
Approximate Dynamic Programming with Gaussian Processes

Marc P. Deisenroth1,2, Jan Peters2, and Carl E. Rasmussen1,2

Abstract— In general, it is difficult to determine an op-
timal closed-loop policy in nonlinear control problems with
continuous-valued state and control domains. Hence, approxi-
mations are often inevitable. The standard method of discretiz-
ing states and controls suffers from the curse of dimensionality
and strongly depends on the chosen temporal sampling rate. In
this paper, we introduce Gaussian process dynamic program-
ming (GPDP) and determine an approximate globally optimal
closed-loop policy. In GPDP, value functions in the Bellman
recursion of the dynamic programming algorithm are modeled
using Gaussian processes. GPDP returns an optimal state-
feedback for a finite set of states. Based on these outcomes, we
learn a possibly discontinuous closed-loop policy on the entire
state space by switching between two independently trained
Gaussian processes. A binary classifier selects one Gaussian
process to predict the optimal control signal. We show that
GPDP is able to yield an almost optimal solution to an LQ
problem using few sample points. Moreover, we successfully
apply GPDP to the underpowered pendulum swing up, a
complex nonlinear control problem.

I. INTRODUCTION

Optimal control is one of the most intuitive setups for

specifying control policies: one simply specifies a cost func-

tion to be minimized. Due to the work of Bellman, Howard,

Kalman, and others, dynamic programming (DP) became

the standard approach to solve optimal control problems.

However, only in the case of linear systems with quadratic

loss and Gaussian noise are exact solutions known [1]. For

nonlinear systems the solution to the optimal control problem

is more difficult and optimal closed-loop policies cannot be

obtained in general. Thus, approximations have to be used

to find suitable, suboptimal solutions.

One standard method to approximate a closed-loop policy

(not just an open-loop optimal trajectory) for the nonlinear

optimal control problem is based on discretization of state

and control spaces, which reduce continuous-valued prob-

lems to discrete ones. Unfortunately, the resulting discrete

algorithm suffers from the curse of dimensionality. Fur-

thermore, the dynamic behavior of the system is strongly

affected by the relation between time-, state-, and control

discretization. In contrast, DP-based methods with function

approximation aim to solve the problem directly in con-

tinuous domains. Function approximators generalize value

functions to continuous-valued state spaces, while usually

keeping the action domain discrete. In [2], parametric value

function approximators are suggested to bypass the curse

of dimensionality. Parametric models, however, can embody

unjustified assumptions meaning that even in the limit of

infinite data there is a risk of modeling the underlying

1 Department of Engineering, University of Cambridge, Cambridge, UK
2 Max Planck Institute for Biological Cybernetics, Tübingen, Germany

function incorrectly. Kernel-based function approximations

for reinforcement learning (RL) are introduced and proven

to be consistent under mild assumptions in [3], [4]. Gaussian

processes (GPs) are a kernel machines and provide a state-of-

the-art nonparametric Bayesian regression framework com-

monly used in machine learning [5].

To date, GPs have been used in control to derive alternative

solutions to the optimal control problem. In [6] a nonlinear

discrete-time system is modeled using GPs. According to [7]

this model is used for predictions multiple time steps into

future. In [8], an optimal controller following reference

trajectories is derived. A closed-form evaluation of the value

function of a nonlinear, discrete-time system with continuous

state and control spaces is presented. The system dynamics

are modeled using a GP, which allows for analytic policy

evaluation. Updating the policy according to gradient infor-

mation completes policy iteration. One Bayesian approach to

model-free policy iteration is proposed in [9]. The authors

suggest using GPs to solve the policy evaluation and policy

improvement steps, respectively. Rewards and transitions are

considered as stochastic.

