
 

 

 

  

Abstract—This paper discusses the nonlinear properties of 

Inerters and their impact on vehicle suspension control. The 

Inerter was recently introduced as an ideal mechanical 

two-terminal element which is a substitute for the mass element 

with the applied force proportional to the relative acceleration 

across the terminals. Until now, ideal Inerters have been applied 

to car, motorcycle and train suspension systems, in which 

significant performance improvement was achieved. However, 

due to the mechanical construction, some nonlinear properties of 

the existing mechanical Inerter models are noted. This paper 

investigates the Inerter nonlinearities, including friction, 

backlash and the elastic effect, and their influence on vehicle 

suspension performance. A testing platform is also built to verify 

the nonlinear properties of the Inerter model. It is shown from 

the results that the suspension performance is in general 

degraded by inerter nonlinearities. However, the overall 

suspension performance with inerters is still better than the 

traditional suspensions. 

I. INTRODUCTION 

HERE are two well-known analogies between mechanical 

and electrical systems, namely the “force-voltage” and 

“force-current” analogies. In the “force-current” analogy, 

the spring, damper and mass of mechanical systems are analog 

to the inductor, resistor and capacitor of electrical systems. 

However, it is noted that one terminal of “mass” is always 

grounded, such that the electrical networks with ungrounded 

capacitors do not have a direct mechanical analogy with 

springs, dampers and masses. As a result, it potentially 

narrows the class of passive mechanical impedances which 

can be physically realized [1]. It was from the appreciation of 

the gap in the old analogy between mechanical and electrical 

networks that a new mechanical element, called Inerter, was 

proposed [2]. An Inerter is an ideal mechanical two-terminal 

element that is a substitute for the mass element in 

mechanical/electrical analogy, with the defining equation as 

follows:  

−
=

d v v
F b

dt

2 1( )
,                                (1) 

in which F is the applied force and b is inertance, while v1 and 

v2 are the velocities of the two terminals. 
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With the introduction of Inerters, all passive network 

impedance (admittance) can be mechanically realized by three 

mechanical elements - springs, dampers and inerters. 

Consequently, broader use of passive network impedance 

(admittance) is allowed to achieve better system performance. 

The first successful application of the Inerter was to road car 

suspension systems [1], where several combining layouts of 

inerters, dampers and springs were optimized with respect to 

various performance criteria. In [3], the optimization was 

further carried out by using the LMI (Linear Matrix 

Inequalities) method, in which all passive transfer functions 

with fixed order were optimized for various performance 

measurements. The resulting passive networks were then 

synthesized by the Bott-Duffin realization method. It was 

shown that the system performance can be further improved 

by allowing higher-order passive impedance, with the 

drawback of very complicated network synthesis. The second 

application of an Inerter was to the mechanical steering 

compensator of high-performance motorcycles [4], where a 

passive network containing an Inerter was used to replace a 

conventional steering damper to improve stability of the 

system in both “wobble” and “weave” modes. The third 

Inerter application was to train suspension systems [5], in 

which the Inerter was located in both the body-bogie and 

bogie-wheel connections. Significant performance 

improvement was achieved, especially when employing an 

inerter between the bogie and the wheel. 

 

As a mechanical network element, the Inerter can be 

realized in various ways. Until now, two realizations of 

Inerters, namely the rack-pinion inerter and ball-screw inerter, 

have been presented [1, 3, 5]. Due to the mechanical 

construction, some inerter nonlinearities have been noticed [1, 

6, 7]. In [1], the friction force and damping effect of the 

rack-pinion inerter were noted and used to simulate the 

frequency responses of a real Inerter model. It was pointed out 

that the experimental data matched better with the theoretical 

Inerter by considering friction forces. In [7], a ball-screw 

inerter model was considered with the backlash and elastic 

effect. The parameters were then adjusted by comparing the 

time responses of the theoretical and practical Inerter models. 

In [6], a buffer network was placed in series with an Inerter to 

remove the nonlinear spiking of the force signals from the 

hydraulic testing rig. Through this arrangement, the Inerter 

device behaves as a damper around the crossover frequency 

and as an ideal Inerter in the intermediate frequency range, 

while at low frequencies it is dominated by friction.  

