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Abstract— Direct adaptive robust state feedback and output
feedback controllers are proposed for the output tracking
control of a class of uncertain systems with disturbance. The
proposed controllers employ self-organizing raised-cosine radial
basis function networks, which are capable of determining
their structures dynamically, to approximate unknown system
dynamics. Radial basis functions of the network can be added
or removed on-line in order to ensure the desired tracking
accuracy and the computational efficiency simultaneously. The
closed-loop systems are characterized by the guaranteed tran-
sient response and the final tracking accuracy. The performance
of the proposed output feedback controller is illustrated by
numerical simulations.

I. INTRODUCTION

In the controller design, a mathematical model of the

dynamical system to be controlled plays an important role.

However, it is often infeasible to derive a quality model

because of unknown system dynamics and disturbance. Thus,

adaptive robust controllers (ARC), which are consisted of

adaptive components and robustifying components, have

been proposed to deal with uncertain systems as in [1]–[4].

The adaptive component has the learning mechanism that ad-

justs the controller’s parameters automatically by adaptation

laws in order to compensate for the effect of uncertainties,

while the robustifying component ensures guaranteed con-

troller performance in the presence of compensation error

and disturbance. Most of the adaptive robust control strate-

gies have been developed requiring the availability of the

system states. In practical applications, this is not always the

case. To overcome this problem, output feedback controllers

that employ high-gain observers in state feedback imple-

mentation have bee developed as in [5]. The advantage of

using high-gain observers is that we can formulate the control

problem in a standard singular perturbation format and then

the singular perturbation theory can be applied to the closed-

loop system stability analysis. Moreover, the performance of

the output feedback controllers utilizing high-gain observers

would asymptotically approach the performance of the state

feedback controllers [6].

Adaptive components of ARC often involve different types

of function approximators such as fuzzy logic systems and

neural networks to approximate unknown system dynamics.

This work was supported by the Office of Naval Research Grant N00014-
02-1-0623.

Jianming Lian, Scott D. Sudhoff and Stanislaw H. Żak are with
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In particular, Seshagiri and Khalil [5] investigated the use of

fixed-structure radial basis function (RBF) networks for func-

tion approximation in the adaptive robust output feedback

controller design. However, fixed-structure RBF networks,

which require off-line network structure determination, is

not suitable for on-line operations. In [3], multilayer neural

network (MLNN) based adaptive robust control strategies

were proposed. Although it is not required to obtain a

basis function set off-line for MLNN, it is still necessary

to pre-determine the number of hidden neurons. Moreover,

compared to MLNNs, RBF networks are characterized by

simpler structure, faster computation time and superior adap-

tive performance. Recently, variable structure RBF networks,

whose structures can vary over time have been proposed for

on-line function approximation in [7]–[9]. Variable structure

RBF networks preserve the advantages of RBF networks and,

at the same time, overcome the limitation of fixed-structure

RBF networks.

In this paper, novel direct adaptive robust state feedback

and output feedback controllers are proposed, where the

output feedback controller is constructed by incorporating a

high-gain tracking error observer into the state feedback im-

plementation. We employ the self-organizing RBF networks,

described in [9], for function approximation, and use the

raised-cosine RBF (RCRBF) instead of the commonly used

Gaussian RBF (GRBF). Although the GRBF possesses the

property of universal approximation, its unbounded support

usually results in high computational cost for the network’s

training and output evaluation. The RCRBF, on the other

hand, has the compact support which can significantly reduce

computations [9], [10]. For the closed-loop systems driven

by the direct adaptive robust controllers, the transient per-

formance and the final tracking accuracy can be guaranteed

and specified by the controllers’ design parameters.

II. SYSTEM DESCRIPTION AND PROBLEM STATEMENT

We consider a class of uncertain systems modeled by

y(n) = f
(

y, . . . , y(n−1)
)

+ g
(

y, . . . , y(n−1)
)

u + d, (1)

where u ∈ R is the control input, y ∈ R is the system output,

d models the disturbance, f and g are unknown continuous

functions with g bounded away from zero. Without loss of

generality, we assume that g(x) is strictly positive, that is,

0 < g ≤ g(x), where g is the lower bound of g(x). We also

assume that |d| ≤ do. Let x = [y · · · y(n−1)]⊤. We can
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represent the system (1) in a canonical controllable form

ẋ = Ax + b (f(x) + g(x)u + d) ,

y = cx =
[

1 0 · · · 0
]

x,

where (A, b) is the canonical controllable pair that represents

chains of n integrators.

