given by (20) with x replaced by x̂.

Now we shall show that the output feedback controller

(26), (33), (34) and (38) SPA stabilizes (23)-(25). Let ẑ2 =
ν̂ − φT (η̂), ẑ = [ η̂T ẑT

2 ]
T

and x̃ = [ η̃T ν̃T ]
T

. Then the

closed-loop system (23)-(25) with (26), (33), (34) and (38)

can be written as

ẑ(k + 1) = Φ̂(k)ẑ(k) + Γ(k)ẑ(k) + K(k)η̃(k),

x̃(k + 1) =

[

I − K1 TR(ψ(k))
−K2(k) Ad

]

x̃(k) (41)

where Φ̂ is given by (22) with x and z replaced by x̂ and ẑ,

respectively and

Γ(k) = B̂(k + 1)LĈ(k),

B̂(k + 1) =

[

0
RT (ψ̂(k + 1)) − RT (ψ(k + 1))

]

,

Ĉ(k) = [ I + TL TR(ψ(k)) ] ,

K(k) =

[

K1

K2(k) − RT (ψ(k + 1))LK1

]

.

To show that the closed-loop system (41) is SPA stable, we

introduce the following Lyapunov function candidate

V (k) = VT (ẑ(k)) + Vo(x̃(k)) (42)

where Vo(x̃(k)) is given by (28) and

VT (ẑ) = WT (η̂) +
1

2
ẑT
2 ẑ2 =

1

2
(η̂T η̂ + ẑT

2 ẑ2).

Then we want to show that the conditions (5)-(8) are satisfied

for (26), (33), (34), (38) and (42). It is obvious that the

conditions (5), (7) and (8) are satisfied and hence it is enough

to show (6). By (29)-(31) we have

Vo(x̃(k + 1)) − Vo(x̃(k)) ≤ −1

2
x̃T (k)diag{Q1, Q2}x̃(k).

We also have

VT (ẑ(k + 1)) − VT (ẑ(k))

=
1

2
ẑT (k)[Φ̂T (k)Φ̂(k) − I]ẑ(k)

+
1

2
(ẑT ΓT Γẑ)(k) +

1

2
(η̃T KT Kη̃)(k)

+(ẑT Φ̂T Γẑ)(k) + (ẑT ΓT Kη̃)(k) + (η̃T KT Φ̂ẑ)(k)

≤ 1

2
ẑT [Φ̂T Φ̂ − I]ẑ +

1

2
ẑT ΓT Γẑ +

1

2
η̃T KT Kη̃

+
a

2
ẑT Φ̂T Φ̂ẑ +

1

2a
ẑT ΓT Γẑ +

b

2
ẑT ΓT Γẑ

+
1

2b
η̃T KT Kη̃ +

c

2
η̃T KT Kη̃ +

1

2c
ẑT Φ̂T Φ̂ẑ

=
1

2
(1 + a +

1

c
)ẑT [Φ̂T Φ̂ − I]ẑ + (a +

1

c
) ‖ ẑ ‖2

+
1

2
(1 +

1

a
+ b)ẑT ΓT Γẑ +

1

2
(1 +

1

b
+ c)η̃T KT Kη̃
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for any a, b, c > 0 where we have used the inequality

2xT NT My ≤ axT NT Nx +
1

a
yT MT My

for any a > 0 in the first inequality. Since R(ψ) is bounded

for any ψ, there exists m > 0 such that 1
2 (1 + 1

a
+

b)ẑT ΓT Γẑ ≤ m ‖ ẑ ‖2 and we have

VT (ẑ(k + 1)) − VT (ẑ(k))

≤ a1ẑ
T (k)[Φ̂T (k)Φ̂(k) − I]ẑ(k) + a2 ‖ ẑ(k) ‖2

+a3η̃
T (k)KT (k)K(k)η̃(k)

where a1 = 1
2 (1 + a + 1

c
), a2 = a + 1

c
+ m and a3 =

1
2 (1 + 1

b
+ c). Hence we have

V (k + 1) − V (k)

≤ a1ẑ
T (k)[Φ̂T (k)Φ̂(k) − I]ẑ(k) + a2 ‖ ẑ(k) ‖2

−1

2
η̃T (k)[Q1 − 2a3K

T (k)K(k)]η̃(k)

−1

2
ν̃T (k)Q2ν̃(k).

Since K1 given by (34) is fixed and K2(k) is given by (33),

we can choose Q1 > 0 such that

Q1 − 2a3K
T (k)K(k) > Q̃1 (43)

for sufficiently small T > 0 and for some Q̃1 > 0. Hence

we have

V (k + 1) − V (k)

≤ a1ẑ
T (k)[Φ̂T (k)Φ̂(k) − I]ẑ(k) + a2 ‖ ẑ(k) ‖2

−1

2
x̃T (k)

[

Q̃1 0
0 Q2

]

x̃(k).

Since the system ẑ(k + 1) = Φ̂(k)ẑ(k) is SPA stable and it

is guaranteed by the Lyapunov function VT (ẑ), there exists

α3 ∈ classK∞ such that for any strictly positive real numbers

(∆, δ) there exists T ∗ > 0 such that for all ẑ with ‖ ẑ ‖< ∆
and T ∈ (0, T ∗)

ẑT [Φ̂T (k)Φ̂(k) − I]ẑ ≤ −Tα3(‖ ẑ ‖) + Tδ.