 

This paper proposes a nonlinear inerter model by 

considering three nonlinear properties, namely the friction, 
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backlash and elastic effect, and discusses their influence on 

vehicle suspension systems. It is arranged as follows: in 

Section II, three basic suspension layouts are introduced to 

evaluate the performance of the vehicle models. In Section III, 

a nonlinear Inerter model is proposed by considering three 

nonlinear properties. In Section IV, an experimental platform 

is built to verify the nonlinearities of a ball-screw Inerter. In 

sections V, nonlinear inerters are applied to the suspension 

analysis of a quarter-car model. It is shown that the suspension 

performance is slightly influenced by the Inerter nonlinearities. 

Finally, some conclusions are drawn in Section VI. 

II. VEHICLE SUSPENSION MODEL  

A. The Suspension Models 

Three suspension layouts shown in Figure 1 are 

considered, where b, c and k represent the inerter, damper and 

spring, respectively. Among them, S1 is the traditional 

suspension, while S2 and S3 are suspension models that 

employ ideal Inerters. It is noted that S2 is a basic parallel 

arrangement and S3 is a basic serial arrangement. 

S1 S2 S3 

 
 

 
Figure 1. Suspension layouts for analysis. 

 

B. The Quarter-Car Model 

A quarter-car model is illustrated in Figure 2 where Q 

represents the suspension layouts. The dynamics of this model 

can be described as follows: 
2 ˆ ˆˆ = −s s sm z s F u ,                              (2) 

2 ˆˆˆ = −u u rm z s u F ,                              (3) 

where “  ̂ ” represents the Laplace transform of the 

corresponding variables, while the tyre force is 

ˆ ˆ ˆ( )= −r t u rF k z z  and the suspension force û  depends on the 

suspension layouts: 

For S1, ˆ ˆ ˆ( )( )= + −s uu k cs z z ,  

For S2, 2ˆ ˆ ˆ( )( )= + + −s uu k cs bs z z ,   

For S3, 
2

ˆ ˆ ˆ( )( )= + −
+

s u

bcs
u k z z

bs c
. 

ms

mu

Q

zs

zu

Fs

zr
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Figure 2. A general quarter-car model. 

The system transfer function matrix can be represented as 

ˆˆ ˆ ˆ[ ] [ ]T T

s u s rz z G F z= , in which G is a 2×2 matrix. To 

measure the vehicle system performance, three performance 

indices are defined as follows [8]:  

1). J1 (ride comfort) 

ˆ ˆ1 ˆ ˆ 22

ˆ ˆ2 ( ) 2 ( )π κ π κ
→→

= =�
r sr s

z zz z
J V T V sT ,      (4) 

2). J3 (dynamic tyre loads) 

ˆ ˆ ˆ3 ( )ˆ ˆ ˆ( )
2

2

1ˆ ˆ2 ( ) 2 ( )π κ π κ
→ −→ −

= =
�

r t u rr t u r
z k z zz k z z

J V T V T
s

, (5) 

3). J5 (dynamic load carrying) 

ˆ5 ˆ
ˆ

→
∞

=
s sF z

J T ,                            (6) 

in which T̂  is the transfer functions with inputs and outputs in 

the subscripts, while V represents the driving velocity andκ  

is the road roughness parameter. The parameters are set as V = 

25 m/s andκ = 5×10
-7

 m
3
cycle

-1
 for performance analyses. It 

was shown in [1] that system performance can be improved 

(i.e. the performance indices can be reduced) by adopting 

inerters into the suspension design. For example, setting the 

parameters of ms = 181.75 kg, mu = 25 kg, kt = 120 kN/m [9] 

and optimizing the performance measures by tuning the values 

of inertance b’s and damping rates c’s, the performance 

improvement of the system is illustrated in Table 1. It is noted 

that the serial layout (S3) achieves better performance for J1 

and J3, while the parallel layout (S2) is better for J5. 

 
Table 1. Performance improvement of the quarter-car model (k = 

120 kN/m). 

