
Comparison of a Switching Controller to two LTI

Controllers for a Class of LTI Plants

Keith R. Santarelli

Sandia National Laboratories

Albuquerque NM, 87185, USA

krsanta@sandia.gov

Munther A. Dahleh

Massachusetts Institute of Technology

Cambridge MA, 02139, USA

dahleh@mit.edu

Abstract— We consider the design of three different control
architectures for a step response tracking problem within a
class of linear, time-invariant plants. Our goal is to motivate
the use of a particular switching architecture that has been
the subject of our prior work. We show the design of the
particular switching architecture that we use and characterize
its step response performance (measured in terms of the
percentage overshoot and 1% settling time). We then compare
the response of the switching controller to two other forms of
LTI control in a servo configuration, one in which the order of
the controller is unconstrained, and one in which the order of
the controller is constrained to be first order (which matches
the order of the dynamics of the switching controller). We
shall show that, while the LTI control of unconstrained order
can outperform the switching architecture, the performance
improvement is bounded (in a sense to be defined). Moreover,
one method of designing close-to-optimal controllers shall be
discussed which yields controllers of very high order. We shall
also show that the switching architecture can outperform first
order LTI control and shall illustrate this via a particular
design example.

I. INTRODUCTION

The problem of stabilizing a continuous-time system via

hybrid output feedback is one which has received a great

amount of attention in the past decade (see, e.g., [1], [2],

[4]–[12]). Our previous work has focused on a particular

subproblem within this larger domain and is specifically

related to stabilizability of second order linear systems via

switched proportional gain feedback; [8] provides a set

of necessary and sufficient conditions for which a given

second order plant is stabilizable via switched proportional

gain feedback, and a specific switching control law is

provided when stability is possible; [9] extends the first

result by considering an optimal control problem in which

the objective is to stabilize a second order LTI system via

switched proportional gain feedback in a manner which

maximizes the rate of convergence of the state trajectory

to the origin.

The goal of this paper is to apply the control laws that are

obtained via the results of [8], [9] to a particular application,

namely the design of switching controllers for a class of

second order plants to asymptotically track step inputs. We

shall attempt to assess the relative quality of these switching

controllers by comparing their performance (measured in

terms of overshoot and 1% settling time) to that which is

achievable via two other forms of LTI control. Our first

comparison shall investigate the step response performance

on an LTI feedback interconnection in a servo configuration

where the continuous-time LTI controller K(s) is a rational

controller of unconstrained order. Such a comparison shall

allow us to obtain some information about the relative

performance of our switching architecture to certain fun-

damental limits of LTI control in a particular feedback

configuration. In the second comparison, we shall consider

an LTI controller in a servo configuration with a first order

controller K(s). The motivation for this comparison lies

in the fact that the switching architecture we consider here

is a first order system. Hence, by making a comparison

between a first order switching controller and a first order

LTI controller, we obtain some qualitative information about

the relative power of switching in our application setting.

One may naturally expect that the performance of an

LTI controller of unconstrained order shall outperform a

first order switching controller, and, indeed, this turns

out to be the case here; however, as we shall show, the

performance gap between the switching architecture and

what is achievable via LTI control is bounded (in a sense to

be defined), and an algorithm for designing LTI controllers

which yield close-to-optimal performance shall be shown

to produce controllers of rather high order. In the case

where we restrict the LTI controller K(s) to be first order,

one should expect that the first order switching architecture

should outperform the first order LTI controller, and we

shall show that this is, in fact, the case in the context of a

particular example.

The work that we present here is intended to be a

condensed summary of a larger body of recently completed

work. In the interest of space, no proofs or derivations

are included in this document. A longer exposition which

includes much more detailed explanations, along with all
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required proofs, can be found in Chapter 5 of [10].

II. PRELIMINARIES: PLANT SET, PERFORMANCE

MEASURES, AND CONTROL CONSTRAINTS

In this paper, we consider a class of LTI plants of the

form

P (s) =
a

s(s − b)
(II.1)

where a > 0, b ∈ R, and b2 < a, i.e., second order LTI

plants of relative degree two which contain a pure integrator

term. Our task is the following: we shall design three

different controllers (one which is a switching controller,

two of which are LTI controllers) such that when the input

to the controlled system r(t) is a step input, i.e.

r(t) =

{

0 t < 0
r t ≥ 0

for some r ∈ R, the output of the controlled plant y(t)
asymptotically tracks the input r(t), i.e.,

lim
t→∞

|y(t) − r(t)| = 0.