Although the use of GPs in policy iteration was suggested

for instance in [8], [9], their combination with value itera-

tion methods in fully observable Markov decision processes

(MDPs) has not been explored in the literature to the best of

our knowledge. In this paper, we introduce Gaussian process

dynamic programming (GPDP). GPDP is an approximate

dynamic programming method, where value functions in the

DP recursion are modeled by GPs. Thus, we are able consider

continuous-valued states and controls and bypass discretiza-

tion problems. GPDP yields an approximately optimal state-

feedback for a finite set of states. These state-feedback values

are generalized to a closed-loop policy defined on the entire

continuous-valued state space. To model possibly discontin-

uous policies properly, we independently train two GPs. For

any new query point, a binary classification problem has to

be solved to select the GP that predicts the corresponding

optimal control signal.

The remainder of the paper is organized as follows.

In Section II, parallels between optimal control and re-

inforcement learning are pointed out to motivate machine

learning techniques in control. The section is concluded by

an introduction into Gaussian processes. In Section III, we

introduce GPDP and describe how to determine a possibly

discontinuous closed-loop policy on the entire state space.

In Section IV, we apply GPDP to a linear quadratic (LQ)

problem so that it yields the optimal solution given sufficient

quantities of data. Moreover, we successfully apply GPDP

to the underpowered pendulum swing-up problem. In the

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

FrB06.3

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 4480

context of this problem, we briefly discuss the computational

and memory requirements of GPDP and standard DP. Finally,

in Section V, results of the paper are summarized and a

survey of future work is given.

II. BACKGROUND

A. Optimal Control and Reinforcement Learning

Both optimal control and reinforcement learning aim at

finding a policy that optimizes a performance measure. A

policy π : X → U is a mapping from state space X ⊆ IRnx

into control space U ⊆ IRnu that assigns a control action

to each state. In many cases, the performance measure is

defined as the expected loss over a certain time interval. For

a state x0 ∈ X and a policy π, the (discounted) expected

cumulative loss of a finite N -step optimization horizon is

V π
0 (x0) := E

[

γNgterm(xN) +

N−1
∑

k=0

γkg(xk,uk)

]

, (1)

where k indexes discrete time. Here, u := π(x) is the

control chosen under policy π. The function gterm is a

control-independent terminal loss incurred at time step N .

The immediate loss is denoted by g(xk,uk). The discount

factor γ∈ [0, 1] weights future losses. An optimal policy π∗
0

for the N -step problem minimizes (1) for any initial state

x0. The associated bounded state-value function V satisfies

Bellman’s equation

V (x) = min
u∈U

(

g(x,u) + γ E
x
′

[V (x′)|x,u]
)

(2)

for all x ∈ X . Here, the successor state for a given state-

action pair (x,u) is denoted by x′. The state-action value

function Q is defined by

Q(x,u) = g(x,u) + γ E
x
′

[V (x′)|x,u] , (3)

such that V (x) = minu Q(x,u) for all x. In general, finding

an optimal policy π∗ is hard. Assuming time-additive losses

and an underlying MDP, the minimal expected cumulative

loss can be calculated by dynamic programming. DP de-

termines the optimal state-value function V by using the

Bellman recursion

Vk(xi) = min
uj∈U

(

g(xi,uj) + γ E [Vk+1(xk+1)|xi,uj]
)

(4)

as a fixed-point iteration scheme, where xi ∈ X ,uj ∈ U ,

and k = N − 1, . . . , 0. The recursion is initialized by

setting VN := gterm. The state-value function Vk(xi) is the

minimal expected loss over an N − k step optimization

horizon starting from state xi. Analogously to (4), a recursive

approximation of Q by Qk can be defined.

In contrast to optimal control theory, the standard setup of

reinforcement learning is more general. In RL, we usually do

not assume known transition dynamics and losses. General

RL algorithms have to treat these quantities as random

variables. However, if RL algorithms are applied to a fully

known MDP, it can be considered as equivalent to optimal

control. The Bellman recursion and, therefore, all related

algorithms can be used to solve this problem.

For further details on optimal control, dynamic program-

ming, and reinforcement learning, we refer to [1], [2], [10].

In this paper, we consider a more general setting in which

an expert rates state-dependent controls with corresponding

costs. Perception of these costs can be corrupted by noise.

This setting can be translated into a noisy immediate loss

signal that is not determined by the controller itself, but

externally given by an expert.

