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Abstract— The paper presents an extension of cumulant-
based control theory over a finite horizon for a class of multi-
player pursuit-evasion wherein the evolution of the states of
the game in response to adversarial strategies selected by
pursuit and evasion teams from the efficient Pareto sets of
admissible strategies is described by a stochastic linear differen-
tial equation and an integral-quadratic performance-measure.
Both cooperation within each team and competition between
the teams presumably exist. A direct dynamic programming
approach for the Mayer optimization problem is used to solve
for a multi-cumulant and Pareto-based solution when the
members in each team optimally implement collective strategies
and effectively shape the distribution of their Chi-squared
random measures of performance associated with this special
class of stochastic multi-player pursuit-evasion games.

I. INTRODUCTION

Since the 1950s, the work of Issacs [3] in deterministic
pursuit-evasion game of a single pursuer and a single evader
with perfect information and common knowledge has been
greatly extended to pursuit-evasion with multiple pursuers
and multiple evaders. Recent developments [4], [7] and
important applications therein respectively treat probabilistic
discrete-time and continuous-time problems with averaged
performance indices. To the best knowledge of the authors,
there hasn’t yet been any work done for stochastic multi-
player pursuit-evasion wherein the members in each team
implement collective strategies to optimize their realized
performance distribution beyond the traditional long-run av-
erage performance while in the competition with the other
rival team and Nature’s mixed random strategies. To address
this completely unexplored research area, the present work
presumes a cognitive model of Nature actions against which
pursuit and evasion teams evaluate how they are doing. In ef-
fect pursuit and evasion teams apply criteria of performance
to their coalitive decision strategies in response to almost all
realizations generated by Nature. Such criteria are concerned
with the actions imposed by Nature. Both rival teams try
to anticipate what Nature is going to do in the future and
they choose their actions to optimize performances given
their anticipations. In other words, pursuit and evasion teams
are conscious that their respective criteria of performance
are dependent on Nature’s mixed random realizations in the
course of pursuit and evasion. Therefore, the minimization
of the average measures of performance guarantees a priori
nothing about the actual performance distributions because
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Nature ultimately decides all the realizations of environmen-
tal interferences for the underlying stochastic process.

This paper is organized to provide innovative answers
to the emerging unresolved questions: 1) What if pursuit
and evasion teams are not reasonably content with such a
limited average measure of performance as often seen in all
existing state-of-the-art literatures? 2) Is there an efficient
and tractable method that calculates exactly higher-order
characteristics of the performance distribution? and 3) What
new team strategies may be defined to directly influence
the shared and conflicting performance distribution and to
guarantee its robustness?

II. PROBLEM FORMULATION

For analytical tractability, a class of differential games
against Nature whose interaction dynamics of pursuers and
evaders are linear and performance measures are quadratic
functions of the states and controls is considered. Specifi-
cally, a pursuit-evasion game with team P with mP pursuers,
identified as m1, . . . , mP , and team E with mE evaders,
identified as m1, . . . , mE , in an open subset of Hilbert space.
Denote by xX

i (t) � xX
i (t, ωX

i ) : [t0, tf ] × ΩX
i �→ R

nX
i

belonging to the Hilbert space L2
FX

it

(ΩX
i ; C([t0, tf ]; RnX

i ))

of R
nX

i -valued, square integrable processes on [t0, tf ] that
are adapted to the σ-field FX

it generated by wX
i (t) with

E
{∫ tf

t0
(xX

i )T (τ)xX
i (τ)dτ

}
< ∞ the state variables for

the members i = 1, . . . , mX in each non-cooperative team
X = P,E whose interactive relations are described by

dxX
i (t) = (AX

i (t)xX
i (t) + BX

ui(t)u
X
i (t))dt

+ GX
i (t)dwX

i (t), xX
i (t0) = xX

i0 (1)

where the initial states xX
i0 are known. Nature with action

space of wX
i (t) � wX

i (t, ωX
i ) : [t0, tf ] × ΩX

i �→ R
pX

i are
the pX

i -dimensional stationary Wiener process defined with
{FX

it }t≥0 being its natural filtration on complete filtered
probability spaces (ΩX

i ,FX
i , {FX

it }t≥0,P
X
i ) over [t0, tf ]

with the correlations of independent increments

E
{
[wX

i (τ) − wX
i (ξ)][wX

i (τ) − wX
i (ξ)]T

}
= WX

i |τ − ξ|,

and continuous-time coefficients AX
i ∈ C([t0, tf ]; RnX

i ×nX
i ),

BX
ui ∈ C([t0, tf ]; RnX

i ×mX
i ), and GX

i ∈ C([t0, tf ]; RnX
i ×pX

i ).
In (1), uX

i ∈ UX
i are the admissible controls for the members

in each team where UX
i ∈ L2

FX
it

(ΩX
i ; C([t0, tf ]; RmX

i ))

are the subsets of Hilbert space of R
mX

i -valued, square
integrable processes on [t0, tf ] that are adapted to the σ-field
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FX
it generated by wX

i (t). For simplicity of notation, let xX �[
(xX

1 )T , . . . , (xX
mX

)T
]T

, uX �
[
(uX

1 )T , . . . , (uX
mX

)T
]T

,
AX � diag(AX

1 , . . . , AX
mX

), BX
u � diag(BX

u1
, . . . , BX

umX
),

and GX � diag(GX
1 , . . . , GX

mX
). Then, the homogeneous

interactions within each rival team can be rewritten as

dxX(t) = (AX(t)xX(t) + BX
u (t)uX(t))dt

+ GX(t)dwX(t) , xX(t0) = xX
0 (2)

