
 
 
 
 
 

 

  

Abstract— Derivative Dynamic Time Warping 
(DDTW) is useful in time series alignment to avoid 
singularity points and reduce the bias of alignment 
results towards the reference trajectory compare 
with Dynamic Time Warping (DTW). In order to 
apply DDTW to an industrial environment, a robust 
DDTW (RDDTW) algorithm is proposed by 
combining a moving window least squares 
procedure with DDTW. The developed algorithm is 
tested with noisy data and results are compared with 
those of DDTW and DTW.  

I. INTRODUCTION 
ime series data are a commonly occurrence in physical, 
social, and economic systems. In order to compare one 
sequence with another, it is always desirable to align the 

features (peak, valley, etc.). Dynamic Time Warping (DTW) 
can capture the dynamics and match patterns for different 
series and it was first used in speech recognition and 
introduced for chemical batch profile synchronization by 
Kassidas et al. in 1998 [1]. Subsequently, DTW method was 
successfully applied to spectroscopic profile analysis [2], 
semiconductor production monitoring [3] and other 
applications.  
 
Because DTW warps the batch profile based on the Euclidean 
distance between corresponding points of reference and the 
new series, it fails when a feature (peak, valley, etc.) is higher 
(or lower) from one batch to another. Furthermore, a single 
point on one time series can map to a large number of points 
on the other one (called a singularity point) with DTW. In 
order to overcome these problems, Keogh and Pazzani [4] 
used point derivative instead of distance to measure the 
difference between two trajectories. Their results 
demonstrated that DDTW overcomes the singularity problem 
and retains the most important features of the raw trajectory to 
obtain a synchronized batch profile without bias.  
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Despite those attractive features, in order to apply DDTW 
online, one should make the numerical derivative estimation 
robust to process noise. There are several candidates to 
increase the robustness:  
(1). Instead of using raw data, use piecewise average values;  
(2). Use a filter for high frequency signal noise;  
(3). Use moving window least squares (Savitzky-Golay 
method).  
 
In this study, all three methods are tested based on simulation 
and experimental data. Based on the results, a robust DDTW 
(RDDTW) algorithm is proposed. The rest of the paper is 
organized as follows: DTW and DDTW algorithms will be 
reviewed in Section 2 and the new RDDTW algorithm is 
proposed in Section 3. Several application examples are 
shown in Section 4, and in Section 5 we give conclusions and 
propose future work. 

II. ALGORITHM REVIEW AND DEVELOPMENT 
2.1 DTW 
Assume xref is a reference trajectory (previously defined) and 
xnew is a new trajectory to be synchronized. The first step of 
DTW is to define the Euclidian distance between each point 
of the two trajectories as: 
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d is the local distance, W is a positive weighting matrix that 
reflects the repeatability of each process variables for batch 
synchronization. k is the number of grid points along the path 
(in Figure 1, k=1,2,…,7). The lengths of xref and xnew are t and 
r, respectively. Then the total distance between the two 
trajectories are: 
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where w(k) is a nonnegative weighting function for local 
distance (d) and N(w) is a normalization factor. There are 
many possible point assignments and the goal is to find the 
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optimal path f that minimizes D(t,r), which can be denoted as 
(see the blue line in Figure 1): 

)}(),...,2(),1({ Kcccf =                                           (3) 
c(k) represents a grid point in Figure 1, where k can be treated 
as another index used to connect reference (i) and new 
trajectories (j), e.g. c(1) = [1,1], c(2) = [1,2], c(7) = [5,6] in 
Figure 1. K is the total number of points needed for the path 
(K=7 in Figure 1).   
Before minimizing Eq. 2, there are some global and local 
constraints that should be addressed: 
Global constraints:  
The two ends of both trajectories (c(1) and c(K)) should be 
aligned together: 
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The constraint on path lengths of xref and xnew is: 
rtKrt +≤≤),max(  

Local constraints: 
Local constraints are used to make the path continuous and 
monotonic. If (i,j) is the kth point on f (c(k)), then the 
predecessor point on path f (c(k-1)) can be any one of the 
three points(the three directions in Figure 1): 
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Figure 1. Warping path by DTW. 