In particular, we are interested in comparing the relative

performance of each of the three controller designs. The

measures we shall use to compare performance are the per-

centage overshoot and 1% settling time of the corresponding

zero-state step responses. For a step input of amplitude r,

we define the percentage overshoot of the zero-state step

response y(t) as the smallest value of M > 0 such that

y(t) ≤ r(M + 1),

and we define the 1% settling time as the smallest value of

T > 0 such that

|y(t) − r| ≤ 0.01r ∀t ≥ T.

In all of our comparisons, we shall place a constraint on

the set of admissible controllers: for a unit step input, the

peak value of the control input to the plant P (s), which we

shall denote as u(t), can never exceed 1, i.e., |u(t)| ≤ 1 for

all t ≥ 0. The main reason for imposing such a constraint

is that, without this, the 1% settling time of any of the

three architectures we shall examine can be made arbitrarily

small. Indeed, for each control architecture that we examine,

if we allow the gain of the analog portion of the control to be

unbounded, then we can achieve any 1% settling time that

we desire. Imposing such a constraint implicitly imposes a

restriction of the gain of the analog portion of our control

and, hence, provides a “fair” basis for comparing each of

our three architectures.

A brief outline of the remainder of the document is as

follows: we shall first present the switching architecture

that we propose for the given step-tracking problem and

explain a few of the salient features of its design. We

shall then characterize its step response performance for

plants within the given class and shall examine the specific

example in which the plant is a double integrator. Once

u(t)- -±1 P (s) --

Observer

?
v(·, ·)

σ(t)
6 6

?

?

6
+r(t) y(t)− e(t)

x̂2(t)

k

Fig. III.1. Block diagram of switching architecture to be used in designing
a controller that asymptotically tracks a step input.

we have completed this, we shall then present the servo

architecture that we shall investigate and shall characterize

the limits of LTI control in this feedback interconnection

by establishing an upper bound on the ratio of the 1%

settling time that is achieved by the switching architecture

to the 1% settling time that can be achieved via LTI

control. We shall also illustrate a method of designing

LTI controllers that achieve close-to-optimal performance

which, as we shall see in the context of several examples,

yields very high order controllers. Finally, we shall examine

the performance of a servo configuration in which the LTI

control is constrained to be first order by computing the

set of achievable pairs of overshoot and 1% settling time

and showing that the switching controller outperforms the

first order LTI controller with respect to both of these

performance measures. We shall investigate this last part in

the context of a specific example (again, a double integrator)

but a weak generalization can be found in [10].

III. SWITCHING CONTROLLER: DESIGN AND

PERFORMANCE

A block diagram of the switching architecture that we

propose for the purposes of tracking a step input is depicted

in Fig. III.1. Several comments are in order. First, the block

labeled “±1” switches between proportional gains of +1
and −1, i.e., u(t) = e(t) or u(t) = −e(t) for all time.

It is the function of the two blocks on the upper level of

the block diagram to create an appropriate switching signal

σ(t) such that the closed-loop dynamics are stable, and such

that the plant output y(t) asymptotically tracks the input

r(t) when r(t) is a step. The block labeled “v(·, ·)” is a

memoryless switching law that takes the form

v(z) =

{

−1 z′Mz ≤ 0
1 z′Mz > 0

(III.2)

where z =
[

e x̂2

]

′

and where M is a symmetric matrix.

In layman’s terms, the switching law v(z) chooses one value

of gain inside a sector of the e − x̂2 plane and chooses

another value of the gain in a complementary sector. The

block labeled “Observer” is a first order LTI system whose

function is to estimate the second state of the plant P (s).
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Without loss of generality, one can assume that the plant

has state-space description
[

ẋ1

ẋ2

]

=

[

0
√

a
0 b

] [

x1

x2

]

+

[

0√
a

]

u(III.3)

y = x1. (III.4)

Informally speaking, since the output of the plant P (s) is

equal to the first state, the job of the first order observer is

to estimate the “missing” information about the state of the

plant which is encoded in the output x̂2(t). The design of

such an observer is a simple exercise in standard reduced-

order observer design for LTI systems (see Chapter 5 of

[10] for details), and the dynamics of the observer can be

described in the following way:

ẋ3 = (b − l
√

a)x3 + l(b − l
√

a)y +
√

au (III.5)

x̂2 = x3 + ly (III.6)

where l is any real value such that b−l
√

a is strictly negative

(so as to ensure stable error dynamics).

