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Abstract— The classical attitude control problem for a rigid
body is revisited under the assumption that measurements of the
angular rates obtained by means of rate gyros are corrupted
by harmonic disturbances, a setup of importance in several
aerospace applications. The paper extends previous methods
developed to compensate bias in angular rate measurements
by accounting for a more general class of disturbances, and by
allowing uncertainty in the inertial parameters. By resorting
to adaptive observers designed on the basis of the internal
model principle, it is shown how converging estimates of the
angular velocity can be obtained, and used effectively in a
passivity-based certainty-equivalence controller yielding global
convergence within the chosen parametrization of the group
of rotations. Since a persistence of excitation condition is not
required for the convergence of the state estimates, only an
upper bound on the number of distinct harmonic components
of the disturbance is needed for the applicability of the method.

I. PROBLEM DEFINITION

Consider the rotational dynamics of a rigid body

Ṙ = RS(ω)

J(µ)ω̇ = S(J(µ)ω)ω + u , (1)

with state (R,ω) ∈ SO(3)×R
3, representing the orientation

and angular velocity of a body-fixed frame with respect to

an inertial frame, and control input u ∈ R
3. The matrix S(·)

denotes the skew-symmetric operator S(v)w := v×w, where

v, w ∈ R
3. The inertia matrix J(µ) ∈ R

3×3 is assumed to

depend continuously on a vector of unknown parameters µ
ranging over a given compact set Kµ ⊂ R

p. For obvious

reasons, it is assumed that J(µ) = JT (µ) > 0 for all µ ∈
Kµ. The desired reference trajectory (Rd, ωd) ∈ SO(3)×R

3

for the orientation and angular velocity of the body-fixed

frame of (1) is provided by a smooth autonomous system of

the form

˙̟ d = s(̟d)

Ṙd = RdS(ωd)

ωd = r(̟d) (2)

with state (̟d, Rd) evolving on a compact invariant subset

K̟ × SO(3) of R
nd × SO(3). This setup, while obviously

not the most general, encompasses many configurations
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of importance in aerospace applications [1], and greatly

simplify the analysis. The rotation matrix for the attitude

error Re := RT
dR ∈ SO(3) satisfies the kinematic equation

Ṙe = Re S(ωe), where ωe := ω−Re
Tωd denotes the angular

velocity error resolved in the body frame.

The classic attitude control problem [2] is loosely defined

as that of finding a feedback control law such that all

trajectories of the closed-loop system are bounded, and the

tracking error satisfies (Re(t), ωe(t)) → (I3, 0) as t → ∞,

for any given reference trajectory in the considered family

of solutions of (2), and for all µ ∈ Kµ. In this paper, the

problem in question is revisited under the assumption that

measurements of the rotation matrix R(t) are available, while

measurements of ω(t) obtained by means of rate gyros are

corrupted by additive harmonic noise. The considered setup

arises frequently in the control of aerospace vehicles with

significant aeroelastic effects [3], where structural vibrations

are transmitted to the rate gyros through the coupling with

the airframe, or in the attitude control of rigid of flexible

satellites, where harmonic disturbance in the angular velocity

measurements are produced by imbalance or mechanical

defects in gyroscopes [4]–[6]. Dealing with uncertainties on

the natural frequencies is a fundamental issue in applications

to control of hypersonic vehicles, where the vibrational

modes change in response to mass variation and unsteady

heating effects [7].

Building upon the results of [8], in this study the dis-

turbance is modeled as an exogenous signal containing a

finite number of harmonics of unknown amplitude, phase

and frequency. While the formulation of the problem falls

in principle within the scope of output regulation theory,

the occurrence of the disturbance at the sensor input poses

unique challenges, as the error to be regulated is not directly

available to the controller [9]. For the problem at issue,

it will be shown first that a converging estimate of the

angular velocity can be obtained using an observer endowed

with a nonlinear adaptive internal model of the exogenous

disturbance. The design of the adaptive observer extends

(nontrivially) the approach proposed in [6] to the more

general situation discussed here. A remarkable feature of

our approach is that only an upper bound on the number

of distinct harmonics of the disturbance is required for the

implementation of the adaptive observer, since persistence of

excitation of the regressor is not needed for the convergence

of the state estimates. Then, it will be shown that the

availability of converging estimates of the angular velocity

suffices to obtain global tracking (with respect to the chosen

parametrization of the attitude error in SO(3)) by means of a

certainty-equivalence robust redesign of the adaptive attitude
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regulator of Egeland and Godhavn [10]. Since the design

of the regulator is independent from that of the observer,

the result yields a form of separation principle for attitude

regulation that may be applicable to more general situations.

The paper is organized as follows: The disturbance model

is briefly described in Section II, whereas the design of the

adaptive observer and the certainty-equivalence controller

are presented in Section III and Section IV, respectively.

Simulation results are illustrated in Section V, followed by

concluding remarks.