and the heterogenous interactions for the multi-player
stochastic pursuit-evasion modeled on [t0, tf ] is given by

dx(t) = (A(t)x(t) + BP (t)uP (t) + BE(t)uE(t))dt

+ G(t)dw(t) , x(t0) = x0 (3)

where the aggregate coefficients A � diag(AP , AE), BP �[
(BP

u )T , 0
]T

, BE �
[
0, (BE

u )T
]T

, G � diag(GP , GE),

x �
[
(xP )T , (xE)T

]T
, dw �

[
(dwP )T , (dwE)T

]T
, and

W � diag(WP
1 , . . . , WP

mP
,WE

1 , . . . , WE
mE

). Suppose fur-
ther that UP � ΠmP

i=1U
P
i , UE � ΠmE

j=1U
E
j , X �

ΠmP

i=1R
nP

i × ΠmE

j=1R
nE

j . Then, associated with admissible 3-
tuple (x(·), uP (·), uE(·)) and a sample path realization from
Nature is a traditional performance-measure JX

i : X ×UP ×
UE �→ R

+ for which member i in team X attempts to
optimize in presence of the other rival team’s confrontations

JX
i (x0;u

P (·), uE(·)) = xT (tf )QX
ifx(tf )

+

∫ tf

t0

[
xT(τ)QX

i (τ)x(τ) +

mP∑
j=1

(uP
j )T (τ)RXP

ij (τ)uP
j (τ)

+

mE∑
j=1

(uE
j )T (τ)RXE

ij (τ)uE
j (τ)

]
dτ (4)

subject to the dynamics of the differential game (3) where
QX

if ∈ R
(
PmP

i=1
nP

i +
PmE

j=1
nE

j )×(
PmP

i=1
nP

i +
PmE

j=1
nE

j ), QX
i ∈

C([t0, tf ]; R(
PmP

i=1
nP

i +
PmE

j=1
nE

j )×(
PmP

i=1
nP

i +
PmE

j=1
nE

j )), cross-
coupling control inputs RXP

ij ∈ C([t0, tf ]; RmP
j ×mP

j ) and

RXE
ij ∈ C([t0, tf ]; RmE

j ×mE
j ) are symmetric and positive

semidefinite with RXP
ij (t) and RXE

ij (t) invertible.
Within team X , all the members decide to act coopera-

tively via a negotiating solution that comes from a coalitive
Pareto decision subset UX

C of the class of permissible de-
cisions UX . This solution is particularly attractive with the
property that if any other solution is used at least one of
the team members is penalized in the sense that his realized
performance is worse, or all the members do the same.

Definition 1: Efficient Pareto Control Decisions.
For any random realization ωX ∈ ΩX drawn by Nature, the
coalitive strategies ûP

C and ûE
C are Pareto efficient if

(ûP
C , ûE

C) ∈ arg min
uP

C
∈UP

C
,uE

C
∈UE

C

{
JX

i (x0;u
P
C , uE

C)
}mX

i=1
. (5)

The point (JX
1 (x0;u

P
C , uE

C), . . . , JX
mX

(x0;u
P
C , uE

C)) ∈ R
mX

is called a Pareto solution. The set of all Pareto solutions is
called the Pareto frontier.

In the subsequent analysis, the set of parameters, WX

represents for team cooperative profiles ξX ∈ WX

WX �

{
ξX ∈ R

mX :

mX∑
i=1

ξX
i = 1; 0 < ξX

i ≤ 1

}
. (6)

Proposition 1: Efficient Pareto Parameterizations.
Let ξX ∈ WX and ωX ∈ ΩX . If

(ûP
C , ûE

C)∈ arg min
uP

C
∈UP

C
,uE

C
∈UE

C

{
mX∑
i=1

ξX
i JX

i (x0;u
P
C , uE

C)

}
(7)

then (ûP
C , ûE

C) is Pareto efficient.
Since the performance-measure (4) is a convex function on
the convex set UP

C ×UE
C with the convex constraint (3), the

problem of solving for a set of efficient Pareto decisions
within each team X with a vector-valued performance-
measure criterion is equivalent to the problem of solving an
mX − 1 parameter family of optimal control problems with
scalar cost criteria [5].

Proposition 2: Necessary and Sufficient Conditions.
Suppose UP

C × UE
C is convex and realized performance

measure JX
i is convex and concave with respect to uP

C and
uE

C . The 2-tuple (ûP
C , ûE

C) is efficient if and only if there
exits ξX ∈ WX such that ûP

C and ûE
C are the corresponding

Pareto-efficient strategies obtained as the argument of

min
uP

C
∈UP

C
,uE

C
∈UE

C

{
JX

ξX (x0;u
P
C , uE

C) �

mX∑
i=1

ξX
i JX

i (x0;u
P
C , uE

C)

}
However, there are, in general, many Pareto solutions which
depend on parameters ξX and Nature’s actions ωX . This
observation raises the question as to which one is the best.
To address this question, the present work therefore suggests
an emerging arena of what is called performance robustness
against Nature which is now explored by the cumulant-based
control theory, in conjunction with the Pareto efficiency.

