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Abstract— This paper presents the experimental verification
of an adaptive feedforward disturbance rejection scheme for
hard disk drives. The control scheme is shown to reduce
the error during track-following by as much as 11.8%. The
adaptive disturbance rejector is added to a baseline controller
and broken into two parts: a part to suppress the repeatable
runout and another to attenuate the residual disturbance by
using radial basis functions. Both parts are adapted online to
ensure good disturbance rejection. The experimental results are
included to demonstrate the effectiveness on a commercial hard
disk drive.

I. INTRODUCTION

Hard disk drives (HDD) are a form of data storage that

are present in just about every computer system. As the

storage capacity grows so does the track density which

puts tighter constraints on the servo control system. With

tracks placed closer together in the radial direction there is

a need to increase the positioning accuracy. There has been

a large amount of research activity into two types of control

problems: track-seeking and track-following [1]. The former

deals with motion control of the head between tracks, and

the latter with maintaining the head on the center of the

HDD track. This paper deals with track-following which

can be formulated as a disturbance rejection problem [2]–

[4]. The disturbance can be separated into repeatable runout

(RRO) and non-repeatable runout (NRRO). The RRO is

produced by imperfections and eccentricities on the tracks,

while NRRO is produced by aggregated effects of disk drive

vibrations, imperfections in the ball-bearings, and electrical

noise. Research has been conducted over the years to cancel

the effects of these disturbances and acquire better track

following capabilities [2]–[12].

It has been shown that the RRO can be suppressed with

adaptive feedforward methods [6], and by adaptive repetitive

control [7]. In this paper we use the adaptive feedforward

disturbance rejection scheme to eliminate the RRO and then

focus on reducing the disturbance even further. There has

also been work done in using neural networks for feedfor-

ward disturbance rejection [13]–[15]. Radial basis functions

(RBF) have been used to model sea-clutter noise in radar

applications [16], a similar approach was taken here. We

experimentally verify a neural model of the disturbance that

is adapted online and used for disturbance rejection to obtain
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more precise track-following. In section II the experiment

and real-time implementation issues are explained. Section

III describes the baseline control to which the disturbance

rejection schemes are added. These adaptive feedfoward

disturbance rejectors are explained in section IV. Section V

presents experimental results and conclusions are drawn in

section VI.

II. DESCRIPTION OF THE EXPERIMENT

A HDD is a mechatronic device that uses rotating platters

to store data. Information is recorded on, and read from con-

centric cylinders or tracks by read-write magnetic transducers

called heads, that fly over the magnetic surfaces of the HDD

platters. The position of the heads over the platters is changed

by an actuator that consists of a coil attached to a link, which

pivots about a ball bearing. This actuator connects to the head

by a steel leaf called a suspension [17], [18]. This description

of the HDD is shown in Fig. 1.

The control objective is to position the center of the head

over the center of a data track. Thus, the typical measure

of HDD tracking performance is the deviation of the center

of the head from the center of a given track, which is often

called track misregistration (TMR) [18]. There exist many

indexes used to quantify TMR. Here we adopt

TMR = 3σ. (1)

Where σ is the empirical standard deviation (STD) of the

control error signal. It is common to express 3σ as a

percentage of the track pitch [4], [18], which must be less

than 10% in order to be considered acceptable. TMR values

larger than this figure will produce excessive errors during

the reading and recording processes.

The experiment was performed with a 2-platter (10

GB/platter), 4-head, 7200 rpm, commercial HDD, and a

Mathworks xPC Target system for control. The sample-

hold rate of 9.36 KHz, used for communication, control

and filtering, is internally determined by the HDD and

transmitted through a clock signal to the target PC used

for control. Both systems must operate in a synchronized

manner, as shown in the diagram of the experiment (Fig. 2).

The position of a given HDD head is digitally transmitted

by the use of two signals. The first conveys the track number

(TN) over where the head is positioned. The second is the

position error signal (PES), which conveys the position of

the head on the track pitch. Thus, the measured position y

is a function of both the TN and PES signals.