Since DP is often inapplicable to nonlinear dynamics

in continuous-valued state and control domains, suitable

approximations are necessary to find a good policy. The

similarity of optimal control and reinforcement learning

allows for the combination of approximation techniques from

both fields to provide richer solutions.

B. Gaussian Processes for Regression

In machine learning, Gaussian processes are used to infer

latent functions from a set of observed function values and

prior assumptions. One way to think of a GP is as a distri-

bution over functions. Then, inference takes place directly

in function space [5]. A GP is completely specified by a

mean function m(·) and a positive semidefinite covariance

function k(· , ·), also called a kernel. We denote a latent

function f that is modeled by a GP as f ∼ GP(m, k).
A GP model is not restricted to a certain parametric

class of functions, such as polynomials. Instead, all function

classes that share the same prior assumptions are covered.

Most of the prior assumptions are implicitly encoded in the

choice of the covariance function. A common choice is the

squared exponential (SE) covariance function

kSE(x,x′) := s2 exp
(

− 0.5 (x − x′)T Σ−1(x − x′)
)

, (5)

which reflects the prior belief that we expect the latent

function to be smooth [5]. This means, the closer the two

inputs x and x′ are the more correlated the corresponding

function values f(x), f(x′) will be. The degree of correlation

is determined through the length-scale parameters ℓi in Σ =
diag([ℓ−2

1 , . . . , ℓ−2
nx

]). In (5), the variance of the underlying

function is denoted by s2.

In case of noisy measurements, a function value is as-

sumed to be given by y = f(x) + ε, where ε ∼ N (0, σ2
ε)

is independent, zero-mean Gaussian noise with variance σ2
ε .

The parameters of the covariance function and the unknown

noise variance are concatenated in a hyperparameter vector

θ := [ℓ1, . . . , ℓnx
, s, σε]

T . Based on training data, this vector

is optimized and yields the least complex model that explains

the data [5]. Conditioned on the training data, the predictive

distribution of the function value f∗ = f(x∗) for a new query

point x∗ is Gaussian with mean and variance given by

µ(f∗)=k(x∗,X)(K + σ2
εI)

−1y , (6)

σ2(f∗)=k(x∗,x∗) − k(x∗,X)(K + σ2
εI)

−1k(X,x∗) . (7)

The training data is given by the matrix X = [x1, . . . ,xn]
of training inputs and the vector y = [y1, . . . , yn]T of cor-

responding training outputs (observations). K is the kernel

matrix with Kij = k(xi,xj). The first term in (7) is the

4481

Algorithm 1 GPDP

1: input: f,X ,U
2: VN (X) = gterm(X) ⊲ terminal loss

3: VN (·) ∼ GPv(mv, kv) ⊲ GP model for VN

4: for k = N − 1 to 0 do ⊲ recursively

5: for all xi ∈ X do ⊲ for all states

6: Qk(xi,U) = g(xi,U)
+ γ E[Vk+1(xk+1)|xi,U , f] + ε

7: Qk(xi, ·) ∼ GPq(mq, kq) ⊲ GP model for Qk

8: π∗
k(xi) ∈ arg minu Qk(xi,u)

9: Vk(xi) = Qk

(

xi, π
∗
k(xi)

)

10: end for

11: Vk(·) ∼ GPv(mv, kv) ⊲ GP model for Vk

12: end for

13: return π∗(X) ⊲ return optimal state-feedback for X

prior variance of f(x∗). The second term reduces the prior

variance by a non-negative value that expresses how much

information is transferred from the training set to f(x∗).
GP regression using the SE covariance function is equiva-

lent to Bayesian linear regression with infinitely many Gaus-

sian basis functions. Thus, GPs are a practical realization of

a universal function approximator. In contrast to common

regression methods, Bayesian inference with GPs yields

confidence information through the predictive variance (7).

III. OPTIMAL CONTROL WITH GAUSSIAN PROCESSES

In the following, we consider a nonlinear, deterministic,

discrete-time system xk+1 = f(xk,uk) and noisy measure-

ments of the immediate loss signal

g(xk,uk) + ε , (8)

where ε is independent, zero-mean Gaussian noise with

unknown variance σ2
ε . In Section III-A, we introduce Gaus-

sian process dynamic programming. In Section III-B, we

generalize the optimal state-feedback returned by GPDP to

a possibly discontinuous policy on the entire state space.