Let QX
f �

∑mX

i=1 ξX
i QX

if , QX �
∑mX

i=1 ξX
i QX

i , RXP
j �∑mX

i=1 ξX
i RXP

ij , and RXE
j �

∑mX

i=1 ξX
i RXE

ij . Then, the
aggregate performance on a realization can be rewritten as

JX
ξX (x0; û

P
C(·), ûE

C(·)) = xT (tf )QX
f x(tf )

+

∫ tf

t0

[
xT (τ)QX(τ)x(τ)+

mP∑
j=1

(ûP
cj)

T
P (τ)RXP

j (τ)(ûcj)
P
P (τ)

+

mE∑
j=1

(ûE
cj)

T
P (τ)RXE

j (τ)(ûE
cj)P (τ)

]
dτ . (8)

For a compact notation, let RXP � diag(RXP
1 , . . . , RXP

mX
),

and RXE � diag(RXE
1 , . . . , RXE

mX
). The negotiating

performance-measure (8) associated with team X becomes

JX
ξX (x0; û

P
C(·), ûE

C(·)) = xT (tf )QX
f x(tf )

+

∫ tf

t0

[
xT (τ)QX(τ)x(τ) + (ûP

C)T (τ)RXP (τ)ûP
C(τ)

+ (ûE
C)T (τ)RXE(τ)ûE

C(τ)
]
dτ. (9)

In fact, the game is zero-sum only if RPP = −REP � RP ,
REE = −RPE � RE , QP

f = −QE
f � Qf , and QP =
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−QE � Q. Replacing these insights into (9), one obtains
the realized performance-measure for the pursuit-evasion

Jξ(x0; û
P
C(·), ûE

C(·)) = xT (tf )Qfx(tf )

+

∫ tf

t0

[
xT (τ)Q(τ)x(τ) + (ûP

C)T (τ)RP (τ)ûP
C(τ)

− (ûE
C)T (τ)RE(τ)ûE

C(τ)
]
dτ. (10)

In addition, the aggregate system (3) in the absence of uncer-
tain disturbances is assumed to be uniformly exponentially
stable. For instance, there exist positive constants η1 and η2

such that the pointwise matrix norm of the closed-loop state
transition matrix for pursuit-evasion satisfies the inequality

||Φ(t, τ)|| ≤ η1e
−η2(t−τ) ∀ t ≥ τ ≥ t0 .

The pair (A(t), [BP (t), BE(t)]) is pointwise stabilizable
if there exist bounded matrix-valued functions KP (t)
and KE(t) so that the closed-loop system dx(t) =(
A(t) + BP (t)KP (t) + BE(t)KE(t)

)
x(t)dt is uniformly

exponentially stable.
As shown in [6], all cumulants of the IQF random measure

of performance have the same quadratic-affine functional
form given the linear-quadratic structure of the system con-
sidered therein. This common form of the cumulants facil-
itates the definition of a cumulant-based performance index
and the formulation of an optimization problem involving
a finite number of the cumulants of Jξ. Therefore, it is
reasonable to restrict the search for decision strategies to
linear time-varying decision laws by the rules of action

ûP
C(t) = γ̂P

C (t, x(t)) � KP (t)x(t) , (11)

ûE
C(t) = γ̂E

C (t, x(t)) � KE(t)x(t) (12)

where KP ∈ C([t0, tf ]; R
PmP

i=1
mP

i ×(
PmP

i=1
nP

i +
PmE

j=1
nE

j )) and
KE ∈ C([t0, tf ]; R

PmE
j=1

mE
j ×(

PmP
i=1

nP
i +

PmE
j=1

nE
j )) are admis-

sible gains for teams P and E. With the decision strategies
(11)-(12), the dynamics of pursuit-evasion (3) becomes

dx(t) =
[
A(t) + BP (t)KP (t) + BE(t)KE(t)

]
x(t)dt

+ G(t)dw(t) , x(t0) = x0 (13)

together with its realized measure of performance

Jξ(x0;K
P (·),KE(·))= xT(tf )Qfx(tf )+

∫ tf

t0

xT(τ)
[
Q(τ)

+(KP )T(τ)RP(τ)KP(τ)−(KE)T(τ)RE(τ)KE(τ)
]
x(τ)dτ

(14)

Clearly then, the performance-measure (14) is now a random
variable with Chi-squared type. Hence, the uncertainty of
shared performance distribution for conflicting teams must
be assessed via a complete set of higher-order statistics
beyond the statistical averaging. Next compact and robust
results not only offer a tractable method for higher-order
characteristics of (14) but also allow the incorporation of a
class of linear feedback decision syntheses as being utilized
in the cumulant-based control optimization.

Theorem 1: Cumulants in Multi-Player Pursuit-Evasion.
Suppose the multi-player pursuit-evasion is described by
(13)-(14) where (A,BP ) and (A,BE) are uniformly stabiliz-
able. Two rival teams respectively choose coalitive decisions
(ûP

C(t), ûE
C(t)) = (KP (t)x(t),KE(t)x(t)). For any given

k ∈ Z
+, ξP ∈ WP , and ξE ∈ WE , the kth cumulant in

multi-player pursuit-evasion is given by

κk(t0, x0) = xT
0 H(t0, k)x0 + D(t0, k) (15)

where the cumulant-generating components {H(α, i)}k
i=1

and {D(α, i)}k
i=1 evaluated at α = t0 satisfy the following

differential equations (with the dependence of H(α, i) and
D(α, i) upon the admissible gains KP and KE suppressed)

d

dα
H(α, 1) = (16)

−
[
A(α) + BP (α)KP (α) + BE(α)KE(α)

]T
H(α, 1)