While we shall not discuss this here, the memoryless

switching law and first order observer were originally

designed only with the objective of asymptotic stability in

mind when the exogenous input r(t) = 0 for all time. Thus,

it is fitting that one of the arguments to the memoryless

switching law v(·, ·) should be the tracking error e(t)
since we seek to drive this error to 0 asymptotically as

t → ∞. Also, in addition to asymptotic stability, the control

architecture of Fig. III.1 can be shown to be finite L2 gain

stable when exogenous inputs are present, a fact we shall

utilize in one of our later comparisons (see Chapters 3

and 4 of [10] for detailed explanations of both of these

statements).

A. Step Response Performance of Switching Controller

Based upon the design techniques of [8], [9], we arrive

at the following choice for the memoryless switching law

v(·, ·):

v(e, x̂2) =

{

−1 e((b −
√

b2 + 4a)e + 2
√

ax̂2) ≤ 0

1 e((b −
√

b2 + 4a)e + 2
√

ax̂2) > 0
.

(III.7)

Using this memoryless switching law (along with any

observer of the form Eqn. III.5 and III.6 such that b−l
√

a <
0), we can prove that the zero-state step response of the

output y(t) has the following characteristics:

1) The step response exhibits no overshoot.

2) The 1% settling time of the step response Ts is given

by the expression

Ts =
1

δ
ln

(√
2

100

)

+

(

1 − b

2δ

)

T1 (III.8)

where

T1 =
2

4a − b2
arccot

(

2b +
√

b2 + 4a√
4a− b2

)

δ =
1

2

(

b −
√

b2 + 4a
)

.

v = −1 v = 1

x̂2

e

Fig. III.2. Memoryless switching law of Eqn. III.9.

We shall use the explicit characterization of Ts in the

next section to compute an upper bound on the ratio

of the settling time of the switching architecture to the

settling time that is achievable via LTI control in a servo

configuration.

B. Design Example: Double Integrator

When the plant is a pure double integrator (P (s) = 1/s2),

the state-space description of Eqn. III.3 and III.4 reduces to
[

ẋ1

ẋ2

]

=

[

0 1
0 0

] [

x1

x2

]

+

[

0
1

]

u

y = x1.

Plugging in values of b = 0 and a = 1 into Eqn. III.5 and

III.6 and choosing a value of l = 1 yields the observer

ẋ3 = −x3 − y + u

x̂2 = x3 + y.

Plugging in values of b = 0 and a = 1 into Eqn. III.7 yields

the switching law

v(e, x̂2) =

{

1 e(−e + x̂2) ≤ 0
−1 e(−e + x̂2) > 0

(III.9)

which is depicted graphically in Fig. III.2

With the above observer and memoryless switching law

in place, the zero-state unit step response y(t) of the system

of Fig. III.1 is shown in Fig. III.3. That the step response

exhibits no overshoot is clear. The 1% settling time can be

measured to be Ts ≈ 5.04 seconds which agrees with the

analytical calculation of Eqn. III.8.

IV. COMPARISON TO LTI CONTROL IN A SERVO

CONFIGURATION

We now consider the servo control architecture depicted

in Fig. IV.4. Here, the controller K(s) is a finite order LTI

controller for which the feedback interconnection of Fig.

IV.4 is stable. To be consistent with our constraints in the

previous section, we shall consider only those K(s) for

which the zero-state unit step response of the control signal

u(t) satisfies the constraint |u(t)| ≤ 1 for all t ≥ 0.

In this section, we wish to compare the settling time that

can be achieved via a servo configuration to the settling

time that is achieved via the switching algorithm presented

in the last section. As was alluded in the introduction, it
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Fig. III.3. Step response of double integrator for switching architecture
of Fig. III.1.

y(t)- - K(s) P (s)-e(t) u(t) -
6

r(t)
-

+k

Fig. IV.4. Servo configuration.

does turn out that the servo configuration of Fig. IV.4 can

achieve a smaller settling time than the settling time of

the switching architecture, but as we shall discuss here,

the ratio of the 1% settling time achievable via the servo

configuration of Fig. IV.4 to the 1% settling time of the

switching architecture is bounded. We shall discuss two

bounds here: one which is an exact (but conservative)

bound, and one which is an approximate bound. After we

present each of these two bounds, we shall briefly present

a method for computing controllers K(s) which achieve

close-to-optimal performance and shall provide results for

several examples.