A. Gaussian Process Dynamic Programming

The key idea of GPDP is to model both latent value

functions Vk and Qk in the DP recursion by Gaussian

processes. The corresponding GP models are

Vk(·) ∼ GPv(mv, kv) ,

Qk(x, ·) ∼ GPq(mq, kq) ,

where the training inputs are denoted by X and U , re-

spectively. The training outputs are recursively determined

by GPDP. A sketch of the GPDP algorithm is given in

Algorithm 1. The advantage of modeling the state-value

function Vk by GPv is that the GP provides a distri-

bution of Vk(x∗) for any state x∗ through (6) and (7).

This property is exploited in the computation of the Q-

function (3): Due to the generalization property of GPv ,

we are not restricted to a finite set of successor states,

when we determine E[Vk+1(f(x,u))] in line 6. Although

we consider a deterministic system, we have to take an

expectation—with respect to the latent function Vk+1, which

is modeled by GPv . It turns out that E[Vk+1(f(x,u))] =
mv(f(x,u)). The GP model of Qk in line 7 generalizes the

Q-function to continuous-valued control domains. Note that

GPq models only a function of u since x is fixed. Therefore,

minu Qk(xi,u) ≈ minu mq(u), the minimum of the mean

function of GPq. Thus, the minimizing control π∗
k(xi) in

line 8 is not restricted to the finite set U , but can be selected

from the continuous-valued domain IRnu . To find π∗(xi) we

have to resort to numerical methods. Although not considered

in this paper, the training inputs X and U in GPDP can vary

at each iteration step k.

Note that for all xi ∈ X independent GP models for

Qk(xi, ·) are used rather than modeling Qk(· , ·) in joint

state-action space. This idea is largely based on two obser-

vations. First, a good model of Qk in joint state-action space

requires substantially more training points and makes stan-

dard GP models computationally very expensive. Second, the

Q-function can be discontinuous in x as well as in u. We

eliminate one possible source of discontinuity by treating

Qk(xi, ·) and Qk(xj , ·) independently.

B. Learning a Closed-Loop Policy

We interpret the state-feedback π∗(X) returned by GPDP

as noisy measurements of an optimal policy. To generalize

these state-feedback values to a continuous-valued, closed-

loop optimal policy π∗ on the entire state space, we have to

solve a regression problem. We suggest to model the latent

policy with a GP.

In many dynamic systems, an optimal policy is discontinu-

ous at the boundary of an unknown subset of the state space,

especially if the system is underpowered. Using smoothness

favoring covariance functions to model this policy is thus

inappropriate. Finding a suitable covariance function reflect-

ing our prior beliefs is very hard. We tackle this problem by

observing that in applications of control algorithms to real

robots smoothness of controls protects the actuators of the

system. Therefore, we assume that a close-to-optimal policy

is at least piecewise smooth with possible discontinuities at

certain states, where the sign of the control signal changes.

Thus, we attempt to model the policy π∗ by switching

between two locally trained GPs. The main idea of this step

is depicted in Figure 1. We split the state-feedback π∗(X)
returned by GPDP into two subsets of training outputs. One

GP is trained only on the subset π∗
+(X) ⊂ π∗(X) of positive

controls, the other GP uses the remaining set denoted by

π∗
−(X). We call these GPs GP+ and GP−, respectively. Note

that the values π∗(X) are known from the GPDP algorithm.