The control objective is to develop a tracking control

strategy that forces the system output y to track a given signal

yd that has bounded derivatives up to the n-th order, that is,

y
(n)
d ∈ Ωy with Ωy a compact subset of R. We define the

desired system state vector xd as xd = [yd · · · y
(n−1)
d ]⊤ ∈

Ωxd
, where Ωxd

is a compact subset of R
n. Let e = y − yd

denote the output tracking error and let e = x − xd denote

the system tracking error. The tracking error dynamics can

be modeled as

ė = Ae + b
(

y(n) − y
(n)
d

)

= Ae + b
(

f(x) + g(x)u − y
(n)
d + d

)

. (2)

To proceed, we define several compact sets that will be used

later. Let Ωe0 be a compact set of all possible initial tracking

errors and let ce0 = maxe∈Ωe0

1
2e⊤P me. Choose ce > ce0

and define Ωe = {e : 1
2e⊤P me ≤ ce}. Then we define Ωx

as Ωx = {x : x = e + xd, e ∈ Ωe, xd ∈ Ωxd
}. It will

be shown later that if e(t0) ∈ Ωe0 , then e(t) ∈ Ωe and

x(t) ∈ Ωx for t ≥ t0.

Consider the following controller,

ua =
1

ĝ(x)

(

−f̂(x) + y
(n)
d − ke

)

, (3)

where f̂(x) and ĝ(x) are approximations of f(x) and g(x),
respectively, and k is selected such that Am = A − bk is

Hurwitz. The controller ua in (3) consists of a feedforward

term −f̂(x) + y
(n)
d for model compensation and a linear

feedback term −ke for stabilization. Substituting (3) into (2),

we obtain

ė = Ame + bd̃, (4)

where d̃ = (f(x)− f̂(x))+ (g(x)− ĝ(x))ua + d. It follows

from (4) that if we only apply ua, the tracking error does

not converge to zero if d̃ is present. Therefore, a robustifying

component us is needed to ensure the tracking performance

in the presence of approximation errors and disturbance.

The structure of the robustifying component will be given

in Section IV. In the following, we first briefly introduce the

self-organizing RBF network proposed in [9], which will be

employed herein to approximate f(x) and g(x) over the

compact set Ωx.

III. SELF-ORGANIZING RAISED-COSINE RBF NETWORK

The self-organizing RBF networks used to approximate

f(x) and g(x) have similar structures. In Fig. 1, we show

the structure of the network used to approximate f(x). This

network consists of n input neurons, Mf hidden neurons,

and one output neuron. The number of hidden neurons Mf

Fig. 1. Radial basis function network for the approximation of f(x).

can either increase or decrease over time. For a given input

x = [x1 · · · xn]⊤, the output of the network is

f̂(x) =

Mf
∑

j=1

ωfjξfj

(

x; c(j), δ(j)

)

=

Mf
∑

j=1

ωfj

n
∏

i=1

ψ

(

∣

∣xi − ci(j)

∣

∣

δi(j)

)

, (5)

where ωfj is the adjustable weight from the j-th hidden

neuron to the output neuron. In the following, we use the

notation, ξfj(x) = ξfj

(

x; c(j), δ(j)

)

, to denote the radial

basis function located at the j-th hidden neuron. The vector

c(j) = [c1(j) · · · cn(j)] is the center of ξfi(x), the parameter

δi(j), i = 1, . . . , n, is the radius or the width of ξfj(x) in the

i-th coordinate. Finally, ψ : [0,∞) → R
+ is the activation

function, which characterizes the shape of the RBF, where

R
+ is the set of non-negative real numbers. Thus, we have

f̂(x) = ω⊤
f ξf (x), where ωf = [ωf1 · · · ωfMf

]⊤ and

ξf (x) = [ξf1(x) · · · ξfMf
(x)]⊤. We employ the raised-

cosine RBF (RCRBF) whose activation function ψ is

ψ =

{

1
2

(

1 + cos
(

π(xi−ci(j))

δi(j)

))

if
∣

∣xi − ci(j)

∣

∣ ≤ δi(j)

0 if
∣

∣xi − ci(j)

∣

∣ > δi(j).