 
After minimizing Eq. 2 subject to the local and global 
constraints by dynamic programming, the optimal warping 
path can be found. Detailed algorithm descriptions can be 
found in [1, 2, 5].  
 
As pointed out above, singularity points may occur and 
several methods have been proposed to alleviate this such as 
windowing, slope weighting and step patterns [4]. Although 
these methods may prevent singularity points, they can distort 
the warping profiles and it is not obvious how to choose the 
parameters needed by each algorithm. Furthermore, DTW 

sometimes fails to find a natural alignment because a feature 
(peak, valley, inflection point, etc.) in one sequence may be 
slightly different than the other.   
 
2.2 DDTW 
According to Keogh and Pazzani [4], the shortcomings listed 
in Section 2.1 can be overcome by DDTW, which measures 
the difference of the estimated derivatives of the reference 
and new trajectories: 
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dx . DDTW can be carried out by 

replacing Eq. 1 by Eq. 5 and carrying out the minimization of 
Eq. 2. Instead of measuring Euclidean distance, DDTW 
considers the estimated local derivatives. According to Keogh 
and Pazzani [4], DDTW’s time requirement is O(tr), which is 
the same as DTW, thus both methods take approximately the 
same time for computation. 
 
Figures 2 a and b compare the synchronization results of 
DTW and DDTW. The new trajectory follows 
x=cos2(t)+sin(t) 1<t<10 (in red) and the valley between time 
points 6 to 12 in the reference trajectory is moved downward 
by 2 (in blue). According to DTW (Figure 2a), point 8 in the 
new trajectory is aligned to five points (7 to 11) in the 
reference trajectory. This result is consistent with the 
shortcomings of DTW described earlier. After replacing point 
distance by point derivative, DDTW results are shown in 
Figure 2b. It can be seen that point 8 in the new trajectory is 
only aligned to point 8 in the reference. Comparing Figures 2 
a and b, one can see that the new trajectory is aligned much 
better by DDTW than DTW. Figure 4 shows the alignment 
path by DDTW. As expected, a perfect alignment between 
these two trajectories should be a diagonal line and Figure 2c 
is very close to this. From this simple example, we can see 
DDTW seems to correct the problems with DTW. However, 
DDTW may not be as robust as DTW as a result of local 
numerical derivative estimation. The left point estimation 
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dx ) is the simplest way to estimate a local 

derivative but it amplifies any process noise dramatically.  
 
For this noise-free case (Figure 2), DDTW works fine but will 
have difficulty in real industrial applications where the noise 
level is normally not low. When left point estimation is used 
to estimate point derivatives of the process: 
xn(t)=sin(t)+norm(0,0.04), the quality of estimation becomes 
unacceptable. As a result, a more robust version of the 
DDTW algorithm is needed. 
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Figure 2a. DTW alignment of two trajectories. Blue: the 

reference trajectory. Red: the trajectory to be synchronized. 
Green: the synchronized trajectory suggested by DTW. 

 

 
Figure 2b. DDTW alignment of two trajectories. Blue: the 

reference trajectory. Red: the trajectory to be synchronized. 
Green: the synchronized trajectory suggested by DDTW. 

 

 
Figure 2c. DDTW alignment path of two trajectories. 

 
2.3 Moving Window Least Square (SG filter) 
In 1964, Savitzky and Golay [6] combined the idea of least 
squares and moving window together, which can be used to 

smooth raw data and predict derivatives simultaneously. 
Errors contained in [6] were later corrected by Steinier et 
al.[7].  
 