Layout J1 Improvement (%) c (Ns/m) b (kg) 

S1 2.9882 0 4981  

S2 2.5773 13.75 3705.4 128.57 

S3 2.4281 18.745 7544.2 366.52 

Layout J3 Improvement (%) c (Ns/m) b (kg) 

S1 598.52 0 4674.8  

S2 548.98 8.2764 3933 104.89 

S3 501.20 16.259 6666.4 363.55 

Layout J5 (×10
-5

) Improvement (%) c (Ns/m) b (kg) 

S1 3.8761 0 10230  

S2 2.0761 46.436 9301.3 328.34 

S3 2.5946 33.061 11174 1232.4 

III. THE NON-LINEARITY OF INERTERS 

Inerters can be mechanically realized in various ways. 

Until now, two types of Inerters, the rack-pinion inerter [1] 

and the ball-screw inerter [5, 6], have been presented. 

However, due to the mechanical construction, the 

nonlinearities of Inerter models need to be considered. In this 

section, three nonlinear properties of a ball-screw inerter, 

including the backlash, elastic effect and friction, are 

discussed and a nonlinear Inerter model is proposed. 

Furthermore, a testing platform is introduced to estimate the 

parameters of the inerter model by experiments. 
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A. Backlash and the Elastic Effect 

The ball-screw Inerter built by the Mechanical 

Engineering Department of National Taiwan University 

(NTU-ME) is illustrated in Figure 3. The working principle of 

the model is described as follows: two equivalent forces F are 

applied on the bearing and the nut such that the screw rotates 

with the flywheel. When the shaft is twisted by θ, the nut has a 

translational displacement ( / 2 )x p θ π= ⋅ , where p (m/rev) 

is the pitch of the screw. Assuming the inertia of the flywheel 

is I, the ideal inertance of the model is 
2(2 / )b I pπ= . As in 

the backlash and elastic effect of gears shown in [7, 10], the 

backlash ε , the elasticity ks and viscous damping cs of the 

ball-screw Inerter can also be considered in the axial direction, 

as shown in Figure 4. 

 
 

 

Figure 3. NTU-ME ball-screw Inerter. 

εε

k cs s 

F

x1 x2x3

F

f

nut
bearing

 

Figure 4. The Inerter 

nonlinearities. 

 

The dynamic equations of the ball-screw Inerter are 

similar to those of the rotating model in [10]. Considering the 

displacement x in the axial direction, we define the 

compressed deformation as 
1 3sx x x= − , the backlash 

displacement as 
3 2bx x x= − , and the linear displacement 

between the two ports as 
1 2dx x x= − . Therefore, the 

corresponding force F can be expressed as: 

( ) ( ) ( )s s s s s d b s d bF t k x c x k x x c x x= + = − + −� � � .                (7) 

In the point of view of contact, three regions are given: 

{( , ) : },d d s d s d sA x x k x c x k
+

= + ≥� � ε  

{( , ) : },r d d s d s d sA x x k x c x k= + <� � ε  

{( , ) : }.d d s d s d sA x x k x c x k
−

= + ≤ −� � ε  

Three contact phenomena can be drawn from [10]: 

� There can be persistent right contact (during a non-zero 

interval) only in A+ and persistent left contact only in A-. 

� If the system state ( , )d dx x�  at the initial time 
0t t=  lies 

in A+ with 
0( )bx t = ε  (right contact), then 

1( )bx t = ε  for 

all times 
1 0t t>  such that ( ( ), ( ))d dx t x t A

+
∈�  for all 

0 1[ , ]t t t∈ . If 
0 0( ( ), ( ))d dx t x t A−∈�  with 

0( )bx t = −ε  

(left contact), then 
1( )bx t = −ε  for all times 

1 0t t>  such 

that ( ( ), ( ))d dx t x t A
−

∈�  for all 
0 1[ , ]t t t∈ . 

� Assuming that 
0( )bx t = ε  or 

0( )bx t = −ε  and the 

trajectory 
0 0( ( ), ( ))�

d dx t x t  reaches the release set Ar, 

contact is lost at the first time 
1 0t t> . 