− H(α, 1)
[
A(α)+ BP (α)KP (α)+ BE(α)KE(α)

]
− Q(α)

− (KP )T (α)RP (α)KP (α) + (KE)T (α)RE(α)KE(α)

and, for 2 ≤ i ≤ k

d

dα
H(α, i) =

−
[
A(α) + BP (α)KP (α) + BE(α)KE(α)

]T
H(α, i)

− H(α, i)
[
A(α) + BP (α)KP (α) + BE(α)KE(α)

]
−

i−1∑
j=1

2i!

j!(i − j)!
H(α, j)G(α)WGT (α)H(α, i − j), (17)

together with 1 ≤ i ≤ k

d

dα
D(α, i) = −Tr

{
H(α, i)G(α)WGT (α)

}
(18)

where the terminal-value conditions H(tf , 1) = Qf ,
H(tf , i) = 0 for 2 ≤ i ≤ k and D(tf , i) = 0 for 1 ≤ i ≤ k.

III. PROBLEM STATEMENTS

Suffice it to say here that all the performance-measure
cumulant values (15) depend in part of the known initial
condition x(t0). Although different states x(t) will result in
different values for the “cost-to-go” where (14) is redefined
by replacing the lower integration limit t0 with the running
time variable α, the cumulant values are however, functions
of time-backward evolutions of the cumulant-generating
components H(α, i) and D(α, i) that totally ignore all the
intermediate values x(t). This fact therefore makes the new
optimization problem particularly unique as compared with
the more traditional dynamic programming class of investiga-
tions. Consequently, the time-backward trajectories (16)-(18)
should be considered as the “new” dynamical equations from
which the resulting Mayer optimization [2] and associated
value function in the framework of dynamic programming
therefore depend on these “new” states H(α, i) and D(α, i),
not the classical states x(t) as the people may often expect.

In the subsequent development, the subset of symmetric
matrices of the vector space of all n × n matrices with real
elements is denoted by S

n where n �
∑mP

i=1 nP
i +

∑mE

j=1 nE
j .
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Now let k-tuple variables H and D be defined as follows
H(·) � (H1(·), . . . ,Hk(·)) and D(·) � (D1(·), . . . ,Dk(·))
for each element Hi ∈ C1([t0, tf ]; Sn) of H and Di ∈
C1([t0, tf ]; R) of D having the representations Hi(·) =
H(·, i) and Di(·) = D(·, i) with the right members satisfying
the dynamic equations (16)-(18) on the horizon [t0, tf ]. For
notational tractability, the following mappings are introduced

Fi : [t0, tf ] × (Sn)k × R
mP ×n × R

mE×n �→ S
n

Gi : [t0, tf ] × (Sn)k �→ R

where mP �
∑mP

i=1 mP
i , mE �

∑mE

j=1 mE
j , and the actions

are given by

F1(α,H,KP ,KE) � −Q(α)

−
[
A(α) + BP (α)KP (α) + BE(α)KE(α)

]T
H1(α)

−H1(α)
[
A(α) + BP (α)KP (α) + BE(α)KE(α)

]
− (KP )T (α)RP (α)KP (α) + (KE)T (α)RE(α)KE(α),

Fi(α,H,KP ,KE) �

−
[
A(α) + BP (α)KP (α) + BE(α)KE(α)

]T
Hi(α)

−Hi(α)
[
A(α) + BP (α)KP (α) + BE(α)KE(α)

]
−

i−1∑
j=1

2i!

j!(i − j)!
Hj(α)G(α)WGT (α)Hi−j(α), 2 ≤ i ≤ k

Gi(α,H) � −Tr
{
Hi(α)G(α)WGT (α)

}
, 1 ≤ i ≤ k .

For a compact formulation, the product mappings follow

F1× · · · × Fk : [t0, tf ]× (Sn)k× R
mP ×n× R

mE×n �→(Sn)k

G1× · · · × Gk : [t0, tf ]× (Sn)k �→ R
k

along with the corresponding notations F � F1 × · · · × Fk

and G � G1 × · · · × Gk. Thus, the dynamic equations of
motion (16)-(18) can be rewritten as follows

d

dα
H(α) = F(α,H(α),KP (α),KE(α)) , H(tf ) (19)

d

dα
D(α) = G(α,H(α)) , D(tf ) (20)

where H(tf ) = (Qf , 0, . . . , 0) and D(tf ) = (0, . . . , 0).
Note that the product system uniquely determines H and

D once the admissible decision gains KP and KE are
specified. Hence, H and D are considered as H(·,KP ,KE)
and D(·,KP ,KE), respectively. The performance index in
cumulant-based control optimization can now be formulated
in the admissible decision gains KP and KE .

Definition 2: Performance Index.
Fix k ∈ Z

+ and μ = {μi ≥ 0}k
i=1 with μ1 > 0. Then for

given (t0, x0), ξP ∈ WP , and ξE ∈ WE , the performance
index φ0 : {t0}× (Sn)k ×R

k �→ R
+ for the cumulant-based

optimization is defined as follows

φ0

(
t0,H(t0,K

P,KE),D(t0,K
P,KE)

)
�

k∑
i=1

μiκi(K
P,KE)

=
k∑

i=1

μi

[
xT

0 Hi(t0,K
P,KE)x0 + Di(t0,K

P ,KE)
]

(21)

where the parametric design freedom μi mutually chosen by
adversarial teams represent different levels of influence as
they deem important to the realized performance distribu-
tion and cumulant-supporting solutions {Hi(t0,K

P ,KE) ≥
0}k

i=1 and {Di(t0,K
P ,KE) ≥ 0}k

i=1 evaluated at α = t0
satisfy the dynamical equations of motion (19)-(20).
For the given terminal data (tf ,Hf ,Df ), the classes
KP

tf ,Hf ,Df ;ξP ,ξE ;μ and KE
tf ,Hf ,Df ;ξP ,ξE ;μ of admissible de-

cision gains are then defined.
Definition 3: Admissible Decision Gain Parameters.