Both GP models play the role of local experts in the region of

their training sets. Since we assume a locally smooth latent

close-to-optimal policy, we use smoothness favoring rational

quadratic (RQ) kernels for the two locally trained GPs. An

RQ kernel can be seen as a scale mixture of SE kernels

with different length-scales [5]. After training, it remains

to select one local GP model given a new input x∗. In

this paper, this decision is made by a binary GP classifier

that selects the most likely local GP model. This classifier

4482

π
∗(X)

π
∗
+(X) π

∗
−(X)

GP+ GP−

π
∗
+ π

∗
−

x∗

π
∗(x∗)

switch

classifier

Fig. 1. Policy learning scheme. The optimal state-feedback values π
∗(X)

are split into two groups: positive and negative control signals. Two GPs are
trained independently on either of the subsets to guarantee local smoothness.
A classifier selects one GP to predict an optimal control for a new input
x∗. The resulting policy can be discontinuous along the decision boundary.

plays a similar role as the gating network in a mixture-of-

experts setting [11]. We greedily choose the GP model with

higher class probability to predict the optimal control to be

applied in a state. We always apply the predicted mean of the

local GP policy model. Note that convex combination of the

predictions of GP+ and GP− according to the corresponding

class probabilities will not yield the desired discontinuous

policy. Instead, the policy will be smoothed out along the

decision boundary, which is not wanted here.

Binary classification maps outcomes of a latent function f

into two different classes. In GP classification (GPC) a GP

prior is placed over f , which is squashed through a sigmoid

function to obtain a prior over the class labels. In contrast

to GP regression, the likelihood p(ci|f(xi)) in GPC is not

Gaussian. The class label of f(xi) is ci∈{−1,+1}. The in-

tegral that yields the posterior distribution of the class labels

for new inputs is not analytically computable. Expectation

propagation approximates the non-Gaussian likelihood to

obtain an approximate Gaussian posterior. We refer to [12],

[5] for further details.

We believe that the suggested approach for learning a

discontinuous policy using two different GPs is applicable

to many dynamic systems and more effective than training a

single GP with a problem-specific kernel. Although problem-

specific kernels may perform better, they are difficult to de-

termine. Furthermore, local smoothness cannot be guaranteed

in many cases.

IV. EXPERIMENTS

A. Proof of Concept: LQ Problem

We demonstrate that the GPDP algorithm is able to solve

the LQ problem with sufficient performance. We chose the

linear system xk+1 = diag(
[

0.5 1
]

)xk +
[

1 1
]T

uk with

deterministic squared immediate loss g(xk, uk) = xT
k xk +

5u2
k. The optimal policy is π∗(xk) = −Lxk , where L =

[

0.054259 0.333931
]

. We set the prior mean and covari-

ance functions of GPv and GPq to m ≡ 0, k = kSE. To train

the Gaussian processes GPv and GPq we randomly selected

100 states and 100 control actions. For a set of 100 test

points X∗ ∈ [−1, 1]2 the differences between policy π∗
GP of

the GPDP controller and policy π∗
LQ of the LQ controller are

marginal since the normalized mean squared error (NMSE)
E[(π∗

GP(X∗)−π∗

LQ(X∗))2]

var(π∗

LQ
(X∗)) ≈ 0.0008. The GPDP controller can

indeed solve this problem (almost) optimally since there are

only marginal differences in the control decisions.

B. Experiment: Underactuated Pendulum Swing Up

In the following, we consider the underpowered pendulum

swing up. We assume system dynamics following the ODE

ϕ̈(t) =
−µϕ̇(t) + mgl sin(ϕ(t)) + u(t)

ml2
, (9)

where length l, mass m, and the gravitational constant g

are given by l = 1 m, m = 1 kg, and g = 9.81 m
s2 ,

respectively. The coefficient of friction is µ = 0.05 kg m2

s .

The applied torque is restricted to u ∈ [−5, 5] Nm. Angle

and angular velocity are denoted by ϕ and ϕ̇, respectively.

The characteristic pendulum frequency is approximately 2 s.
Initially, the pendulum is hanging down in state [ϕ, ϕ̇]T =
[−π, 0]T . The goal is to swing the pendulum up and to

balance it in the inverted position around [0, 0]T . This task

has previously been considered a hard problem [13]. Instead

of finding a trajectory-based optimal solution as in [13], our

goal is to find a globally optimal policy over the entire state

space. The pendulum dynamics (9) are temporally discretized

according to

xk+1 :=

[

ϕk+1

ϕ̇k+1

]

=

[

ϕk + ∆tϕ̇k +
∆2

t

2 ϕ̈k

ϕ̇k + ∆tϕ̈k

]

, (10)

where ϕk =ϕ(t=k∆t) with ∆t being the time between two

samples. The noisy immediate loss g in (8) is

g(xk, uk) = 0.1
(

xT
k diag(

[

1 0.1
]

)xk + 0.2 u2
k

)

+ ε ,

where the noise standard deviation σε = 0.001 has to be

accounted for by GPq. In our case, the sampling rate is 5 Hz.

