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Abstract ² an errorable car-following driver model 

was presented in this paper.  This model was developed 

for evaluating and designing of active safety technology.  

Longitudinal driving was first characterized from a 

naturalistic driving database.  The stochastic part of 

longitudinal driving behavior was then studied and 

modeled by a random process. The resulting stochastic 

car-following model can reproduce the normal driver 

behavior and occasional deviations without crash.  To 

make this model errorable, three error-inducing 

behaviors were analyzed.  Perceptual limitation was 

studied and implemented as a quantizer.  Next, based on 

the statistic analysis of the experimental data, the 

distracted driving was identified and modeled by a 

stochastic process. Later on, time delay was estimated by 

recursive least square method and was modeled by a 

stochastic process as well.  These two processes were 

introduced as random disturbance of the stochastic 

driver model. With certain combination of those three 

error-inducing behaviors, accident/incident could 

happen. Twenty-five crashes happened after eight 

million miles simulation (272/100M VMT).  This 

simulation crash rate is higher by about twice with 2005 

NHTSA data (120/100M VMT). 

 

I. INTRODUCTION 

Driver behavior has long been an important topic for 

transportation and ground vehicle research.  The way 

drivers respond to the surrounding traffic influences 

roadway designs, traffic rules and human-vehicle interface.  

Based on traffic flow analysis and vehicle testing results, 

car-following driver models have been developed to 

evaluate traffic capacity and congestion [1]±[6].  More 

recently, with the development of active safety technology 
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(AST) [7]±[9], car-following driver models were used to 

evaluate the efficiency and accuracy of such systems [10], 

[11].  AST was designed to assist a human driver when he 

or she is not able to avoid or mitigate a crash; in other 

words, when the driver is either making a mistake or simply 

is not able to handle the situation.  Therefore, for evaluating 

AST, models that achieve driving tasks perfectly and 

preciously seem to be less useful. On the contrary, a model 

that makes mistake like human drivers would be more 

suitable for the development of AST systems. To our best 

NQRZOHGJH�� VXFK� DQ� ³HUURUDEOH´� GULYHU� PRGHO� LV� QRW�

available from the literature. 

II. APPROACH 

An errorable car-following driver model is based on the 

concept that a model that normally achieves car-following 

tasks could be made to make mistakes, which could 

generate accidents or near-accidents that are of interest to 

AST developers.  Driver errors can be viewed as a recurring 

event which, combines with events from surrounding 

vehicles, could result in an accident.  For example, a driver 

may be distracted or engaging in alter-control tasks and 

thus fails to adjust vehicle speed at a regular pace.  If the 

leading vehicle happens to decelerate at the wrong moment, 

a rear-end collision could happen.  The human behavior 

(distraction) and lead vehicle deceleration can be described 

by stochastic processes. If proper human cognition/error 

mechanisms are included and proper probability functions 

are used to introduce human errors, it is possible to 

reproduce accident/incident behavior that is statistically 

similar to field testing results ± which is the goal of this 

research.   

The field testing database used was from Road-Departure 

Crash-Warning System Field Operational Test [12].  The 

RDCW system was designed to analyze road departure 

behavior. This system was implemented on 11 passenger 

vehicles with data acquisition system.  Seventy-eight test 

drivers were participated and each of them drove a test 

vehicle for four weeks. Total data set accumulated 83,000 

miles of driving and over 400 signals were captured at 10 

Hz sampling rate. A massive set of numerical, video and 

audio data were collected, including longitudinal driving 
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information, like vehicle velocity, acceleration, range, range 

UDWH«HWF�� �3DUWLFLSDWHV�RI� WKLV�)27�UHFHLYHG�QR� LQVWUXFWLRQ�

nor interfere about longitudinal driving. Hence, large 

quantity of naturalistic field-driving data can be used for car 

following analysis. 

III. DRIVER MODEL TEMPLATE 

As discussed in the previous section, the errorable model 

is derived from a model that normally achieves car-

following tasks.  Any existing car-following model can 

fulfill the need.  However, majority of them assume driving 

as a deterministic process; the vehicle states can be 

calculated exactly by dynamic equations [1]±[6] or heuristic 

rules [13]±[16].  Precise prediction of vehicle states might 

be useful in traffic analysis, but has little interest for AST 

development.  In actual driving, human would not perform 

deterministically and randomness is always observed.  The 

stochastic behavior of driving has been studied in [17]±[20].  