The loop is closed when the digital controller outputs

the sequence x which is converted into an analog signal

to command the HDD actuator. At this stage, we pose the
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control problem in the discrete-time domain, defining the

mapping from x to y as the open-loop plant P .

7200 rpm
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Fig. 1. Schematic idealization of the hard disk drive (HDD) system.
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Fig. 2. Diagram of the experiment.

III. BASELINE CONTROL

The work in this paper utilizes controllers that were pre-

viously developed and implemented in [3] as baseline con-

trollers for adding adaptive disturbance rejection schemes.

This includes a simple LTI controller and a controller which

is tuned using the inverse QR-RLS algorithm, both will be

described briefly.

A. Controller Design

An open-loop model of the HDD, P̂ , is first found by the

method described in [3]. A simple LTI feedback controller

C shown in Fig. 3 was designed using discrete-time domain

classical techniques. It consists of a digital integrator and a

digital notch filter. The integrator gain and notch parameters

were tuned to maximize the output-disturbance rejection

bandwidth.

The controller tuned with the inverse QR-RLS is devel-

oped using a model of the closed-loop plant G1 shown in

Fig. 3. An identified model of this closed-loop plant, Ĝ1, is

found using the n4sid algorithm and truncated to a 4th order

model. Now the control objective is to minimize the RMS

value of the position error. The control problem is posed as a

least squares problem and solved using the inverse QR-RLS

algorithm in [19]. The algorithm is allowed to converge to

steady-state and the controller is denoted as U(z) in Fig. 3.
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ỹ

do

G(z)

G1(z)

−
−

Fig. 3. Block diagram of the control system. P (z) = open-loop plant;
C(z) = simple LTI controller; U(z) = converged inverse QR-RLS
controller; y = position of the head; d0 = aggregate disturbance; yref =
position reference; ỹ = PES; u = control signal; G1(z) = closed-loop
plant with C(z); G(z) = closed-loop plant with C(z) and U(z).

B. Closed-loop Model

The baseline LTI and inverse QR-RLS controllers are

placed in the loop with the HDD dynamics and a closed-loop

model from u to ỹ is formed, denoted as G. The new system

diagram is shown in Fig. 4, the output y of this system is the

PES, which is the same as ỹ in Fig. 3 since yref is constant.

An identified model of this system, Ĝ, is again found by the

n4sid algorithm and truncated to a 10th order model. The

bode plot of the identified Ĝ is seen in Fig. 5. This is the

system that will be used for disturbance rejection throughout

the rest of this paper.

G(z)- - h? -u y

d

Fig. 4. Block diagram of the system used for disturbance rejection. G(z) =
closed-loop system with baseline controllers; d = disturbance; u = control
signal.

IV. ADAPTIVE FEEDFORWARD REJECTION

The goal of the disturbance rejection problem is to reduce

the PES, y in Fig. 4, by injecting the negative of an estimate

of the disturbance. The problem is divided into two parts:
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Fig. 5. Bode plot of identified close-loop system Ĝ

repeatable runout disturbance rejection and neural modeled

disturbance rejection. The former has proven experimental

results as shown in [6]. This paper makes no modification

to the algorithm other than applying it to a large number of

frequencies. Once the repeatable runout disturbance rejection

is applied there is still disturbance that creates non-perfect

tracking. This remaining disturbance is modeled using neural

techniques and adaptively updated online.

A. Repeatable Runout Disturbance Rejection

The repeatable runout (RRO) disturbance occurs at fre-

quencies 120m Hz where m = 1, 2, ..., n due to the 7200

rpm speed of the disk. A control input is designed such that

it will adaptively cancel this disturbance. The disturbance,

d(k) = dRRO(k) can be modeled as

dRRO(k) =
n

∑

i=1

ai(k)sin

(

2πik

Nrev

)

+ bi(k)cos

(

2πik

Nrev

)

(2)

where i is the index for the harmonic and Nrev is the number

of samples per revolution.