Let the compact subsets K
P
⊂ R

mP ×n and K
E
⊂ R

mE×n

be the sets of allowable gain values. For given ξP ∈
WP , ξE ∈ WE , k ∈ Z

+, and μ = {μi ≥ 0}k
i=1

with μ1 > 0, the sets of admissible decision strategies
KP

tf ,Hf ,Df ;ξP ,ξE ;μ and KE
tf ,Hf ,Df ;ξP ,ξE ;μ are assumed to be

the classes of C([t0, tf ]; RmP ×n) and C([t0, tf ]; RmE×n)

with values KP (·) ∈ K
P

and KE(·) ∈ K
E

for which
solutions to the dynamic equations (19)-(20) exist on [t0, tf ].
If the game admits a saddle-point equilibrium in pure
strategies, there exist KP∗ ∈ KP

tf ,Hf ,Df ;ξP ,ξE ;μ and
KE∗ ∈ KE

tf ,Hf ,Df ;ξP ,ξE ;μ, such that the lower bound
φ0

(
t0,H(t0,K

P∗,KE),D(t0,K
P∗,KE)

)
is less than the

saddle-point φ0

(
t0,H(t0,K

P∗,KE∗),D(t0,K
P∗,KE∗)

)
which is also bounded from above by the upper bound
φ0

(
t0,H(t0,K

P ,KE∗),D(t0,K
P ,KE∗)

)
for any arbitrary

KP ∈ KP
tf ,Hf ,Df ;ξP ,ξE ;μ and KE ∈ KE

tf ,Hf ,Df ;ξP ,ξE ;μ.
Theorem 2: Existence of Saddle-Point Equilibrium.

If KP
tf ,Hf ,Df ;ξP ,ξE ;μ and KE

tf ,Hf ,Df ;ξP ,ξE ;μ are nonempty,
compact and convex and the continuous performance index
φ0

(
t0,H(t0,K

P ,KE),D(t0,K
P ,KE)

)
is strictly convex

in KP and strictly concave in KE , the pursuit-evasion admits
a saddle-point equilibrium in pure strategies.

Proof: The sets of pure strategies KP
tf ,Hf ,Df ;ξP ,ξE ;μ

and KE
tf ,Hf ,Df ;ξP ,ξE ;μ are nonempty, compact and con-

vex. What remains is to show the continuous function
φ0

(
t0,H(t0,K

P ,KE),D(t0,K
P ,KE)

)
is strictly convex

in KP and strictly concave in KE . It can be done by
aggregating the supporting equations (16)-(17) as follows

d

dα
Λ(α) = −μ1Q(α)

−
[
A(α) + BP (α)KP (α) + BE(α)KE(α)

]T
Λ(α)

− Λ(α)
[
A(α) + BP (α)KP (α) + BE(α)KE(α)

]
−μ1(K

P )T (α)RP (α)KP (α)+μ1(K
E)T (α)RE(α)KE(α)

−
k∑

i=2

μi

i−1∑
j=1

2i!

j!(i − j)!
Hj(α)G(α)WGT (α)Hi−j(α) (22)

where Λ(α) �
∑k

i=1 μiHi(α) and Λ(tf ) = μ1Qf . The
fundamental theorem of calculus and stochastic differential
rule applied to xT (τ)Λ(τ)x(τ) yield the result

E
{
xT (tf )Qfx(tf )

}
− xT

0 Λ(t0)x0 =

E

{∫ tf

t0

d
[
xT (τ)Λ(τ)x(τ)

]}
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= E

{∫ tf

t0

[
dxT (τ)Λ(τ)x(τ) + xT (τ)Λ(τ)dx(τ)

]}
+ E

{∫ tf

t0

xT (τ)
d

dτ
Λ(τ)x(τ)dτ

}
+ E

{∫ tf

t0

dxT (τ)Λ(τ)dx(τ)

}
.

After some manipulations, it follows that

E
{
xT (tf )Qfx(tf )

}
− xT

0 Λ(t0)x0

= E

{∫ tf

t0

xT (τ)
[
A(τ) + BP (τ)KP (τ) + BE(τ)KE(τ)

]T

· Λ(τ)x(τ)dτ

}
+ E

{∫ tf

t0

xT (τ)
d

dτ
Λ(τ)x(τ)dτ

}

+E

{∫ tf

t0

xT(τ)Λ(τ)
[
A(τ) + BP(τ)KP(τ) + BE(τ)KE(τ)

]
x(τ)dτ

}
+

∫ tf

t0

Tr
{
Λ(τ)G(τ)WGT (τ)

}
dτ. (23)

Note that an integral form of the solution of (18) is given by

Di(t0) =

∫ tf

t0

Tr
{
Hi(τ)G(τ)WGT (τ)

}
dτ.

In view of the definition of Λ(·), it is then easy to see that

k∑
i=1

μiDi(t0) =

∫ tf

t0

Tr
{
Λ(τ)G(τ)WGT (τ)

}
dτ.