They modeled human randomness with a random noise.  By 

adjusting the magnitude and parameters of this noise, 

models can be tuned to fit the test data.  This modeling 

procedure can reproduces the stochastic behavior of the 

human driver.  However, those tuning processes of noise 

magnitude are not convincing and have less reflection of 

actual driving behavior.  

 

An alternative approach of constructing a stochastic 

driver model (SDM) was proposed in this paper.  Instead of 

modeling stochastic behavior as noises, this approach 

considers driving as a stochastic process.   The SDM was 

based on the assumption that, the driver normally has 

intention to achieve a desired vehicle state (speed) and as 

long as this state was roughly achieved, some deviations 

would be acceptable.  This deviation of control is due to 

YDULRXV� UHDVRQV� OLNH� GULYHU¶V� LPSHUIHFWLRQ� LQ� FRQWURO��

perception, or exogenous disturbances (powertrain 

G\QDPLFV�� URDG� JUDGLHQW�� HWF«��  This assumption was 

verified by the RDCW FOT data.  In the test data, if the 

range is fixed, the vehicle accelerations are distributed 

along a linear function of range rate (Fig. 1.) and the 

distribution was showed in Fig. 2.  This shows that the 

desired acceleration is proportional to the range rate and the 

gains are decreasing cubically with range. The stochastic 

deviation distributes around the desired acceleration and is 

a second order polynomial function of range (Fig. 2.).  This 

result can be interpreted as: when the range is small, driver 

tends to use a higher control. Moreover, the less deviation 

under small range means driver has less freedom and has to 

perform the control more precisely.  

 

In last section, the driver only responds to non-zero 

range-rate.  In reality, human drivers also regulate range or 

time headway.  Human driver would have a desired range 

and regulate the vehicle speed until the difference between 

the actual range and the desired range is small.  The sliding 

mode control technique was applied to approximate this 

KXPDQ¶V� IHHGEDFN� DFWLRQ� IRU� UHJXODWLQJ� UDQJH� RU� WLPH�

headway.  In the sliding mode control, a sliding surface (or 

manifold) was defined as a desired state space which the 

motion of the system was constrained in.  In a car-following 

task, the sliding surface can be defined as zero range error, 

where the desired range is defined as vehicle speed 

multiplied by the desired time headway.  This driver model 

FDQ� PLPLF� KXPDQ� GULYHU¶V� UDQJH� UHJXODWLQJ behavior by 

constraining the vehicle states on this sliding surface.  The 

sliding mode control law was derived in Appendix.  The 

result is shown in (1) ± (5).  The time headway obtained 

from test data showed a stochastic behavior which can be 

modeled as a random walk.  Therefore, a random number 

generator followed by a running average filter was used to 

generate time varying time headway signal.  Another 

running average filter was implemented to smooth the 

random acceleration signal.  The resulting model (Fig. 3.) 

can simulate the normal driver behavior and occasional 

deviations which were consisted with realistic driving data 

(Fig. 4.). 
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Fig. 1. RDCW data vehicle acceleration VS range rate with respect to different 

range 
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Fig. 2. RDCW data vehicle acceleration distribution with respect to different 

range 
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   Fig. 3. Stochastic Driver Model Diagram 
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, where R is range between two vehicles, Pi is polynomial 

coefficients, sat(.) is a saturation function, s is sliding 

surface, Th is time headway, a is acceleration of vehicle, and 

f is a random number generator. 

 

 
Fig. 4.  Distribution of RDCW data and SDM simulation. 

IV. ERROR-INDUCING BEHAVIORS 

In this paper, three types of error-inducing behaviors 

were analyzed, perceptual limitation, distraction, and time 

delay.  Each of them affects the normal driving and 

degrades the car-following performance.  Individually, their 

effects might not be significant enough to induce a crash.  

However, combinations of those behaviors could cause 

crashes.  To validate this hypothesis, the error-inducing 

behaviors were modeled as stochastic processes based on the 

frequency of their occurrences.  Then, those stochastic 

processes of error were introduced into the longitudinal 

driver model (SDM) independently.  The resulting errors or 

crashes would be similar to the human driving error, or at 

least in a statistical fashion. 