If the system is modeled as in figure 4 then the output is

y(k) = G(z)[u(k)] + dRRO(k) (3)

To cancel the disturbance the control signal should be u(k) =
−Ĝ−1(z)[d̂RRO(k)]. The identified inverse, Ĝ−1(z), will

have an effect on the magnitude and phase of the disturbance

estimate, d̂RRO(k). Since the magnitude and phase of the

sinusoidal disturbance is being estimated, the system inverse

can be ignored and the new control signal becomes u(k) =
−d̂RRO(k). The disturbance estimate is

d̂RRO(k) =
n

∑

i=1

âi(k)sin

(

2πik

Nrev

)

+ b̂i(k)cos

(

2πik

Nrev

)

(4)

The update equations for the estimated parameters are

âi(k) = âi(k − 1) + γiy(k − 1)sin

(

2πki

Nrev

+ φi

)

(5)

b̂i(k) = b̂i(k − 1) + γiy(k − 1)cos

(

2πki

Nrev

+ φi

)

(6)

Where the γi are adaptation gains, chosen differently for each

harmonic. A phase advance modification is added to reduce

the sensitivity and allow for more harmonics to be canceled

as was done previously in [6]. The φi = ∠G(jωi) and ωi is

the angular frequency of the ith harmonic.

B. Neural Modeled Disturbance Rejection

Since the disturbance does not consist entirely of harmon-

ics from the rotation of the disk, another disturbance rejection

algorithm is added. The new disturbance is modeled as

d(k) = dRRO(k) + dNN (k). (7)

So the system output now becomes

y(k) = G(z)[u(k)] + dRRO(k) + dNN (k) (8)

To cancel the disturbance the control signal should be u(k) =
−d̂RRO(k) − Ĝ−1(z)[d̂NN (k)]. Since the identified model

of the HDD is non-minimum phase the inverse is unstable.

The unstable zero of G(z) is reflected across the unit circle

and the inverse is taken. This new inverse, Ḡ−1(z), is used

in the computation of the control signal, making it u(k) =
−d̂RRO(k)−Ḡ−1(z)[d̂NN (k)], and therefore causes an extra

delay that will be dealt with.

The following disturbance rejection scheme uses gaussian

radial basis functions (RBF) from neural networks to attempt

to model the disturbance. The disturbance estimate takes the

form

d̂NN (k) =
L

∑

q=1

M
∑

i=1

θq,i(k)Rq,id̂(k − δ · (q − 1) − 1) (9)

Rq,i = Ψi

(

d̂(k − δ · (q − 1) − 1)
)

(10)

Where Rq,i is computed using an RBF and the ith gaussian

RBF is

Ψi(x) = exp

[

−

(

x − ci

β

)2
]

(11)

The parameters that specify the shape of the ith gaussian

RBF are the center ci and the width β. There are a total

of M gaussian RBFs, and their centers are linearly spaced

across the range of input. The current disturbance estimate,

d̂NN (k), is a function of L previous disturbances that are

spaced δ samples apart.

The reason for the spacing δ is the delay associated with

passing the disturbance estimate through the system inverse.

One method of coping with the delay would be to estimate

the disturbance at the next sample, and then use this estimate

to create another future estimate, and continue iterating to

find some d̂NN (k + ∆) in the future [14]. This method

did not work as the estimation error grew with each future

estimate. Instead the disturbance is thought of as a function

of previous evenly spaced disturbances. The d̂NN (k) can be

viewed as a future disturbance estimate when compared to

the HDD sample rate. It should be noted that the algorithm
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Fig. 6. Simple example of how d̂NN (k) is computed from previous values
of the disturbance. Here δ = 2 and L = 3.

still creates a new disturbance estimate at every sample of

the HDD output.

The model of the disturbance is motivated by the assump-

tion that the disturbance is a nonlinear function of previous

disturbance values. The d̂(k − δ · (q − 1) − 1) term that

is multiplied by the output of the RBF in (9) is the added

term that allows the model to work for the disturbance in

this HDD. This added term makes the model different from

previously used RBF neural predictors [14], [16]. Now the

disturbance can be thought of as an autoregressive filter with

spacing δ and nonlinear coefficients that are modeled with

the RBF’s. A simple example with δ = 2 and L = 3 is shown

in Fig. 6 to help view the modeling of the disturbance. The

d̂(k−δ·(q−1)−1) used in the estimate is not produced by the

estimator but rather is a measured disturbance estimate which

can be calculate from an identified model of the system,

Ĝ(z), as follows

d̂(k − 1) = y(k − 1) − Ĝ(z)[u(k − 1)] (12)