We optimize the undiscounted optimal control problem (1)

over 10 time steps. GPq is trained on a regular grid of 25

actions U ⊂ [−5, 5]. To train GPv we used a regular grid of

382 states X ⊂ [−π, π) × [−7, 7]. Around the goal state

[0, 0]T we added a regular grid of 16 states with higher

resolution. The training set covers the dynamically relevant

part of the state space. For both GPq and GPv we choose

the covariance function k(xi,xj) := kSE(xi,xj)+kn(xi,xj).
The noise kernel kn(xi,xj) := σ2

εδij accounts for the noisy

immediate loss and smooths out model errors of previous

computations. Here, δij is the Kronecker delta. At the

kth iteration, we define mv := k =: mq as prior mean

functions. This makes states far away from the training set

X unfavorable and penalizes uncertainty in GPq.

In general, a closed-loop optimal policy for continuous

state and control domains cannot be determined. Thus, we

rely on DP with state and control space discretization to

design a benchmark controller which we compare with the

GPDP controller. Here, we used regular grids of approxi-

mately 6.2 × 105 states and 125 controls. We consider the

DP controller as almost optimal.

4483

−3 −2 −1 0 1 2 3
−5

0

5

angle in rad

a
n
g
.v

e
l.
 i
n
 r

a
d
/s

−5

0

5

Fig. 2. Optimal policy for a discretized system with 6.2× 105 states and
125 controls. Discontinuities at the boundary of the central band are caused
by the dynamics. Due to temporal discretization, stripes of optimal controls
with discontinuous borders appear in the upper right and lower left corners.
Red and blue colors show positive and negative controls, respectively.

In discrete-time systems, higher temporal sampling rate

requires finer spatial discretization. Moreover, especially at

the boundaries of the discretized state space, spatial dis-

cretization artifacts occur. In contrast, the number of training

points in the GPDP algorithm is independent of the temporal

sampling rate. Furthermore, the GPDP controller does not

suffer from discretization errors since it works in continuous

domains

An optimal policy for the underpowered pendulum prob-

lem determined by DP is shown in Figure 2. Discontinuities

at the boundaries of the diagonal band (upper left to lower

right corner) represent states where maximum applicable

torque is just not strong enough to bring the pendulum to

the inverted position. The controller decides to use torque in

opposite direction, to exploit the dynamics of the pendulum,

and to bring it to the goal state from the other side. Other

discontinuities in Figure 2 are largely due to temporal dis-

cretization and decline with higher sampling rates. Figure 2

also shows that a GP model for this policy using smoothness

favoring covariance functions, such as SE or RQ kernels is

not appropriate if discontinuities at the boundaries of the

diagonal band shall be modeled.

The policy model that switches between two GP models

as described in Section III-B is given in Figure 3. The

black crosses and white circles mark the input locations

of the sets π+(X) and π−(X), respectively. The colors

describe optimal control decisions. Misclassification is in

many cases not a big problem, except along the boundaries

of the the diagonal band, where strong discontinuities in the

policy appear. More training points in these regions would

yield better classification performance, but might also lead

to overfitting. Although the range of the controls exceeds

the maximally applicable torque, the model of the optimal

policy is sufficiently good in most parts of the state space.

In simulations we use only the maximally applicable torque.