A. Bounds on Ratio of 1% Settling Times

We first consider the following problem: for a given plant

P (s) of Eqn. II.1, we wish to determine a lower bound on

the time 1% settling time Tl, i.e., the smallest value of

Tl > 0 such that, when the input r(t) in Fig. IV.4 is a unit

step, the output y(t) satisfies

|y(t) − 1| ≤ 0.01 ∀t ≥ Tl.

In addition to the constraint that the step response of the

control signal u(t) be bounded, we also shall require that

the percentage overshoot of the output step response not

exceed 1%.

Once we derive a lower bound on the achievable settling

time Tl, we immediately have an upper bound on the ratio

of the settling time Ts/Tl. As it turns out, even though the

plant P (s) of Eqn. II.1 contains two free parameters, we

can derive lower bounds on the 1% settling time Tl which

are a function of a single scalar parameter γ = b/
√

a. The

−1 −0.5 0 0.5 1
3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

gamma

h
ti
ld

e
(g

a
m

m
a

)

Upper Bound on Ratio of Settling Times

Fig. IV.5. Plot of Ts/T r

l
for γ ∈ [−1, 1].

set of all a > 0 and b such that b2 < a is then equivalent

to the set of γ that lies in the set [−1, 1].
We first compute an exact lower bound on the 1% settling

time Tl by computing a lower bound on the 1% rise time T r
l

,

i.e., the smallest value of T r
l

> 0 such that y(T r
l
) = 0.99.

It is clear that the 1% rise time is a lower bound for the 1%

settling time Tl, and, hence, Ts/T r
l

upper bounds Ts/Tl. A

set of calculations shows that, in terms of the parameter γ,

we have the following exact upper bound:

Ts

T r
l

(γ) ≤ γ +
√

γ2 + 4

1.9
h(γ)

where h(γ) is given by

h(γ) = ln

(

100√
2

)

+

√

4 + γ2

4 − γ2
arccot

(

2γ +
√

γ2 + 4
√

4 − γ2

)

.

A plot of this upper bound for γ ∈ [−1, 1] is shown

in Fig. IV.5. From this plot, we determine that, over all

a > 0, b ∈ R with b2 < a, the settling time of the

switching architecture is never a factor of more than roughly

8 times the settling time that can be achieved via the servo

architecture. Because this bound is based upon the rise time,

it tends to be rather conservative. If one makes a more

concerted effort to characterize the 1% settling time more

accurately, an approximate bound can be developed which

is less conservative and is depicted graphically in Fig. IV.6.

The details of how the bound is developed and why it is

approximate rather than exact is too detailed to describe

here, but numerical verification via several examples shows

that the bound of Fig. IV.6 is typically accurate to within

less than 10%.

B. Computing close-to-optimal Controllers

The approximate bound developed in the previous section

indicates that an LTI controller cannot decrease the 1%

settling time by roughly more than half an order of magni-

tude. One natural question to ask then is how can we find

a controller which achieves close-to-optimal performance?

That is, for a given P (s) of the form Eqn. II.1, how can

we find a corresponding controller K(s) which satisfies the
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Fig. IV.6. Plot of approximate upper bound on Ts/Tl for γ ∈ [−1, 1].

peak constraint on the control signal u(t), the overshoot

specification of less than 1%, and that achieves a 1% settling

time that can be made arbitrarily close to the minimal

possible value? To begin answering this question, it is

helpful to make the following observation: suppose for the

moment that we know the minimum achievable 1% settling

time Tl for a given plant P (s). The constraints

|u(t)| ≤ 1 ∀t ≥ 0 (IV.10)

y(t) ≤ 1.01 ∀t ≥ 0 (IV.11)

|y(t) − 1| ≤ 0.01 ∀t ≥ Tl (IV.12)

represent the boundedness constraint on the control signal

(Eqn. IV.10) and the overshoot and settling time constraints

on the output step response (Eqn. IV.11 and IV.12). Because

these constraints are linear inequalities with respect to u(t)
and y(t), they define an infinite dimensional linear program.

Using a method derived by Boyd and Barrat [3] in which we

parameterize u(t) and y(t) via the Q−parameterization, the

constraints above can be relaxed into a finite dimensional

linear program which can be solved numerically to find

the transfer function of a stabilizing controller K(s) which

satisfies the peak control constraint and the overshoot con-

straint for a given settling time Tl. Since Tl is a parameter

that must be supplied to the linear program, one must

execute a bisection algorithm of sorts to determine the

minimum achievable settling time Tl.