The unknown parameters should be updated with the current

modeling error, which is the plant output y(k − 1), and the

parameters that caused that error, d̂(k − δq − 1). This leads

to the update equations

θq,i(k) =

{

θq,i(k − 1) + αq,i(k) εnew ≤ ρ · εold

θ′q,i otherwise
(13)

αq,i(k) =
lNN

m2(k)
y(k − 1)R̄q,id̂(k − δq − 1) (14)

R̄q,i = Ψi

(

d̂(k − δq − 1)
)

(15)

m2(k) = 1 + ms(k) (16)

ms(k) = δ0ms(k − 1) + d̂2(k − 1) (17)

Every Nε samples the following are computed

εnew =

Nε
∑

n=1

y2(k − n) (18)

εold =

{

εnew εnew < εold

εold otherwise
(19)

θ′q,i =

{

θq,i(k) εnew < εold

θ′q,i otherwise
(20)

The update is an instantaneous gradient algorithm with a

couple robustness modifications. The adaptation, or learning,

rate is lNN and is greater than zero. The update term is

normalized with a dynamic term to add robustness, this term

is calculated in (17). The parameter δ0 is chosen between 0

and 1.

The other robustness modification is one that is added to

stop adaptation when the performance starts to degrade. In

practice the estimation error will never become zero and so

the parameters will continue to update. There will be a point

at which the estimation error is small and on the same level

as the noise and modeling error. Usually a simple deadzone

is added to stop adaptation when the current error is below

some threshold. In the HDD application the estimation error,

which is the HDD output, is noisy and must be averaged

over Nε samples. Instead of averaging, the sum squared error

is easier to calculate online via (18). The adaptation will

continue as long as this new sum squared error, εnew, is

less than the old sum squared error, εold, to within some

small range. The ρ term is selected to be greater than 1

to allow adaptation even if the sum squared error did not

decrease. This gives some room for noisy measurements and

lets the algorithm continue. If the algorithm is doing a good

job and the new sum squared error is strictly less than the

old, the current θq,i(k)’s are saved and the εold is updated.

The θq,i(k)’s are saved so that when the sum squared error

is too large, the algorithm can revert back to the best known

parameters.

C. Parameter Tuning

The parameters were first tuned in an offline simulation.

Experimental disturbance data was collected by allowing the

LTI and converged inverse QR-RLS controllers to run and

measuring the PES. This PES data is the disturbance for both

of the adaptive disturbance rejection schemes. The number of

harmonics and adaptive gain for each harmonic of the RRO

rejection scheme were tuned first. This was done through

Monte-Carlo simulations while varying the adaptive gain.

The number of harmonics was simply increased until no

performance benefit was seen. Once these values were fixed

the parameters of the neural model disturbance rejection

could be tuned. Monte-Carlo simulations were run while

varying the number of basis functions, M , adaptive gain,

lNN , and the number of past parameters, L.

The Nε and ρ needed to be tuned online once at a single

head / track combination to ensure adaptation stopped at

the appropriate time to maximize performance. It should be

noted that each time the algorithm begins εold is initialized

by εold = ε0, where ε0 is a design parameter that should be

chosen large at first. This way after the first Nε samples εold

can be updated via (19).
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D. Stability Analysis of Neural Model

The adaptive neural modeled disturbance rejection scheme

can be placed in a form that follows the framework of adap-

tive estimators in [20]. Starting with the modeled disturbance

dNN (k) =
L

∑

q=1

M
∑

i=1

θ∗q,i(k)Rq,id̂(k − δ · (q − 1) − 1) (21)

Rq,i = Ψi

(

d̂(k − δ · (q − 1) − 1)
)

(22)

And placing it in the form of

z(k) = θ∗T φ(k) + η(k) (23)

Where

z(k) = d(k) (24)

θ∗ = [θ∗1,1, . . . , θ
∗
L,M ]T (25)