Starting from the downward position [−π, 0]T , we applied

nonlinear model predictive control. The trajectories of the

system simulation over 5 s are shown in Figure 4. The first

panel of the figure shows the angle, the second panel the

−3 −2 −1 0 1 2 3
−5

0

5

angle in rad

a
n
g
.v

e
l.
 i
n
 r

a
d
/s

−5

0

5

Fig. 3. GP approximation of the learned policy based on 398 training
points. The set of optimal control signals is split into two classes on
which two GPs are trained independently. The corresponding states (training
inputs) are denoted by black crosses and white circles, respectively.

0 1 2 3 4 5

−2

0

2

time in s

a
n

g
le

GPDP

DP

0 1 2 3 4 5

−4
−2

0

time in s

a
n

g
.v

e
l.

GPDP

DP

0 1 2 3 4 5
−5

0

5

time in s

c
o

n
tr

o
l

GPDP

DP

Fig. 4. States and applied control actions of the underpowered pendulum
swing up for both controllers. The state trajectories almost coincide, whereas
the control signals slightly differ.

angular velocity of the pendulum. The dashed blue curves are

caused by the DP controller, the green solid curves are belong

to the GPDP controller. The third row describes the applied

control signal. The controls applied by the GPDP controller

are drawn with an error bar representing the uncertainty in

the control decision (twice standard deviation of the GP

prediction). Depending on which GP model is used, the

uncertainty of the applied control signal depends on the

distance of the system state to the training inputs of either

π+(X) or π−(X). Both controllers swing the pendulum up

and stabilize it in the inverted goal position. The system

trajectories almost coincide, the control trajectories differ

slightly. The GPDP controller causes with 9.29 slightly more

cumulative loss than the DP controller with 9.02.

Note that the GPDP controller finds the solution in

continuous-valued domains. Although the GPDP controller

is not as good as the optimal benchmark controller, it finds a

reasonable tradeoff between performance and generalization

in the example considered.

C. Computational and Memory Requirements

GPDP without policy learning scales in Ocomp
GPDP

:=
O(|X ||U|3 + |X |3) computations per iteration since GP

regression scales cubically in the number of training points.

4484

TABLE I

COMPUTATIONAL DEMANDS AND PERFORMANCES OF GPDP AND DP

GPDP |X | O
comp

GPDP
loss DP |XDP| O

comp
DP loss

578 2.0×108 9.23 6.2×105 9.8×1012 9.02

488 1.2×108 9.24 3.1×105 1.3×1012 9.05

400∗ 7.0×107 9.55∗ 2.3×105 6.1×1011 9.05

398 6.9×107 9.29 6.4×103 1.0×109 9.34

200 1.1×107 9.48 1.5×103 6.1×107 11.13

Classical DP for deterministic settings needs O
comp
DP

:=
O(|XDP|

2|UDP|) computations. Note that the sets of states

XDP and controls UDP used by DP usually contain substan-

tially more elements than their counterparts in GPDP. Thus,

GPDP uses data more efficiently than discretized DP.

In the following, we fix both U , UDP to 25 controls and

only vary the number of states in X , XDP. We compare the

performances of DP and GPDP for one example trajectory

of the underpowered pendulum swing up as well as the

corresponding computational requirements. Note that we still

consider noisy immediate loss signals, which might slightly

decrease the performance of the GPDP controller. The results

are given in Table I. For the swing-up trajectory, the best

cumulative loss of GPDP in Table I is close to the optimal

solution provided by the DP controller although it does not

reach it. The computational and memory requirements of

GPDP are, however, significantly smaller. If we compare

results of similar computational complexity, GPDP with only

398 states outperforms standard DP with 1,500 states. Bigger

sets X in GPDP mainly yield global policies closer to the

one from Figure 2. However, increasing the size of X beyond

a certain point tends to overfitting. In Table I, all simulations

except the one marked with a * are executed using a regular

grid to train GPv as described in Section IV-B. The *-

entry instead defines X through random samples in the state

space. Even in this case, the GPDP controller shows good

performance.