Hence, the performance index (21) is now rewritten as

φ0(t0,H(t0,K
P ,KE),D(t0,K

P ,KE))

= xT
0 Λ(t0)x0 +

∫ tf

t0

Tr
{
Λ(τ)G(τ)WGT (τ)

}
dτ. (24)

Replacing the results (22) and (24) into (23), it yields

φ0(t0,H(t0,K
P ,KE),D(t0,K

P ,KE)) = (25)

E
{
xT (tf )Qfx(tf )

}
+ E

{∫ tf

t0

xT (τ)
[
μ1Q(τ)

+ μ1(K
P )T (τ)RP (τ)KP (τ) − μ1(K

E)T (τ)RE(τ)KE(τ)

+
k∑

i=2

μi

i−1∑
j=1

2i!

j!(i−j)!
Hj(τ)G(τ)WGT(τ)Hi−j(τ)

]
x(τ)dτ

}

which leads to

φ0(t0,H(t0,K
P ,KE),D(t0,K

P ,KE)) = (26)

Tr {QfP (tf )} + Tr

{∫ tf

t0

[
μ1Q(τ)

+ μ1(K
P )T (τ)RP (τ)KP (τ) − μ1(K

E)T (τ)RE(τ)KE(τ)

+

k∑
i=2

μi

i−1∑
j=1

2i!

j!(i−j)!
Hj(τ)G(τ)WGT(τ)Hi−j(τ)

]
P (τ)dτ

}

where P (s) � E{x(s)xT (s)} with P (t0) = x0x
T
0 satisfies

d

ds
P (s) = P (s)[A(s)+BP(s)KP(s)+BE(s)KE(s)]T (27)

+ [A(s) + BP(s)KP(s)+BE(s)KE(s)]P (s)+G(s)WGT(s)

Hence, the continuous function (21) is strictly convex in KP

and strictly concave in KE . Therefore, the pursuit-evasion
game considered here admits a saddle-point equilibrium in
accordance of Proposition 3.3 in [1].
Next, one may state the optimization problem for the stochas-
tic multi-player pursuit-evasion.

Definition 4: Optimization Problem.
Fix ξP ∈ WP , ξE ∈ WE , k ∈ Z

+, and μ = {μi ≥ 0}k
i=1

with μ1 > 0. Then, the optimization problem for multi-player
pursuit-evasion over [t0, tf ] is given by

min
KP (·)∈KP

tf ,Hf ,Df ;ξP ,ξE ;μ

max
KE(·)∈KE

tf ,Hf ,Df ;ξP ,ξE ;μ

φ0

(
t0,H(t0,K

P ,KE),D(t0,K
P ,KE)

)
(28)

subject to the dynamic equations (19)-(20) for α ∈ [t0, tf ].
As a tenet of transition from the principle of optimality, a
family of games based on different starting points is now
of concerned. With an intermission of time, ε in mid-play
considered here, the path has reached some definitive point at
its commencement. There exist some potential (H,D) which
may be reached at the end of the intermission for all possible
choices of (KP ,KE).

Suppose that for each endpoint, the game beginning there
has already been solved. Then, the value function V(ε,H,D)
resulting from each choice of (KP ,KE) is known, and they
are to be so chosen as to render it minimax. As the duration
of the intermission approaches tf together with the existence
of a saddle-point equilibrium, it leads to the necessary and
sufficient Hamilton-Jacobi-Isaacs (HJI) condition.

Definition 5: Playable Set.
Let playable set Q be defined as Q �

{
(ε,Y,Z) ∈ [t0, tf ]×

(Sn)k ×R
k such that KP

ε,Y,Z;ξP ,ξE ;μ×KE
ε,Y,Z;ξP ,ξE ;μ 
= 0

}
.

Theorem 3: HJI Equation-Mayer Problem.
Let (ε,Y,Z) be any interior point of the playable set Q
at which the value function V(ε,Y,Z) is differentiable. If
there exists a saddle point (KP∗,KE∗) ∈ KP

ε,Y,Z;ξP ,ξE ;μ ×

KE
ε,Y,Z;ξP ,ξE ;μ, then the partial differential equation

0 = min
KP ∈K

P
max

KE∈K
E

{
∂

∂ε
V(ε,Y,Z)

+
∂

∂ vec(Y)
V(ε,Y,Z) · vec(F(ε,Y,KP ,KE))

+
∂

∂ vec(Z)
V(ε,Y,Z) · vec(G(ε,Y))

}
(29)

is satisfied together with V(t0,H0,D0) = φ0(t0,H0,D0)
and vec(·) the vectorizing operator of enclosed entities.
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IV. SADDLE-POINT DECISION STRATEGIES

Recall that the optimization problem being considered
herein is in “Mayer form” and can be solved by applying
an adaptation of the Mayer form verification theorem of
dynamic programming given in [2]. Often, it is required to
denote the terminal time and states of a family of optimiza-
tion problems as (ε,Y,Z) rather than (tf ,Hf ,Df ). That is,
for ε ∈ [t0, tf ], the states of (19)-(20) defined on [t0, ε] have
the terminal values denoted by H(ε) ≡ Y and D(ε) ≡ Z .
Since the performance index (21) is quadratic affine in terms
of arbitrarily fixed x0, this observation suggests a solution
to the HJI equation (29) may be of the form as follows.