φ(k) = [f1,1, . . . , fL,M ]T (26)

fq,i = Rq,id̂(k − δ · (q − 1) − 1) (27)

and η(k) is the modeling error. The estimation model and

estimation error are given as

ẑ = θT (k)φ(k) (28)

ǫ(k) =
z(k) − ẑ

m2(k)
=

z(k) − θT (k)φ(k)

m2(k)
, (29)

where m(k) is the normalizing signal designed to bound

|φ(k)| and |η(k)| from above. Only the d̂(k− δ · (q−1)−1)
part of the φ(k) needs to be bounded by m(k) since the

RBF’s, Rq,i, are bounded by definition. Using the gradient

law in (13) the parameters are adaptively updated. As shown

in [20] the adaptive laws defined above will guarantee that

θq,i(k), ǫ(k) ∈ ℓ∞ and ǫ(k), |θq,i(k)− θq,i(k− 1)| ∈ S(g0 +

η2
0), where η0 is an upper bound of

|η(k)|
m(k) ≤ η0, and g0 is

bounded by ρ · ε0 ≥ g0 ≥ ρ · εold.

V. EXPERIMENTAL RESULTS

In the experiments described here, the sample-and-hold

rate for control was 9.36 KHz, externally determined by

the HDD clock. The controllers used in this section include

the LTI controller, denoted by C. The U that is used is

a 36th order converged inverse QR-RLS, tuned using the

head 0 over trhe track 15,000. The KRRO is the adaptive

feedforward disturbance rejection scheme used to cancel

n = 33 harmonics. Lastly the KNN , which is the adaptive

neural disturbance rejection scheme with M = 15, L =
9, lNN = 1, Nε = 500, ρ = 1.5, and δ = 2. The ai(k)
and bi(k) of the RRO disturbance rejector, and the θq,i(k)
of the neural scheme are all initialized to zero and adapted

online.

The performance of the algorithms can be seen in Fig.

7 where the metric for comparison is the 3σ value of the

PES as a percentage of track width. The controllers were

implemented on 3 different tracks on 2 heads of the disk

drive. Although the adaptive controllers were tuned on head

0 and track 15,000 they still perform very well on other
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Fig. 7. 3σ value of the position error signal as a percentage of the track
width.
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Fig. 8. Time series data from experiment performed on head 0 and track
15, 000. At 5 seconds the adaptive disturbance rejection is switched on
(KRRO and KNN ).

head/track combinations. In all cases the addition of the

adaptive neural disturbance rejector, KNN , provided the best

tracking performance. The KNN improves the PES tracking

performance on head 0 by 6%, 4.8%, and 10% at track

10,000, 15,000, and 20,000 respectively. The improvement

on head 1 is 11.8%, 6.6%, and 7.7% on track 10,000, 15,000,

and 20,000 respectively.

The impact of the adaptive schemes can be clearly seen in

Fig. 8, where the time series data from the HDD at head 0

and track 15,000 has been plotted. Initially only the baseline
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Fig. 9. Experiment performed on head 0 and track 15, 000. Top Plot: PSD
with no adaptive disturbance rejection (C and U ). Bottom Plot: PSD with
adaptive disturbance rejection. (C, U , KRRO , and KNN ).
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Fig. 10. Closeup of PSD in Fig. 9. Top Plot: PSD with no adaptive dis-
turbance rejection (C and U ). Bottom Plot: PSD with adaptive disturbance
rejection. (C, U , KRRO , and KNN ).

controllers are active and then at 5 seconds the adaptive

disturbance rejectors, KRRO and KNN , are turned on. The

PSDs are shown in Fig. 9, where low frequency attenuation

and high frequency amplification is present. The closeup

view in Fig. 10 displays the elimination of the RRO which

occurs at frequencies of 120m Hz where m = 1, 2, ..., 33.

VI. CONCLUSION

This paper presented an adaptive feedforward disturbance

rejection scheme for a HDD. The RRO of the disturbance

is attenuated through the use of an adaptive feedforward

model and the remaining disturbance is modeled with neural

techniques using radial basis functions. The control scheme

was experimentally tested without retuning at various head

and track positions on a HDD to show the improvement in

TMR.
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