Then we have

V (k + 1) − V (k) ≤ −Ta1α3(‖ ẑ(k) ‖) + Ta1δ + a2∆
2

−1

2
x̃T (k)diag{Q̃1, Q2}x̃(k)

= −T α̂3(‖
[

ẑ
x̃

]

(k) ‖) + T δ̂

where δ̂ = a1δ + a2

T
∆2 and

α̂3(‖
[

ẑ
x̃

]

‖) = a1α3(‖ ẑ ‖)

+
1

2T
λmin(diag{Q̃1, Q2}) ‖ x̃ ‖2

and λmin(M) is the minimum eigenvalue of a matrix M .

Since α̂3 ∈ classK∞, we obtain (6). Consequently the output

feedback controller (26), (33), (34) and (38) SPA stabilizes

(23)-(25).

C. Numerical Example

We now consider the Bis-scaled system matrices for the

supply vessel in Example 11.5 in [2]. The inertia matrix M
and the damping matrix D are

M =





1.1274 0 0
0 1.8902 −0.0744
0 −0.0744 0.1278



 ,

D =





0.0358 0 0
0 0.1183 −0.0124
0 −0.0041 0.0308



 .

Then we have σ(A) = {−0.2428,−0.0627,−0.0318} ⊂
C

−.

We first design SPA stabilizing state feedback laws. We

set the sampling period T = 10 [msec], L = −5I and c = 1.

The we have I+TL = 0.95I and we apply the state feedback

law u(x(k)) given by (21) to (14) and (15). Let

η(0) = [−4 3 −π
4 ]

T
, ν(0) = 03×1 (44)

be the initial condition of the system (14) and (15). Figures 2

and 3 show the time response of the yaw angle ψ(t) and the

trajectory of the North-East position of the ship, respectively.

As we see Figures 2 and 3, the designed state feedback law

stabilizes the ship.

0 2 4 6

time [sec]

–40

–20

0

ψ(t)

Fig. 2. Time response of yaw angle ψ(t)

Next we design SPA stabilizing output feedback con-

trollers. Again we set T = 10 [msec]. Then we have

σ(Ad) = {0.9976, 0.9994, 0.9997} ⊂ D. To design an

observer for the Euler approximate model, we set Q1 = 40I ,

Q̂1 = 10I , Q2 = Q̂2 = 0.1I and K1 = 0.5I . Then the

solution of (32) and (35) are given by P1 = 66.667I and

P2 =





314.9662 0
0 159.5140 −2.7302
0 −2.7302 41.2957



 ,

respectively and the remaining observer gain K2 is given by

(33). In this case we can easily check that the conditions

(36), (37) and (43) with a = b = c = 1 are satisfied for

any ψ. We set L = −5 and c = 1 again and we apply the

output feedback controller (26) and (38) to the continuous-

time system (14) and (15). Ler (44) be the initial condition of
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Fig. 3. The trajectory of the North-East position

the system (14) and (15) and let η̂(0) = ν̂(0) = 03×1 be the

initial condition of the controller. In this case the trajectory

of the North-East position of the ship is given in Figure 4

and the time response of the yaw angle ψ(t) is similar to

Figure 2. As we see Figure 4, the designed output feedback

controller works well.

We also give a brief discussion of the performance be-

tween the designed output feedback SPA stabilizing con-

trollers and the Euler approximation of continuous-time out-

put feedback stabilizing controllers designed by a backstep-

ping technique and a nonlinear observers ([2], [4]). Though

we do not have an enough space to show simulation results,

the time responses of the yaw angle and the trajectories of the

ship are not different so much for both controllers. But we

can set the sampling period until T = 600 [msec] to design

the output feedback SPA stabilizing controller (26) and (38).

Until T = 380 [msec] we can find the Euler approximation of

continuous-time output feedback controllers which stabilizes

the ship. Hence there is a possibility that the controller

design based on the Euler approximate model makes a

sampling period longer than the controller design based on

the continuous-time model.
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Fig. 4. The trajectory of the North-East position

IV. CONCLUSION

In this paper we have considered the nonlinear sampled-

data stabilization control for ships. First we have summa-

rized the framework for the design of nonlinear sampled-

data systems proposed in [5], [10] and [11] and we have

extended the result in [9] to multi-input nonlinear discrete-

time systems. Then we have applied the extended result to the

stabilization control for ships. We have designed both SPA

stabilizing state feedback laws and SPA stabilizing output

feedback controllers for ships. We have given a numerial

example to illustrate the design methods.

APPENDIX

Proof of Theorem 2.2: It is enough to show that

(uT (x), VT (x)) given by (12) and (13) satisfy (5)-(8) in

Definition 2.2. By Proposition 1 in [9] and the equivalence

of p-norms, we can show that VT (x) satisfies (5). Similar

to the proof of Theorem 2 in [9] (7) and (8) are satisfied.

Using the relation ∆W̄T = [x2 − φT (x1)]
T ∆W̃T and the

Mean Value Theorem, we can also show (3) similar to the

proof of Theorem 2 in [9].
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