B. Friction 

Friction force exists in the contact surfaces. In order to 

reduce the friction, devices are often lubricated to reduce the 

roughness of the contact surfaces. For the gear motion, friction 

happens in the contact of the teeth. For the ball-screw, the 

contact between the nut and screw threads is normally 

considered as rolling contact with a small friction coefficient 

[11]. However, for the application of suspension systems, the 

friction force is not negligible because the normal force on the 

contact surfaces is significant by preloading. 

C. Inerter Model with Nonlinear Properties 

Considering the aforementioned three nonlinearities, a 

nonlinear Inerter model is proposed in Figure 5(b) where cs 

and ks represent the elastic effect, while ε  is the backlash and 

f is the friction force. 

 

 
(a) An ideal Inerter. (b) A non-linear Inerter. 

Figure 5. The ideal and non-linear Inerter models. 

IV. EXPERIMENTAL DESIGN AND RESULTS 

A. Testing Platform 

The testing platform is a motion table with one degree of 

freedom which is driven by a servo motor to control the 

displacement of the suspension strut, as shown in Figure 6. 

The force of the device is measured by an S-type load cell with 

the maximum load of 100 kg and resolution of 0.02 kg, while 

the displacement is measured by a position encoder with an 

accuracy of 1 µm. Both of the force and displacement signals 

are acquired through a LabView
TM

 program. 

 

 
Figure 6. The experiment platform. 

B. Parameter Estimation of the Nonlinear Inerter 

We established the nonlinear Inerter model in Simulink
TM

 

and compared the theoretical force output with the 

experimental data, in order to estimate the parameters of the 

nonlinear Inerter. For the experimental strut, the inertance of 

the ball-screw shaft without the flywheel was 5 kg. A flywheel 

with corresponding inertance of 108 kg was then installed for 

test such that the total inertance is 113 kg. The parameters ks, 

cs, ε and f were tuned by the least-squares steepest descent 

optimization algorithm [6] as follows: 
2

exp 2, , ,
min ( ( , , , ) )
s s

th s s
k c f

f k c f f−
ε

ε ,                (8) 

where fexp is the force measured from the experiments, and fth 

is the force calculated from the theoretical non-linear model. 

bearing ε  flywheel 

Servo motor Ball-screw Inerter 

nut 
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In order to measure the friction f, the flywheel is 

uninstalled. The friction force f can then be measured by 

giving a low frequency sinusoidal input. Because the Inerter 

force is negligible in this case, the measured force accounts 

mainly for the friction. Setting the input as a cosine wave of 

0.1 Hz with amplitude of 1mm, the measured displacement 

and force are shown in Figure 7. It is noted that the friction f is 

almost a square wave, with the amplitude of about 10 N and 

the direction opposite to the sign of the velocity. Considering 

the nonlinear Inerter model of Figure 5(b), the size of the 

friction f can be regarded as constant for the theoretical model 

such that (7) can be rearranged as: 

( ) ( ) ( ) ( )− + − = − + ⋅ −� � �� �� � �
s r b s r b b w c b wc z z k z z b z z f sign z z , (9) 

where fc=10N.  
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Figure 7. The displacement and force signals of the Inerter. 

 

Given an input cos(6 )r tπ= , the parameters ks, cs and 

ε  can be tuned to match the experimental data, as shown in 

Figure 8. Using the optimization algorithm of (8), the best fit 

between the experimental and the theoretical data is taken as 

follows: ks = 1000 kN/m, cs = 3200 Ns/m and ε  = 0. 
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Figure 8. Tuning of the nonlinear parameters (b=113kg). 

 

From the optimization results, there is no backlash in the 

ball-screw Inerter. The reason is that the ball-screw set is 

normally preloaded to eliminate backlash in the 

manufacturing process. Some preloading methods, such as the 

double nut preloading and oversized-ball preloading, are 

described in [12]. 

V. THE IMPACT ON VEHICLE SUSPENSION CONTROL 

S1 S2’ S3’ 

 
 

 
Figure 9. Suspension models with nonlinear Inerters. 