For any given interior point (ε,Y,Z) of the reachable
set Q at which the real-valued function W(ε,Y,Z) �

xT
0

∑k
i=1 μi(Yi + Ei(ε))x0 +

∑k
i=1 μi(Zi + Ti(ε)) is differ-

entiable and time parametric functions Ei ∈ C1([t0, tf ]; Sn)
and Ti ∈ C1([t0, tf ]; R) are yet to be determined. Moreover,
the time derivative of W(ε,Y,Z) can be obtained as below

d

dε
W(ε,Y,Z) =

k∑
i=1

μi

(
Gi(ε,Y) +

d

dε
Ti(ε)

)

+ xT
0

k∑
i=1

μi

(
Fi(ε,Y,KP ,KE) +

d

dε
Ei(ε)

)
x0 . (30)

The substitution of this candidate for the value function into
the HJI equation (29) and making use of the result (30) yield

0 ≡ min
KP ∈K

P
max

KE∈K
E

{
xT

0

k∑
i=1

μi

d

dε
Ei(ε)x0+

k∑
i=1

μi

d

dε
Ti(ε)

+ xT
0

k∑
i=1

μiFi(ε,Y,KP ,KE)x0 +

k∑
i=1

μiGi(ε,Y)

}
(31)

Differentiating the expression within the bracket of (31) with
respect to KP and KE yield the necessary conditions for an
extremum of the performance index (21) on [t0, ε]

KP (ε,Y) = −(RP )−1(ε)(BP )T (ε)

k∑
r=1

μ̂rYr , (32)

KE(ε,Y) = (RE)−1(ε)(BE)T (ε)
k∑

r=1

μ̂rYr (33)

where the normalized weights μ̂r � μi/μ1 with μ1 > 0.
Substituting the gain expressions (32) and (33) into the right
member of the HJI equation (31) yields the value of minimax

xT
0

[
k∑

i=1

μi

d

dε
Ei(ε) − AT (ε)

k∑
i=1

μiYi −
k∑

i=1

μiYiA(ε)

− μ1Q(ε) +

k∑
r=1

μ̂rYrB
P (ε)(RP )−1(ε)(BP )T (ε)

k∑
i=1

μiYi

+

k∑
i=1

μiYiB
P (ε)(RP )−1(ε)(BP )T (ε)

k∑
s=1

μ̂sYs

−
k∑

r=1

μ̂rYrB
E(ε)(RE)−1(ε)(BE)T (ε)

k∑
i=1

μiYi

−

k∑
i=1

μiYiB
E(ε)(RE)−1(ε)(BE)T (ε)

k∑
s=1

μ̂sYs

− μ1

k∑
r=1

μ̂rYrB
P (ε)(RP )−1(ε)(BP )T (ε)

k∑
s=1

μ̂sYs

+ μ1

k∑
r=1

μ̂rYrB
E(ε)(RE)−1(ε)(BE)T (ε)

k∑
s=1

μ̂sYs

−

k∑
i=2

μi

i−1∑
j=1

2i!

j!(i − j)!
YjG(ε)WGT (ε)Yi−j

]
x0

+

k∑
i=1

μi

d

dε
Ti(ε) −

k∑
i=1

μiTr
{
YiG(ε)WGT (ε)

}
. (34)

It is now necessary to exhibit functions {Ei(·)}
k
i=1 and

{Ti(·)}
k
i=1 which will render the left side of (34) equal to

zero for ε ∈ [t0, tf ], when {Yi}
k
i=1 are evaluated along

solution trajectories of the cumulant-generating equations.
Studying the expression (34) reveals the following results

d

dε
E1(ε) = AT (ε)H1(ε) + H1(ε)A(ε) + Q(ε) (35)

−H1(ε)B
P (ε)(RP )−1(ε)(BP )T (ε)

k∑
s=1

μ̂sHs(ε)

−
k∑

r=1

μ̂rHr(ε)B
P (ε)(RP )−1(ε)(BP )T (ε)H1(ε)

+ H1(ε)B
E(ε)(RE)−1(ε)(BE)T (ε)

k∑
s=1

μ̂sHs(ε)

+
k∑

r=1

μ̂rHr(ε)B
E(ε)(RE)−1(ε)(BE)T (ε)H1(ε)

+
k∑

r=1

μ̂rHr(ε)B
P (ε)(RP )−1(ε)(BP )T (ε)

k∑
s=1

μ̂sHs(ε)

−
k∑

r=1

μ̂rHr(ε)B
E(ε)(RE)−1(ε)(BE)T (ε)

k∑
s=1

μ̂sHs(ε)

and, for 2 ≤ i ≤ k

d

dε
Ei(ε) = AT (ε)Hi(ε) + Hi(ε)A(ε)

−Hi(ε)B
P (ε)(RP )−1(ε)(BP )T (ε)

k∑
s=1

μ̂sHs(ε)

−

k∑
r=1

μ̂rHr(ε)B
P (ε)(RP )−1(ε)(BP )T (ε)Hi(ε)

+ Hi(ε)B
E(ε)(RE)−1(ε)(BE)T (ε)

k∑
s=1

μ̂sHs(ε)

+

k∑
r=1

μ̂rHr(ε)B
E(ε)(RE)−1(ε)(BE)T (ε)Hi(ε)

+

i−1∑
j=1

2i!

j!(i − j)!
Hj(ε)G(ε)WGT (ε)Hi−j(ε) (36)
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together, for 1 ≤ i ≤ k

d

dε
Ti(ε) = Tr

{
Hi(ε)G(ε)WGT (ε)

}
, 1 ≤ i ≤ k (37)

will work. Furthermore, at the boundary condition, it is
necessary to have W (t0,H0,D0) = φ0 (t0,H0,D0), i.e.

xT
0

k∑
i=1

μi(Hi0 + Ei(t0))x0 +

k∑
i=1

μi(Di0 + Ti(t0))

= xT
0

k∑
i=1

μiHi0x0 +
k∑

i=1

μiDi0 .