The advantage of the RCRBF over the GRBF is the property

of the compact support associated with the raised-cosine

RBF. The compact support of the RCRBF enables fast and

efficient training and output evaluation of the network. This

feature becomes especially important when the center grid

becomes finer and finer and the dimension of the network

input becomes higher and higher [9]. The self-organizing

RBF network proposed in [9] will be capable of determining

the parameters Mf , c(j) and δ(j) by itself. A brief description

of this self-organizing RBF network is given in the following

subsections.

A. Center Grid Concept

Let f(x) : Ωx → R be the unknown continuous function

to be approximated, where Ωx ⊂ R
n is a compact set. We
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assume that Ωx can be represented as

Ωx = {x ∈ R
n : xl ≤ x ≤ xu}

= {x ∈ R
n : xli ≤ xi ≤ xui, 1 ≤ i ≤ n} ,

where the n-dimensional vectors xl and xu denote lower

and upper bounds of x, respectively. We next cover Ωx with

an initial n-dimensional grid, {xl1, xu1}× · · · × {xln, xun}.

The above boundary nodes are fixed throughout the operation

of the direct adaptive robust controller. However, additional

nodes within this initial grid can be added, or removed, as

the system evolves in time. We propose an algorithm for

adding and removing subsequent grid nodes at the potential

locations. Each grid node corresponds to the center of one

RBF. That is, RBFs cannot be placed arbitrarily inside Ωx

but only at the grid nodes. The potential grid nodes are

determined coordinate-wise. In each coordinate, the potential

grid nodes of the first layer are the two fixed boundary nodes.

The second layer has only one potential grid node in the

middle of the boundary nodes. Then the potential grid nodes

of the subsequent layers are in the middle of the adjacent

potential grid nodes of all the previous layers.

B. Adding RBFs

As the system trajectory evolves in time, the output

tracking error e is measured. If the magnitude of e exceeds

a predetermined threshold emax, and if the period between

the two adding operations is greater than the minimum

response time Ta, where emax and Ta are design param-

eters, two neighboring centers, in the sense of the ∞-norm,

to the current input, c(nearest) and c(nearer), among the

existing RBFs are determined. That is, each component of

c(nearest) and c(nearer) is determined coordinate-wise. Next,

new RBFs are added if necessary. This adding operation

is performed sequentially, one coordinate at a time, for all

n coordinates. We now describe in detail the RBF adding

operation for one coordinate. First, the distance di between

xi and ci(nearest) is determined. If this distance is smaller

than 1
4 of the distance between ci(nearest) and ci(nearer), we

do not add any grid nodes in the i-th coordinate. Otherwise, if

the distance di exceeds the prescribed threshold di(threshold),

where di(threshold) is a design parameter that specifies the

minimum grid distance in the i-th coordinate, a new grid

node with its i-th coordinate equal to half of the sum of

ci(nearest) and ci(nearer) is added in this coordinate. Thus,

we add Mf1×· · ·×Mf(i−1)×Mf(i+1)×· · ·×Mfn new RBFs

with initialized weights to the existing RBFs, where Mfi is

the number of existing grid nodes in the i-th coordinate.

C. Removing RBFs

The RBF removing operation is also implemented sequen-

tially for all n coordinates. First, the output tracking error e
is measured, and the nearest center c(nearest), in the sense of

the ∞-norm, to the current input is found from the existing

RBFs. Then in the i-th coordinate, the grid node with its

i-th coordinate equal to ci(nearest) is determined. Several

conditions must be satisfied before this grid node is removed.