We present the results of using the above algorithm for

five different plants in Table I. The table shows 4 quantities

for each plant: the approximate 1% settling time T̂l used

to derive the approximate bound on the settling time ratio

in the last section, the minimum 1% settling time Tl that

was achieved using the linear programming formulation,

the smallest order of a controller that could be found which

achieves the minimal settling time, and the 1% settling time

of the switching architecture we derived at the beginning

of the paper (for reference). Note that the minimum 1%

settling times Tl are not too far from the approximate bound

T̂l; the largest deviation of the five plants is about 7.5%. For

reference, the step response of the control signal u(t) and

K(s) Switching

P (s) T̂l Tl Order Controller Ts

1

s2
2 1.85 17 5.08

100

s(s + 1)
0.2002 0.185 17 .4849

1

s(s + 1)
2.1701 2.04 15 3.7772

100

s(s − 1)
0.2002 0.193 22 .5253

1

s(s − 1)
2.1701 2.08 38 7.7013

TABLE I

Summary of results for 5 different plants P (s). T̂l represents the

approximate bound on the 1% settling time.

0 2 4 6 8 10
−1

−0.5

0

0.5

1
Double Integrator Control Signal u(t)

u
(t

)

0 2 4 6 8 10
0

0.5

1

1.5
Double Integrator Output Signal y(t)

y
(t

)

t

Fig. IV.7. Control signal u(t) and step response y(t) which yield
minimal 1% settling time (1.85 seconds) for the double integrator
P (s) = 1/s2 using a 17th order controller.

output y(t) with minimum 1% settling time are depicted for

a double integrator in Fig. IV.7. It can be shown for these

five examples that the ratio of Ts to Tl is within 10% of

the approximate bound shown in Fig. IV.6.

Extrapolating from the examples shown here, we see that

the order of the controller needed to achieve the minimal

1% settling time using this method is, generally, quite high.

Using standard model reduction techniques on the controller

can provide some reduction in the order of the optimal

controller. For instance, using Hankel model order reduction

techniques, one can reduce the optimal controller for the

double integrator down from a seventeenth order controller

to a twelfth order controller.

V. COMPARISON TO FIRST ORDER LTI CONTROL IN A

SERVO CONFIGURATION

In this section, we wish to compare the performance of

the switching architecture to the performance which can

be achieved via a first order LTI controller in a servo

configuration, i.e., a controller K(s) of the form

K(s) = k
s + c

s + d
(V.13)
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f

Fig. V.8. Servo architecture with plant input disturbance w(t).

with k, c, d ∈ R. As before, we shall impose the constraint

that the step response of the control signal satisfies |u(t)| ≤
1 for all t ≥ 0; however, this shall not be the only constraint

that we impose on our control. Consider the servo diagram

of Fig. V.8 where an exogenous input w(t) has been added

to the input of the plant P (s). If we view the input w(t)
as an unwanted disturbance input, then we would like to

characterize the effect of the disturbance w(t) on the output

y(t) in some way. One way is to consider the L2 gain from

the input w(t) to the output y(t), defined as the smallest

value of γ > 0 such that

inf
T>0

∫ T

0

(γ2w2(t) − y2(t))dt > −∞.

The L2 gain can be viewed as a measure of sensitivity;

the higher the value of the L2 gain, the more sensitive the

output y(t) is to the input w(t).
The additional control constraint that we impose in this

section is the following: for the switching system of Fig.

III.1, suppose that we also introduce an exogenous input

w(t) to the input of the plant P (s) and compute an upper

bound on the L2 gain from w(t) to y(t) which we shall

denote here as γs. Then, for our first order servo controller

problem, we shall search only over those controllers K(s)
for which the L2 gain from w(t) to y(t) in the servo

configuration of Fig. V.8 is no greater than γs. In other

words, we wish to search over the set of controllers K(s)
which yield closed-loop sensitivity from the plant input to

the plant output that are no larger than the sensitivity that

is achieved via the switching architecture of Fig. III.1. If

we do not impose such a constraint, then the “optimal”

controller K(s) for a given plant which achieves low 1%

settling time and/or overshoot may not be stabilizing.