II. DISTURBANCE MODEL

Consider again the rigid body dynamics (1), and assume

that the measurements of the angular velocity ω are affected

by an additive harmonic disturbance d ∈ R
3, in such a way

that the output to be used for feedback control is given by

y = (R,ωa) ∈ SO(3) × R
3 , ωa := ω + d . (3)

Each component of d is assumed to be given by a finite

sum of sinusoidal signals of unknown constant amplitude,

frequency, and phase

di(t) =

pi
∑

j=1

aij sin(θijt+ φij) , 1 ≤ i ≤ 3 .

The numbers pi ∈ N, 1 ≤ i ≤ 3, are regarded as

upper bounds on the number of distinct harmonics in d,

which implies that some aij may be identically zero. The

disturbance signal d(t), t ≥ 0, is generated by the neutrally

stable system

ẇ = Φ(θ)w

θ̇ = 0

d = Γw (4)

with state w ∈ R
2p, output d ∈ R

3, parameter vec-

tor θ = col
(

θ1, θ2, θ3
)

∈ R
p, and matrices Φ(θ) =

diag
(

Φ1(θ1), . . . , Φ3(θ3)
)

, Γ = diag
(

Γ1, . . . , Γ3

)

, where

the pairs
(

Φi(θi), Γi

)

∈ R
2pi×2pi × R

1×2pi are observable.

The vectors θi ∈ R
pi collect the unknown frequencies θij ,

j = 1 . . . pi of the harmonic components of the disturbances,

while the initial condition w(0) contains the information

about the unknown amplitudes aij and phases φij . It is

assumed that a bound on the amplitude and the frequency of

the harmonics in d is known:

Assumption 2.1: The trajectories of (4) evolve within a

given compact invariant set K = Kw ×Kθ ⊂ R
2p × R

p
+.

While the actual realization of system (4) is immaterial

for the purpose of generating the disturbance signal d(·), a

certain realization, referred to as a canonical parametriza-

tion in [11], is more convenient for internal model design.

The realization in question stems from the following result

(see [1, Lemma 1.5.6]):

Lemma 2.2: Let F ∈ R
n×n, G ∈ R

n×1, Φ ∈ R
n×n,

and Γ ∈ R
1×n be such that the pair (F,G) is controllable,

the pair (Φ, Γ ) is observable, F is Hurwitz, and Φ has all

eigenvalues on the imaginary axis. Then, the unique solution

M ∈ R
n×n of the Sylvester equation MΦ− FM = GΓ is

nonsingular.

The result of Lemma 2.2 is exploited as follows: for

each i = 1 . . . 3, fix Hurwitz matrices Fi ∈ R
2pi×2pi

and matrices Gi ∈ R
2pi×1 in such a way that (Fi, Gi)

is controllable, and denote Mi(θi) ∈ R
2pi×2pi the unique

(unknown) nonsingular solution of the Sylvester equa-

tion Mi(θi)Φ(θi) − FiMi(θi) = GiΓi . Let M(θ) :=
diag {M1(θ1), . . . ,M3(θ3)} and consider the transformation

w̄ := M(θ)w. In the new set of coordinates, system (4) reads

as

˙̄w = (F +GΨ(θ)) w̄

θ̇ = 0

d = Ψ(θ)w̄ (5)

where F := diag {F1, . . . , F3}, G := diag {G1, . . . , G3},

Ψ(θ) := diag {Ψ1(θ1), . . . , Ψ3(θ3)}, and Ψi(θi) :=
ΓiM

−1

i (θi).
Remark 2.1: By using a technique similar to the one

proposed in [11], the disturbance models (4) and (5) can

be modified to include a constant bias in the signal d, thus

incorporating the setup considered in [6]. Since such an

extension does not lead to a substantial modification of the

control algorithm, it has been omitted for simplicity.

III. ADAPTIVE ATTITUDE OBSERVER

Following [12], an observer for the attitude dynamics (1)

endowed with the measurement equation (3) can be defined

as the system
˙̂
R = R̂S(Ω̂(y)) (6)

evolving on SO(3), where the observer angular velocity Ω̂ =
Ω̂(y) resolved in the observer frame is a function (static

or dynamic) of the measured variables. The observer error

dynamics for (6) and (1) is given by

˙̃R = R̃S(ω̃) (7)

where R̃ := R̂TR and ω̃ := ω − R̃T Ω̂ denote respectively

the observer error rotation matrix and its angular velocity

resolved in the body frame. For the problem under investi-

gation, the observer should incorporate an adaptive internal

model of the disturbance of the form

ζ̇ = ϕ(ζ, ψ̂, y)

˙̂
ψ = φ(ζ, y)

Ω̂ = Ω̂(ζ, ψ̂, y) (8)

with state ζ ∈ R
nζ , tunable parameter vector ψ̂ ∈ R

nψ ,

and input given by the available measurement y. The role

of (8) is to reconstruct the disturbance d, and to provide

asymptotic convergence of R̃(t) to the identity matrix. While

the structure of the observer is conceptually similar to the

one employed in [6], the higher complexity of (8) is required

to handle the uncertainty on the frequencies of the harmonic

components of the disturbance.