First, the magnitude of e must be smaller than τemax, where

τ ∈ (0 1] is a design parameter. Second, ci(nearest) should

not be equal to the lower bound xli or the upper bound

xui of the i-th coordinate. Third, this grid node has been

present in the network for long enough time so that the first

condition has been satisfied for the time duration Td, where

Td is a design parameter. Finally, this grid node must be in

the higher than or in the same layer as the highest layer of

the two neighboring grid nodes in the i-th coordinate.

IV. STATE FEEDBACK CONTROLLER DEVELOPMENT

The proposed direct adaptive robust state feedback con-

troller (DARSFC) has the form

u =
1

ĝ(x)

(

−f̂(x) + y
(n)
d − ke

)

+ us, (6)

where f̂(x) = ω⊤
f ξf (x), ĝ(x) = ω⊤

g ξg(x) and us will be

defined later. For practical implementation, we constrain ωf

and ωg , respectively, to reside in compact sets Ωf and Ωg ,

respectively, where

Ωf =
{

ωf : ωf ≤ ωfj ≤ ωf , 1 ≤ j ≤ Mf

}

,

Ωg =
{

ωg : 0 < ωg ≤ ωgj ≤ ωg, 1 ≤ j ≤ Mg

}

,

where ωf , ωf , ωg and ωg are design parameters and fixed for

different ωf and ωg when the structures of the SORBFNs

change. Let ω∗
f and ω∗

g be “optimal” constant weight vectors

of the SORBFNs with respect to a given structures such that

ω∗
f = argmin

ωf∈Ωf

max
x∈Ωx

∣

∣f(x) − ω⊤
f ξf (x)

∣

∣ ,

ω∗
g = argmin

ωg∈Ωg

max
x∈Ωx

∣

∣g(x) − ω⊤
g ξg(x)

∣

∣ .

It is obvious that ω∗
f and ω∗

g vary when the structures of the

self-organizing RCRBF networks change. We assume that

max

(

max
x∈Ωx

∣

∣

∣
f(x) − ω∗

f
⊤

ξf (x)
∣

∣

∣

)

≤ df ,

max

(

max
x∈Ωx

∣

∣

∣
g(x) − ω∗

g
⊤

ξg(x)
∣

∣

∣

)

≤ dg,

where max(•) denotes the maximum of • taken over all the

structures of the self-organizing RCRBF networks. In the

following, the same outer maximization is used. Let φf =
ωf − ω∗

f and φg = ωg − ω∗
g . Define

cf = max

(

max
ωf ,ω∗

f
∈Ωf

1

2ηf

φ⊤

f φf

)

,

cg = max

(

max
ωg,ω∗

g∈Ωg

1

2ηg

φ⊤

g φg

)

,

where ηf and ηg are positive design parameters. Let σ =
b⊤P me, where P m is the solution to the continuous Lya-

punov matrix equation A⊤

mP m + P mAm = −2Qm for

Qm = Q⊤

m > 0. We employ the following weight vector

adaptation laws

ω̇f = Projωf

(

ηfσξf (x)
)

, (7)

ω̇g = Projωg

(

ηgσξg(x)ua

)

, (8)
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Fig. 2. High-gain observer.

where Projω(•) denotes Projωi
(•i) for i = 1, . . . ,M and

Projωi
(•i) =











0 if ωi = ω and •i < 0

0 if ωi = ω and •i > 0

•i otherwise,

is a discontinuous projection operator proposed in [11]. The

above adaptation laws guarantee that ωf (t) ∈ Ωf and

ωg(t) ∈ Ωg for t ≥ t0 if ωf (t0) ∈ Ωf and ωg(t0) ∈ Ωg .

Theorem 1: Consider the system (1) driven by the pro-

posed DARSFC (6) with (7), (8) and

us = −
1

g
ks sat

(

σ

µ

)

, (9)

where ks = (df + dg|ua| + do) and sat(•) is the saturation

function with µ > 0.

(i) For t ≥ t0, we have

1

2
e(t)⊤P me(t) ≤ exp(−2µ1(t − t0))ce0

+

(

cf + cg +
ks

8µ1
µ

)

, (10)

where µ1 = λmin(Qm)/λmax(P m). Furthermore, if we

choose large ηf and ηg and small µ such that cf +
cg + ksµ/8µ1 ≤ ce − ce0

, we have e(t) ∈ Ωe, that is,

x(t) ∈ Ωx for t ≥ t0.