Our objective in this section is as follows: with both of

the control constraints in place (the bound on the peak

control value and the bound on the L2 gain), we wish

to characterize the set of achievable pairs of overshoot

and 1% settling time for all first order controllers K(s)
which satisfy each of these control constraints. We shall do

this in the following manner: first, we shall compute the

set of first order controllers which satisfy the two control

constraints. Once we have done this, we shall numerically

compute the overshoot and 1% settling time of the closed-

loop step response for each of the controllers contained in

this set and shall then be able to draw conclusions about

performance by comparing the set of pairs of overshoot

and 1% settling time that are achievable via first order

servo control to the overshoot and 1% settling time that we

achieve via the switching controller. We shall demonstrate

this technique in the context of a specific example (again,

a double integrator), but the results shown here are weakly

generalizable (see [10]).

To begin, one first computes an upper bound on the

closed-loop L2 gain from w to y for the switching controller

of Fig. III.1 via a search over piecewise-quadratic storage

functions (see Chapters 4 and 5 of [10] for details). Once

this number has been computed, one begins the task of

characterizing the set of controllers K(s) which satisfy the

two control constraints. For the double integrator example,

it can be argued without loss of generality that one can

choose k = 1 for K(s) of Eqn. V.13 to satisfy the control

bound constraint |u(t)| ≤ 1 (choosing any value of k > 1
shall violate the constraint; choosing any value of k < 1
shall yield a step response with the same overshoot—but a

longer 1% settling time—that can be achieved via another

first order controller with k = 1). Now, computing the set

of controllers which satisfy the L2 gain constraint amounts

to determining the set of pairs (c, d) of Eqn. V.13 for which

the following constraint is satisfied:
∣

∣

∣

∣

∣

∣

∣

∣

P (s)

1 + P (s)K(s)

∣

∣

∣

∣

∣

∣

∣

∣

∞

≤ γs (V.14)

where, here, we utilize the fact that the L2 gain from w
to y for the servo configuration is equal to the H-infinity

norm of the closed-loop transfer function from w to y. It

can be shown in this example that the set of c and d for

which the above constraint is satisfied is a compact set.

We first compute an outer approximation to this set, and

then finely grid the outer approximation to include only

those points which satisfy the H-infinity norm constraint

Eqn. V.14. Once we have completed this task, we simulate

the closed-loop step responses of the resulting set of first

order controllers in MATLAB and measure the overshoot

and 1% settling time. The results of this process are shown

in Fig. VI.9. The overshoot and 1% settling time pairs

that are achievable via first order LTI control under the

given peak control and L2 gain constraints are depicted by

the ’×’ symbols, while the performance of the switching

architecture that we designed in the first section is shown via

the circle at the bottom of the figure for comparison. Note

that the LTI control exhibits a tradeoff between percentage

overshoot and 1% settling time; the minimal percentage

overshoot of 26% has a settling time of 17.5 seconds,

while the minimal 1% settling time of 10.5 seconds has

a corresponding peak overshoot of 37%. A plot of the step

response with minimal percentage overshoot and a plot of

the step response with minimal 1% settling time are shown

in Fig. VI.10.

Note that while we have only presented results for a

single example here, the performance benefits shown here

are not strictly limited to a double integrator. In [10],

we examine other examples of plants P (s) of the form

Eqn. II.1 for which similar performance benefits exist,
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Fig. VI.9. Achievable percentage overshoot and 1% settling time time
pairs that can be achieved via first order LTI control for the given peak
control and L2 gain constraints (shown by ’×’ in the picture). The
performance of the switching architecture is shown via the circle at the
bottom of the figure for comparison.

and a weak generalization is developed to extend these

isolated examples into an entire class of systems for which

performance benefits can be guaranteed.

VI. DISCUSSION

Our goal in this exposition has been to illustrate the

potential utility of a particular switching controller vs. using

other more traditional forms of LTI control. In comparing

the performance of the switching architecture to LTI control

of unconstrained order in a servo configuration, we showed

that, while the servo configuration can outperform the

switching architecture, it cannot outperform by typically

more than half an order of magnitude. Moreover, a standard

process of finding LTI controllers which reap these benefits

yields controllers that are, in general, very high order

and, hence, may be unattractive from an implementation

perspective. In comparing the performance of the first order

switching architecture to a first order LTI controller in a

servo configuration, we showed that the introduction of

switching can, indeed, increase performance.

While the work here has focused strictly on second order

systems, the same techniques can be applied to classes of

higher dimensional systems as well. Indeed, by invoking

the Small Gain Theorem, the switching controller architec-

ture (which was originally designed only for second order

systems) can be used to design switching controllers for

systems which are well-approximated by a second order LTI

system in an L2 gain sense, and an example of a design for

a higher order system is presented in Chapter 6 of [10].
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