Perceptual limitation is an important topic in psychology 

and psychophysics.  In prior works, range and range rate 

are concluded as two important feedback cues used for car-

following tasks.  Therefore, the distance and velocity 

perceptual limitations are included as an error mechanism 

in our study.  For range, a typical accepted localization 

WKUHVKROG� LV� �� DUF� VHF� ������ RQ� WKH� UHWLQD��� � Other than 

visual angle, people also utilize environmental information 

such as eye-height, relative position, and texture of the 

ground [21].  Therefore, with other additional information 

available, the perceptual limitation of distance or range 

perception can be neglected.  The Just-Noticeable 

Difference of velocity discrimination is from 0.05-0.2 

�û9�9�� >22]±[25].  The perceptual limitation was imposed 

as a quantizer of range rate input.  The disagreement of 

perceptual and real signals will be the cause of error. 

 

Driver distractions can occur from several sources: in-

YHKLFOH�WDVNV��FHOO�SKRQH��RU�HYHQ�³ORRN�EXW�GLGQ¶W�VHH´�>26].  

When distraction happened, the driver will stop updating 

the feedback cues and/or control actions.  The perceived 

range, range rate, and speed would remain unchanged from 

the previous step. Drivers are also assumed to freeze their 

control actions previous level.  Once the distraction ends, 

the driver will resume updating the information and 

perform proper control adjustment.  The above statement 

can be realized by using a switch and a register.  However, 

the real difficulty is how to define the duration (how long) 

and the frequency (how often) of the distraction which 

consistent with human driver behavior.  To quantify the 

GULYHU¶V� GLVWUDFWLRQ� EHKDYLRU�� D� ODUJH� DPRXQW� RI� UHDO�

longitudinal driving data was collected from RDCW 

database.  Then, the stochastic driver model (SDM) was 

used to identify WKH�GULYHU¶V�normal or distracted behavior.  
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The SDM contains two elements, desired accelerations and 

possible deviations.  Based on the actual test data, the SDM 

can use desired acceleration to predict the next vehicle 

states and calculate their possible deviations respectively.  If 

the test data landed outside one standard deviation of the 

prediction, we defined it as a deviated behavior (Fig. 5.).  In 

this paper, the deviated behavior was assumed to be a 

consequence of distraction.  This analysis was applied to the 

RDCW data and the result is shown in Fig. 6.  Therefore, 

the duration and frequency of deviated behavior was directly 

used to reproduce distraction.  After sixty thousand data 

points per driver (10 drivers total) was analyzed, a random 

distraction generator was constructed.  It can generate 

distraction with random duration and frequency that 

represent real driving situations (Fig. 7.).  
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Fig. 5.  Normal and Deviated Behavior Definition 
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Fig. 6.  Normal and Deviated Behavior of RDCW Data 
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Fig. 7.  Random Distraction Simulation 

 

Time delay is another source for driver error.  

Neuromuscular delay and brain processing time are two 

major sources of time delay.  Neuromuscular delay may be a 

constant for each driver [27], but the brain processing time 

is not.  Therefore, the total time delay will be a time varying 

variables.  A recursive least square (RLS) method was used 

to estimate the total time delay.  Several ARMA models 

with different delay step were used to fit the test data 

simultaneously by the RLS algorithm.  For every single data 

point, the delay step of the most accurate ARMA model was 

chosen DV� GULYHU¶V� WLPH�GHOD\� and the time delay sequence 

was constructed.  This sequence shows a significant 

character that the delay step increases with time and, then 

dropped or reset to zero (Fig. 8.).  To duplicate this 

characteristic, a probability distribution of time delay was 

first obtained from the time delay sequence.  The inverse 

Gaussian distribution was selected to describe this 

probability distribution and a random value generator was 

derived.  Next, the delay step was increased from zero to a 

random number then reset.  The resulting time delay 

sequence can represent the real sequence obtained by RLS 

and be used for simulation.  
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Fig. 8.  Estimated Time Delay Sequence 

V. ERRORABLE DRIVER MODEL  

All the three error-inducing behaviors discussed above were 

implemented into the SDM (Fig. 8.) and leading vehicle 

velocity profiles from actual driving were used as 

simulation input. The simulation result was compared with 

actual crash data obtained from NHTSA report [28]. In year 

2005, the average rate for all type of crash is 206 per 100M 

Vehicle Mileage Travel (VMT).  For passenger and light 

truck, about 60% of the crashes are front or rear crashes. 