(ii) If d = 0, f(x) = ω∗
f
⊤ξf (x) and g(x) = ω∗

g
⊤ξg(x),

then e(t), φf (t) and φg(t) are bounded, and asymptot-

ically tracking is achieved, that is, limt→∞ e(t) = 0.

Proof: See [12]

V. OUTPUT FEEDBACK CONTROLLER CONSTRUCTION

The DARSFC presented in the previous section requires

the availability of the system states. However, it is often in

practice that only system outputs are available. Thus, it is

desirable to develop a direct adaptive robust output feedback

controller (DAROFC) architecture. To achieve this, we apply

the following high-gain tracking error observer [5], [6],

˙̂e = Aê + l (e − cê) . (11)

The observer gain l is chosen as l = [α1/ε · · · αn/εn]⊤,

where ε is a design parameter such that 0 < ε < 1 and

αi, i = 1, . . . , n, are selected so that the roots of the

polynomial equation, sn +α1s
n−1 + · · ·+αn−1s+αn = 0,

have negative real parts. In Fig. 2, we show the structure

of the above high-gain observer. In order to eliminate the

peaking phenomena that accompany the above high-gain

Fig. 3. Diagram of the output feedback controller.

Fig. 4. The closed-loop system driven by the output feedback controller.

tracking error observer [13], we introduce the saturation of

the control input. Define Ωē = {e : 1
2e⊤P me ≤ cē}, where

cē > ce. Let S ≥ max(max |u(ê, xd, y
(n)
d , ωf , ωg)|), where

u is defined in (6) and the inner maximization is taken over

ê ∈ Ωē, xd ∈ Ωxd
, y

(n)
d ∈ Ωy , ωf ∈ Ωf and ωg ∈ Ωg .

Then the the DAROFC takes the following form

us = S sat

(

ûa + ûs

S

)

, (12)

where

ûa =
1

ĝ(x̂)

(

−f̂(x̂) + y
(n)
d − kê

)

,

ûs = −
1

g
k̂s sat

(

σ̂

µ

)

,

with k̂s = (df + dg|ûa| + do) and σ̂ = b⊤P mê. The

adaptation laws for the weight vectors ωf and ωg become

ω̇f = Projωf

(

ηf σ̂ξf (x̂)
)

, (13)

ω̇g = Projωg

(

ηgσ̂ξg(x̂)ûa

)

. (14)

A block diagram of this self-organizing RCRBF network

based robust adaptive controller is shown in Fig. 3. A block

diagram of the closed-loop system is given in Fig. 4.

In order to facilitate the stability analysis of the closed-

loop system, we cast the control problem into a standard

singular perturbation form. Let ζ = [ζ1 · · · ζn]⊤, where

ζi =
e(i−1) − ê(i−1)

εn−i
, i = 1, . . . , n. (15)

It follows from (15) that e − ê = D(ε)ζ, where D(ε) =
diag[εn−1 εn−2 · · · 1]. Note that the induced Euclidian
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Fig. 5. RCRBF network used to approximate f(x) and g(x).

norm of D(ε) is 1, that is, ‖D(ε)‖ = 1. It follows from (2)

and (11) that

εζ̇ = Acζ + εb
(

f(x) + g(x)us − y
(n)
d + d

)

, (16)

where Ac = εD(ε)−1(A − lc)D(ε) is Hurwitz. Applying

the method in [14], we can prove the following result.

Proposition 1: There exist a constant ε∗1 (0 < ε∗1 < 1),

and a finite time T1 such that for ε < ε∗1, ‖ζ(t)‖ ≤ βε for

some β > 0 and t ∈ [t0 + T1 t0 + T3), where t0 + T3 is the

time when the trajectory of the tracking error e(t) leaves the

set Ωe for the first time.