 

In this section, the nonlinear Inerter model is applied to the 

performance analyses of the quarter-car suspension systems. 

Compared to the three suspension layouts of Figure 1 with 

linear inerters, there are three kinds of suspension models in 

consideration, as shown in Figure 9 

A. The Analysis Methods 

For linear systems, the performance can be evaluated by 

directly calculating the H2 and H∞ norms of the system transfer 

functions. But for nonlinear systems, it can not be directly 

obtained because the transfer functions are time-varying and 

depend on the input. In order to analyze the system 

performance with nonlinear Inerter, time domain responses 

are used. That is, a suitable input rz  with the spectral density 

of 2( ) /κ=rz
S f V f  [1] is generated to simulate responses of 

the nonlinear system. Then the performance indices are 

calculated by taking the expected values of the outputs. That is, 

the r.m.s. body vertical acceleration discomfort parameter is 
2

1 ( )sJ E z t =  �� , and the r.m.s. dynamic tyre load parameter is 

2
3 ( )rJ E F t =  

, in which ( )r t r uF k z z= − . 

 

The input signal to calculate J1 and J3 is rz . Considering 

the spectral density of the road input 2( ) /κrz
S f V f= [1], rz  

is constructed by the following time sequence: 

1

sin( )ω θ

=

= +∑
N

r i i

i

z A t ,                         (10) 

where N is the number of frequency points. The magnitudes 

are taken as 8 /πκ ω ω= ⋅ ∆i i iA V , in which 
1i i iω ω ω+∆ = −  and 

1N Nω ω −∆ = ∆ , and the phase θ  is random such that the spectral 

density of rz  is close to 2/κV f . In the simulation, the 

frequency points iω  are set between 0.1 Hz and 1000 Hz with 

intervals of 0.1 Hz, i.e. [ ]0.1,  0.2,  0.3, ,1000iω = � Hz. An 

input signal generated from (10) is illustrated in Figure 10. To 

verify the accuracy of this method, the performance indices of 

the linear systems are evaluated by this method and compared 

with the direct calculation of system norms. The results are 

shown to match with each other. 
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Figure 10. Input signal of the expected-value method. 

 

For J5, the input signal is Fs. It is noted that the 

performance index J5 represents the dynamic load carrying as 

in (6), which can be regarded as the induced 2-norm of the 

systems, i.e.  
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ˆ 00
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ˆ→
∞ ≠≠

= = =
s s

ss

s s

F z
FF ss

z z
J T

FF
,          (11) 

where the last equivalence is from the Parseval’s Relations 

[13]. That is, the performance index is considered as the 

maximum ratio of the output energy to the input energy. 

Firstly, the peak frequency 
0ω  where the infinity norm of the 

linear system occurs is found. Then, for the nonlinear systems, 

the input signal is taken as sin(  )sF A tω= , in which we set A = 

1000 N for the quarter-car model and A = 2000 N for the 

half-car model. Then we search the nearby frequency by 

setting
0ω ω≈  to simulate the output responses in order to 

numerically find the maximum energy ratio by (11). 

B. Inerter with the Elastic Effect Only 

To consider the impact of the elastic effect, two settings of 

ks and cs are applied to illustrate their influence on suspension 

performance. The first is from the experimental results of 

Section IV, where ks = 1000kN/m, cs = 3200Ns/m. The second 

is twice harder with ks = 2000kN/m, cs = 6400Ns/m. It is noted 

that an ideal Inerter can be considered as when ks and cs are 

infinity. Referring to Figure 5(b), Inerter with only the elastic 

effect can be regarded as a linear model in which an ideal 

inerter is in series with a parallel spring/damper set, such that 

the best achievable performance can be re-optimized for this 

model. 
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(c) J3.optimisation.                  (d) % improvement of J3 
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Figure 11. Performance optimizations of the quarter-car model 

employing inerters with the elastic effect. 