Under certain conditions on the dynamics, GPDP can solve

the optimal control problem for stochastic systems with little

additional computations and no additional memory require-

ments (O(|X |2)). DP is in general no longer applicable

because of the O(|XDP|
2) memory required to store a full

transition matrix.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced Gaussian process dynamic

programming (GPDP). Based on noisy measurements of the

immediate loss, Gaussian processes were used to model value

functions in the Bellman recursion in the DP algorithm to

generalize dynamic programming to continuous-valued state

and control domains. This allowed us to avoid discretization

problems. GPDP returns an optimal state-feedback for a

finite set of states. We suggested to generalize these state-

feedback values to a continuous-valued closed-loop policy

on the entire state space. To model a close-to-optimal

policy that is smooth almost everywhere, we trained two

Gaussian processes independently on subsets of the known

state-feedback values. Since both Gaussian processes can

model the underlying policy well in their training domain, a

classifier selects one Gaussian process to predict the optimal

control signal for a new query point. Switching between the

GP models accounts for discontinuities of the policy along

the decision boundary. The application of the concept to a

nonlinear problem, the underpowered pendulum swing up,

yielded a policy that achieved the task with slightly higher

cumulative loss than an almost optimal benchmark controller.

Extending GPDP to stochastic systems within the Gaus-

sian process framework is straightforward. Instead of assum-

ing idealized system dynamics, it is possible to learn the

system dynamics based on observations only. Preliminary

results strongly motivate the use of GPs for this idea. Optimal

placement of support points is also an issue to be dealt

with in future. Regression methods need less data points

than pure discretization methods. However, especially in high

dimensions, data points have to be used efficiently and can

be expensive to obtain. Therefore, a criterion has to be

formulated to rank and select possible support points for the

Gaussian process.

ACKNOWLEDGEMENTS

We thank the reviewers for valuable suggestions. M. P.

Deisenroth is supported by the German Research Founda-

tion (DFG) through grant RA 1030/1.

REFERENCES

[1] D. P. Bertsekas, Dynamic Programming and Optimal Control, 3rd ed.,
Athena Scientific, 2005, vol. 1.

[2] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming.
Athena Scientific, 1996.

[3] D. Ormoneit and Ś. Sen, “Kernel-Based Reinforcement Learning,”
Machine Learning, vol. 49, no. 2–3, pp. 161–178, November 2002.

[4] N. Jong and P. Stone, “Kernel-Based Models for Reinforcement
Learning,” in ICML Workshop on Kernel Machines and Reinforcement

Learning, Pittsburgh, PA, USA, June 2006.
[5] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for

Machine Learning. The MIT Press, 2006.
[6] J. Kocijan, R. Murray-Smith, C. E. Rasmussen, and A. Girard,

“Gaussian Process Model Based Predictive Control,” in Proceedings

of the 2004 American Control Conference (ACC 2004), Boston, MA,
USA, June–July 2004, pp. 2214–2219.

[7] A. Girard, C. E. Rasmussen, J. Quiñonero Candela, and R. Murray-
Smith, “Gaussian Process Priors with Uncertain Inputs—Application
to Multiple-Step Ahead Time Series Forecasting,” in Advances in

Neural Information Processing Systems 15.The MIT Press, 2003, pp.
529–536.

[8] C. E. Rasmussen and M. Kuss, “Gaussian Processes in Reinforcement
Learning,” in Advances in Neural Information Processing Systems 16.
The MIT Press, June 2004, pp. 751–759.

[9] Y. Engel, S. Mannor, and R. Meir, “Reinforcement Learning with
Gaussian Processes,” in Proceedings of the 22nd International Con-

ference on Machine Learning (ICML-2005), vol. 22, Bonn, Germany,
August 2005, pp. 201–208.

[10] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-

tion. The MIT Press, 1998.
[11] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton, “Adaptive

Mixtures of Local Experts,” Neural Computation, vol. 3, pp. 79–87,
1991.

[12] T. P. Minka, “A Family of Algorithms for Approximate Bayesian
Inference,” Ph.D. dissertation, Massachusetts Institute of Technology,
Cambridge, MA, USA, January 2001.

[13] C. G. Atkeson, “Using Local Trajectory Optimizers to Speed up Global
Optimization in Dynamic Programming,” in Advances in Neural

Information Processing Systems 6. Morgan Kaufmann, 1994, pp.
503–521.

4485