Theorem 2: Consider the system (1) driven by the pro-

posed DAROFC (12) with (13), (14) and the high-gain

observer (11). Let ce1 = 1
2e(t0 + T1)

⊤P me(t0 + T1). If

we choose large ηf and ηg and small µ such that cf + cg +
k̂sµ/8µ1 < ce − ce1 , there exists a constant ε∗ (0 < ε∗ < 1)

such that for ε < ε∗, we have

1

2
e(t)⊤P me(t) ≤ exp(−2µ1(t − t0 − T1))ce1

+

(

cf + cg +
k̂s

8µ1
µ + rε

)

(17)

for some r > 0 and t ≥ t0 + T1, and e(t) ∈ Ωe, that is,

x(t) ∈ Ωx for t ≥ t0.

Proof: See [12]

It can be clearly seen from (10) and (17) that as ε ap-

proaches zero, the performance of the DAROFC approaches

that of the DARSFC.

VI. EXAMPLES

In this section, a benchmark problem from the literature

is used to illustrate the features of the proposed DAROFC.

In Example 1, the controller performance is tested with the

white noise disturbance. In Example 2, the desired output

signal changes during the operation in order to demonstrate

the advantage of using self-organizing RBF network. For

both examples, one self-organizing RCRBF network with

two outputs is used to approximate f and g, whose structure

is shown in Fig. 5.

0 5 10 15 20
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−1.5
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−0.5

0

0.5
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1.5

2

2.5

time (sec)

Fig. 6. Disturbance d in Example 1.
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Fig. 7. DAROFC performance in Example 1.

Example 1: The nonlinear plant model used in this exam-

ple is given by

ÿ = 4
sin(4πy)

πy

(

sin(πẏ)

πẏ

)2

+(2 + sin(3π(y − 0.5)))u+d,

which, if d = 0, is the same plant model used as a testbed

for proposed controllers as in [1], [5]. The disturbance d
is selected to be band-limited white noise generated using

SIMULINK (ver. 6.6) with noise power 0.05, sample time

0.1 and seed value 23341. A plot of this disturbance signal

versus time is shown in Figure 6.

The reference signal is the same as in [5], which is the

output of a low-pass filter with the transfer function (1 +
0.1s)−3, driven by a unity amplitude square wave input with

frequency of 0.4 Hz and a time average of 0.5. Thus, the

grid boundaries for y and ẏ, respectively, are selected to be

[−1.5 1.5] and [−3.5 3.5], that is, xl = [−1.5 −3.5]⊤ and

xu = [1.5 3.5]⊤. The rest of the network’s parameters are
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Fig. 8. DAROFC performance with changing reference signals during its operation in Example 2.

dthreshold = [0.2 0.3], emax = 0.005, Ta = 0.2, τ = 0.5,

Td = 1.0, ωf = 25, ωf = −25, ωg = 5, ωg = 0.1 and

ηf = ηg = 1000. The controller’s parameters are k = [1 2],
Qm = 0.5I2, df = 5, dg = 2, do = 3, µ = 0.01 and

S = 50. The observer’s parameters are ε = 0.001, α1 = 10
and α2 = 25. The initial conditions are y(0) = −0.5 and

ẏ(0) = 2.0. The controller performance in the presence of

disturbance is shown in Fig. 7.

Example 2: In order to demonstrate the advantages of

the self-organizing RBF network in the proposed controller

architecture, a different reference signal, yd(t) = sin(2t), is

applied at 20 second. In such a case, we still have Ωxd ⊂ Ωx

for the new reference signal. It can be seen from Fig. 8 that

the self-organizing RCRBF network based DAROFC still

performs very well even when the reference signal changes.

There is no need to adjust the network’s or the controller’s

parameters off-line for the new reference signal. The self-

organizing RBF network determines its structure dynamically

as the output tracking error trajectory evolves with time.

VII. CONCLUSIONS

Novel direct adaptive robust controllers have been pro-

posed for the output tracking control of a class of systems

with unknown system dynamics and disturbance. The pre-

sented techniques incorporate self-organizing raised-cosine

RBF networks that can determine their structures on-line

automatically. The structure of the network varies, as the

output tracking error trajectory evolves, in order to ensure the

tracking accuracy and, at the same time, the computational

efficiency. Simulation results illustrate the effectiveness of

the proposed direct adaptive robust output feedback con-

troller.
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