 

The performance optimization is shown in Figure 11. For 

J1, the results are shown in Figure 11(a)(b), where the 

performance benefit decreases with the elastic effect. And the 

softer the elastic settings are, the more is the performance 

reduction. For J3 the results are slightly different from J1, as 

illustrated in Figure 11(c)(d). For the serial arrangement (S3) 

the performance improvement is slightly increased when k is 

smaller than 120kN/m. Apart from that, the suspension 

performance is in general degraded by the elastic effect. For J5, 

the results are shown in Figure 11(e)(f). It is noted that the 

softer shaft has less performance benefits. Note that the serial 

arrangement (S3) with elastic effect is even worse than the 

traditional suspension (S1) when k is about 55kN/m. 

 
Table 2. Performance optimization of the quarter-car model 

employing frictional Inerter (k = 120 kN/m). 

 

C. Inerter with Friction Only 

Setting the suspension stiffness k = 120 kN/m, the impact 

of friction on performance is illustrated in Table 2, where 

cases 1, 2, 5 are with ideal suspension elements and cases 3, 4, 

6, 7 are with frictional inerters. To emphasize the influence of 

friction force on the performance, a much larger friction force 

f=100 N is used to compare with the experimental setting f=10 

N. The expected values of 2
1 ( )sJ E z t =  ��  are the average of 

four simulations. First of all, for accurate comparison, the 

expected values of the linear models (cases 1, 2, 5) are 

compared with the direct calculations of the system norms. It 

is shown that the errors are within 1%, so that the expected 

value is a reliable performance index. For the analyses of J1, it 

is noted that the performance variation is relatively ignorable 

when the friction is small (cases 3 and 6). But when the 

friction is large (cases 4 and 7), the performance decrease is 

obvious. For J3, the influence of friction is similar. When the 

friction is small (10 N), the influence on the performance is 

almost negligible. But when the friction is large (100 N), the 

performance degrades about 1% for S2 and 2.5% for S3 

layouts. For J5, in the linear systems (cases 1, 2, and 5), J5 is 

calculated from both the theoretical H∞  norm of (6) and the 
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energy ratio of (11) to illustrate the accuracy of this method. It 

is shown that the performance is decreased by friction for the 

parallel arrangement, and slightly improved for the serial 

arrangement (cases 3 and 6). The tendency is more obvious 

with larger friction settings (cases 4 and 7). 

D. Inerters with both the Friction and Elastic Effect 

Considering both the inerter friction and elastic effect, the 

impact of Inerter nonlinearities on performance when k = 

120kN/m is illustrated in Table 3. In which cases 1, 2, 6 are 

suspension models with ideal inerters, and cases 3, 7 are 

suspension models with inerters applying the elastic effect (ks 

= 1000kN/m, cs = 3200Ns/m), and cases 4, 8 are suspension 

models with inerters applying friction (f=10 N), and cases 5, 9 

are the suspension models with inerters applying both friction 

and the elastic effect. For J1, it is shown that the performance 

is much more influenced by the elastic effect than friction, and 

the overall performance is degraded by Inerter nonlinearities 

by 2-3%. For J3, the influence of Inerter nonlinearities is less 

significant, with the overall degradation of about 0.5%. For J5, 

the performance is in general decreased by the elastic effect 

(cases 3 and 7), but slightly improved by friction for the serial 

arrangement (S3). 

 
Table 3. Performance optimization of the quarter-car model 

employing Inerter with both of the friction and elastic effect (k = 120 

kN/m). 

 

VI. CONCLUDING REMARKS 

This paper has proposed a nonlinear Inerter model to 

consider three nonlinear properties of a mechanical ball-screw 

inerter, and discussed their impact on vehicle suspension 

control. From the experimental results, it was shown that a 

ball-screw Inerter has both of the elastic effect and friction. 

The nonlinear Inerter was then applied to vehicle suspension 

design. The individual and combined effects of Inerter 

nonlinearities were discussed in three scenarios. From the 

results, it was shown that the suspension performance was in 

general degraded by Inerter nonlinearities, except for the 

elastic effect in S3 model where J3 was slightly increased 

when the suspension stiffness k is small. However, even with 

the slightly influence of Inerter nonlinearities, it was 

illustrated that the overall suspension performance with 

nonlinear Inerter is still better than the traditional suspensions, 

especially when the suspension stiffness k is large. 
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