The smoothing problem with a moving window can be 
reformulated as follows: 2h+1 measurements (X = [x-h, x-h+1, 
…xh]) are to be fit into an nth order polynomial (n<2h+1) 
which is defined by: 
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Thus for the window length we have F = [f-h, f-h+1, …fh] and in 
order to find the parameter value, a least square objective 
function is applied: 
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In order to solve this least squares problem, the first 

derivative of Eq. 7 (
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By solving Eq. 8, we have: 
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and r is the equation number that runs from 0 to n. Eq. 9 can 
be used to determine the value of polynomial coefficients ank 
derived in [6, 7]. If the polynomial order or the number of 
observations used in the estimation is so large that it is not 
listed in [6, 7], Eq. 9 can be used. In real application, the first 
step is to calculate Sr+k and substitute it into Eq. 9. Together 
with Fk which is related to real observations, all parameters 
ank can be expressed by a weighting matrix in terms of 
observations. 
 
With ank, one can calculate the smoothed value at current time 
(i=0) and its corresponding derivatives. The jth order 
derivative of the smoothed polynomial trajectory at i = 0 can 
be expressed as: 
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As an example, seven observations are used to determine the 
first derivative by fitting a quadratic polynomial: n = 2; h = 
(7-1)/2 = 3: 
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Taking Eq. 7 into account, j = 1 so that j! = 1, thus a21 is the 
robust quadratic estimation function with seven observations.  
 
By combining the Savitzky-Golay (SG) filter with DDTW, a 
robust DDTW algorithm can be proposed. The noisy sinusoid 
process described in Section 2.2 is tested by the SG filter 
method. A piecewise average (every ten observations) is 
taken first as the process dynamics change much slower than 
the sampling rate. Both five point and seven point SG are 
closer to the true dynamics compare with exponential filter 
approach (in blue) used in original DDTW algorithm, thus the 
SG filter is a robust method for derivative estimation. 
 

 
Figure 3. Five and seven point SG filter estimation compared 

with exponential filter approach based on piecewise 
averaging (average is taken every ten observations). 

 
2.4 RDDTW algorithm 
 
RDDTW can be treated as a combination of DDTW and 
robust numerical derivative estimation. The DDTW 
algorithm includes following steps: 
1. Evaluate the raw trajectory. If the raw trajectory has high 
frequency noise, it is necessary to use piecewise averaging 
before performing further calculations. 
2. Use SG method to estimate numerical derivatives. Use a 
quadratic polynomial although a higher order polynomial can 
be chosen together with a larger number of observations. 
Usually the number of observations should be at least twice as 

many as the order of the polynomial in order to get good 
results. The number of observations indicates the rate of 
change in the dynamics. For example, if a second order 
polynomial is chosen and four observations are used to fit the 
polynomial, the polynomial can be used to represent the raw 
data in future calculations.  
3. Use the estimated derivative and the algorithm described in 
Sections 2.1 and 2.2 to perform the alignment robustly. 

III. EXAMPLES AND RESULTS 
3.1 Industrial NIR Data 
In 2002, the International Diffuse Reflectance Conference 
(IDRC) published a "Shootout" data set consisting of spectra 
from 654 pharmaceutical tablets from two spectrometers. 
Here, two spectra were selected to test our algorithm (Figure 
4). One can see the raw trajectories are fairly 
well-synchronized and only a minor alignment is needed. The 
main differences are in the magnitudes of the trajectory 
features. 
 

 
Figure 4. Raw NIR trajectory from IDRC dataset.  

Blue: reference trajectory. Red: trajectory to be synchronized.  