Thus, matching the boundary condition yields the corre-
sponding initial value conditions Ei(t0) = 0 and Ti(t0) = 0
for the equations (35)-(37). Applying the decision gains
specified in (32) and (33) along the solution trajectories of
the equations (19)-(20), these equations become Riccati-type.
Thus, whenever these corresponding equations admit solu-
tions {Hi(·)}

k
i=1 and {Di(·)}

k
i=1, the existence of {Ei(·)}

k
i=1

and {Ti(·)}
k
i=1 satisfying the equations (35)-(37) are then

assured. By comparing the parametric equations (35)-(37)
to those Riccati-type equations, one recognizes that these
equations are related to one another by

d

dε
Ei(ε) = −

d

dε
Hi(ε) and

d

dε
Ti(ε) = −

d

dε
Di(ε)

for 1 ≤ i ≤ k. Enforcing the initial value conditions of
Ei(t0) = 0 and Ti(t0) = 0 uniquely implies that Ei(ε) =
Hi(t0)−Hi(ε) and Ti(ε) = Di(t0)−Di(ε) for all ε ∈ [t0, tf ]
and yields a value function W(ε,Y,Z) ≡ V(ε,Y,Z) =
xT

0

∑k
i=1 μiHi(t0)x0 +

∑k
i=1 μiDi(t0) for which the suffi-

cient condition (29) of the verification theorem is satisfied.
Therefore, the feedback decision gains for pursuit team P ,
(32) and evader team E, (33) optimizing the performance
index stated in (21) become optimal

KP∗(ε) = −(RP )−1(ε)(BP )T (ε)

k∑
r=1

μ̂rH
∗
r(ε) , (38)

KE∗(ε) = (RE)−1(ε)(BE)T (ε)

k∑
r=1

μ̂rH
∗
r(ε) . (39)

Theorem 4: Strategies for Multi-Player Pursuit-Evasion.
Consider the multi-player pursuit-evasion game as described
by (13)-(14) where the pairs (A,BP ) and (A,BE) are
uniformly stabilizable. Fix ξP ∈ WP , ξE ∈ WE , k ∈ Z

+,
and μ = {μi ≥ 0}k

i=1 with μ1 > 0. Then, the saddle-point
equilibrium is achieved by non-cooperative decision gains

KP∗(α) = −(RP )−1(α)(BP )T (α)
k∑

r=1

μ̂rH
∗
r(α) (40)

KE∗(α) = (RE)−1(α)(BE)T (α)
k∑

r=1

μ̂rH
∗
r(α) (41)

where μ̂r mutually chosen by rival teams represent various
robustness levels of the common performance distribution

and the optimal solutions {H∗
r(α) ≥ 0}k

r=1 are satisfying

d

dα
H∗

1(α) = −Q(α) − (KP∗)T (α)RP (α)KP∗(α)

−
[
A(α) + BP (α)KP∗(α) + BE(α)KE∗(α)

]T
H∗

1(α)

−H∗
1(α)

[
A(α) + BP (α)KP∗(α) + BE(α)KE∗(α)

]
+ (KE∗)T (α)RE(α)KE∗(α) , H∗

1(tf ) = Qf (42)

and, for 2 ≤ r ≤ k with H∗
r(tf ) = 0

d

dα
H∗

r(α) =

−
[
A(α) + BP (α)KP∗(α) + BE(α)KE∗(α)

]T
H∗

r(α)

−H∗
r(α)

[
A(α) + BP (α)KP∗(α) + BE(α)KE∗(α)

]
−

r−1∑
s=1

2r!

s!(r − s)!
H∗

s(α)G(α)WGT (α)H∗
r−s(α) . (43)

With the saddle-point equilibrium applied to the dynamics
(13), the coupling Pareto-efficient laws (11)-(12) are parti-
tioned consistently by the states (x∗)T =

[
(xP∗)T , (xE∗)T

]
ûP∗

C (t) = (KPP )∗(t)xP∗(t) + (KPE)∗(t)xE∗(t) , (44)

ûE∗
C (t) = (KEP )∗(t)xP∗(t) + (KEE)∗(t)xE∗(t) (45)

where the components of Pareto-efficient decision gains
(KPP )∗, (KPE)∗, (KEP )∗, and (KEE)∗ are determined by
the results (40)-(41) and the partition of cumulant variables

H∗
r =

[
(HPP

r )∗ (HPE
r )∗

(HEP
r )∗ (HEE

r )∗

]
, 1 ≤ r ≤ k

according to the division of the optimal states x∗.

V. CONCLUSIONS

This paper dealt with a multi-player pursuit-evasion differ-
ential game modeled in stochastic and adverse environments.
Matrix differential equations for generating statistics of the
standard integral-quadratic performance-measure used in this
game were derived. A direct dynamic programming approach
was used to solve for a novel saddle-point solution that can
address both decision strategy selection and performance ro-
bustness. These results are expected to make new theoretical
contributions and performance assessment tools for statistical
learning and stochastic game-theoretic communities.
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