Thus, the actual crash rate for rear-end collision is 

approximately 120/100M VMT.  Eight million miles of 

driving was simulated and twenty-five crashes happened 

(272/100M VMT).  The higher simulation crash rate is 

possibly due to the fact no feedback is implemented under 

near-crash situations ± while in actual driving a driver is 

likely to be prompted for action by passengers, brake light, 

etc.  In the errorable driver model simulation, there was no 

such mechanism embedded.  Therefore, a higher crash rate 

can be expected.  This problem can be alleviated by 

cooperating with proper warning or adjusting algorithm.  

This process is just like human driver or AST.  AST is 

designed to assist a human driver that is lack of crash 
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avoidance or mitigation mechanism.  With the existence of 

errorable driver model that create human mistake and lack 

of such mechanism, the role of human driver can be 

replaced in the evaluation and development of AST. 

VI. CONCLUSION 

An errorable car-following driver model was presented in 

this paper.  Longitudinal driving behavior was 

characterized based on realistic driving data extracted from 

RDCW database.  The stochastic part of longitudinal driver 

behavior was studied and modeled by a random process. 

The resulting car-following model can reproduce the 

normal driver behavior and occasional deviations similar to 

the realistic driving data.  To make the model errorable, 

three error-inducing behaviors were analyzed.  Perceptual 

limitation was studied and implemented as a quantizer.  

Then, based on the statistic analysis of the experimental 

data, the distracted driving was identified and modeled by a 

stochastic process. Later on, time delay was estimated by 

recursive least square method and was modeled by a 

stochastic process as well.  These two processes were 

introduced as random disturbance of the SDM. With certain 

combination of those three error-inducing behaviors, 

accident/incident could happen. Twenty-five crashes 

happened after eight million miles simulation (272/100M 

VMT).  This simulation crash rate is about twice higher 

with 2005 NHTSA data (120/100M VMT). 

The higher crash rate can be expected because of the lack 

of feedback mechanism under near crash situation. In actual 

driving, a driver is likely to be prompted for action by 

passengers, brake light, etc and performance a proper 

correction.  However, cooperating with proper crash 

avoidance or mitigation algorithm, this crash rate can be 

alleviated.  For the future study, the effects of each error-

inducing behavior need to be understood in detail.  

)XUWKHUPRUH�� D� V\VWHPDWLF� ZD\� RI� ³FRQWUROOLQJ´� WKH� FUDVK�

rate would be helpful for the future application. 
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Fig. 9. Errorable Driver Model Diagram 

APPENDIX 

A sliding mode control law will derived for the stochastic 

driver model to model the human driver feedback action for 

regulating time headway.  

We take the original stochastic driver model as our 

system 
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And the sliding mode surface was defined as 

 0    VTXdtVs
FhFL
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Our control objective is to use input u for regulating 

vehicle state so that sliding mode surface can always be 

satisfied. 

To present this model in terms of range and range-rate, 

we can modify it as 

LLFFLLFLFL

FL

auR),VP(Vu))V)(V,V(P(VaaaR

VVR

��� ��� � 

� 
���

�

 

The sliding mode surface would become 

> @ > @

uTR),VP(VTR

))auR),VP(V((aT)]R(V[V

)R(aT]V[V)RV(T]X[Vs

)R(VTXdtVVTXdtVs

hLFh

LLFLhLL

LhFLLhFL

LhFLFhFL

���� 

������� 

��� ��� 

 ��� ��� ³³

��

��

�������

� 0

 

To satisfied the Lyapunov condition 

h

LFh

h

LFh

hLFh

hLFh

T

R)),VP(VT(

T

R),VP(VTR

uTs]R),VP(VTRs[

u]TR),VP(VTRs[ssV

���

��

����

���
 

�

��

d����� 

���� � 

1

0

3931



 

 

 

)),VP(V(T
T

R
),VP(VT

T

R

T

R),VP(VT
LFh

h

LFh

hh

LFh

� ��
����

 
���1

 

Therefore, we can choose our input u as  
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