 
Figure 5. Synchronized NIR trajectory by different 

approaches. Red: trajectory to be synchronized; Black dash: 
DTW; Green dash: DDTW; Blue dash: RDDTW. 
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Figure 5 compares the alignment results. One can see that 
DTW shifted the raw trajectory between wavelength 30 to 80, 
which is unnecessary (Figure 5). Furthermore, flat periods 
appear at nearly every peak as anticipated. For this low noise 
level case, DDTW and RDDTW give similar results and only 
minor differences exist around wavelength 550, which means 
RDDTW and DDTW are equivalent in this case. Thus, we 
can conclude that DTW causes singularity points due to 
feature differences and for low noise level cases, while 
DDTW and RDDTW give satisfactory results that avoid 
singularity points. 
 
3.2 Dynamic Trajectory Simulation 

 
Figure 6. Simulation example developed by SIMULINK. 

 
Figure 6 shows a process developed by SIMULINK. The 
system input is composed of a pulse sequence and a random 
number generator. After a one second transport delay, the 
input signal passes through a second order and a first order 
system. Finally, the output from first order system contains 
random noise. Reference and new trajectories are generated 
with different pulse magnitudes (0.7 for reference and 0.5 for 
new trajectory, respectively). The random number variance 
for input and output variable is 0.05 and 0.01, respectively. 
The simulated trajectories are shown in Figure 7 with a 
sampling rate is of seconds. Both trajectories behave similarly 
but the new trajectory (in blue) is neither synchronized nor 
does it have the same magnitude as the reference (in red).  
 

 
Figure 7. Simulated reference and new trajectories. 

 

Figure 7 indicates the noise frequency is not very high, so the 
piecewise averaging step is bypassed.  The piecewise 
averages are used for DTW, DDTW and RDDTW 
calculations. For all three methods, the local constraint is set 
to 40. For RDDTW, seven points with a third order 
polynomial is used to estimate the numerical derivative. 

 
Figure 8a. DTW alignment path with local constraint equal to 

40. 

 
Figure 8b. DDTW alignment path with local constraint equal 

to 40. 

 
Figure 8c. RDDTW alignment path with local constraint 

equal to 40. 
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Figure 8 shows the alignment paths for each method. It is 
clear that Figure 8a has many perpendicular and horizontal 
moves indicating singularity points. Furthermore, the path 
reaches the boundary at all times. In comparison, DDTW and 
RDDTW have fewer singularity points and do not reach the 
boundary. After a closer look at Figures 8b and c, DDTW and 
RDDTW give different alignment paths. Aligned trajectories 
are shown in Figure 9. DTW (in blue) shows many flat 
periods caused by singularity points. Comparing the reference 
(in red) trajectory with both DDTW (in green) and RDDTW 
(in black) results, neither method has many singularity points, 
and both methods have similar results after observation 150. 
However, during the first 150 observations, especially the 
rising period from 20 to 70, RDDTW was synchronized better 
than DDTW since DDTW was somewhat closer to the raw 
trajectory (Figure 9b). Figure 9 also suggests RDDTW and 
DDTW do not have an obvious bias toward the reference 
trajectory and retain the important features of the original data 
(peak height, valley depth, etc). 
 

 
Figure 9a. Alignment results comparison with reference 

trajectory. 

 
Figure 9b. Alignment results comparison with original 

trajectory. 

IV. CONCLUSIONS 
In this research, we proposed a new algorithm (RDDTW) to 
perform data alignment for batch processes that is comprised 
of three steps: 1. piecewise averaging; 2. SG filter to estimate 
local numerical derivatives; 3. dynamic optimization to 
calculate the alignment path. Two examples are used and 
synchronization results show that RDDTW can significantly 
reduce singularity point number, retain the most important 
feature of raw trajectory and avoid bias to obtain a good batch 
profile. The proposed method will avoid singularity points 
and may not be affected by changing features compared with 
DTW. In addition, RDDTW is robust to process noise 
compared with DDTW. 
Although the examples shown in this research are mainly 
chemically related, RDDTW can be used in other time series 
analysis such as gesture recognition, manufacturing, speech 
processing and medicine.  
In our future research, the derivative and Euclidian-based 
methods will be combined and RDDTW will be tested with 
real industrial data.  
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