To avoid manipulating rotation matrices directly, a min-

imal parametrization of SO(3) will be employed in the
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design of the internal model. Let (η̃, ε̃) ∈ S
4 denote the

Euler parameters of R̃. The Modified Rodriguez Parameters

(MRP), defined as σ̃ := ε̃/(1 + η̃), offer a singularity-free

representation of rotations in the range [0, 2π) (see [13]). As

a result, the MRP can be used as a global parametrization of

the orientation error, once one identifies the initial conditions

(η̃(0), ε̃(0)) = (±1, 0). As a matter of fact, for a given initial

condition σ̃(0) ∈ R
3 and a given locally essentially bounded

input ω̃(t), t ≥ 0, boundedness of the trajectories σ̃(t), t ≥ 0,

of the propagation equation

˙̃σ = 1

2
E(σ̃) ω̃ , (9)

where E(σ̃) := 1

2

[

1− σ̃T σ̃
]

I3 +S(σ̃) +S(σ̃)2, implies that

the corresponding rotation matrix

R̃(σ̃) = I3 +
8

(1 + σ̃T σ̃)2
S(σ̃)

[

S(σ̃) + 1

2
(1 − σ̃T σ̃)I3

]

describes rotations of instantaneous angles within [0, 2π).
With this in mind, consider the following expression for the

nonlinear adaptive internal model

ξ̇ =
[

F + 2GE(σ̃)Ψ̂
]

ξ +N(σ̃)

˙̂
Ψi = −γσ̃iξ

T
i , 1 ≤ i ≤ 3

Ω̂ = R̃(σ̃)
[

ωa − Ψ̂ξ + κ(σ̃)
]

(10)

with state and tunable parameter vectors given respectively

by ξ = col(ξ1, ξ2, ξ3), ξi ∈ R
2pi , and Ψ̂i ∈ R

2pi , 1 ≤ i ≤ 3,

input y = col(σ̃, ωa), and adaptation gain γ > 0. The

interconnection term N(σ̃) and the stabilizing term κ(σ̃)
in (10) are chosen respectively as

N(σ̃) = −2GE(σ̃)κ(σ̃) − 4FGσ̃

κ(σ̃) = k1σ̃ + k2||σ̃||
2σ̃ (11)

where k1, k2 > 0 are gain parameters. The motivation behind

this choice will be given shortly. The matrix Ψ̂ has the same

structure as Ψ in (5). Augmenting (10) with the equations of

the observation error (9) and the exosystem (4) yields (after

some algebra) the system

ẇ = Φ(θ)w

θ̇ = 0

ξ̇ =
[

F + 2GE(σ̃)Ψ̂
]

ξ +N(σ̃)

˙̂
Ψi = −γσ̃iξ

T
i , 1 ≤ i ≤ 3

˙̃σ = 1

2
E(σ̃)

[

Ψ̂ξ − κ(σ̃) − Γw
]

(12)

where the observation error for the angular rates reads as

ω̃ = Ψ̂ξ− κ(σ̃)−Γw. It is worth noting that system (12) is

autonomous.

Proposition 3.1: Fix an arbitrary compact set K as in

Assumption 2.1 for the initial conditions (w(0), θ(0)). Then,

there exist k⋆
1 > 0 and k⋆

2 > 0, depending only on K,

such that for any k1 > k⋆
1 , any k2 > k⋆

2 , and any γ > 0,

the solutions of (12) originating from any initial condition

σ̃(0) ∈ R
3, ξ(0) ∈ R

2p, and Ψ̂i(0) ∈ R
2pi , 1 ≤ i ≤ 3, are

bounded, and satisfy limt→∞ σ̃(t) = 0, limt→∞ ω̃(t) = 0,

and limt→∞
˙̃ω(t) = 0.

Proof: Performing the change of coordinates χ := ξ−
M(θ)w−4Gσ̃, the following expression is obtained in place

of the ξ-dynamics:

χ̇ =
[

F + 2GE(σ̃)Ψ̂
]

ξ +N(σ̃) −M(θ)Φ(θ)w

−2GE(σ̃)
[

Ψ̂ξ − κ(σ̃) − Γ w
]

= Fχ+N(σ̃) + 2GE(σ̃)κ(σ̃) + 4FGσ̃

+2GE(σ̃)Γw − Γ w .

The choice for N(σ̃) given in (11) decouples the χ- from the

σ̃-dynamics when w = 0, and, most importantly, renders the

χ-dynamics independent from the stabilizing control κ(σ̃).
Changing coordinates as Ψ̃i := Ψ̂i − Ψi(θ), system (12) can

be viewed as the cascade interconnection of system (4) and

system

χ̇ = Fχ+∆1(σ̃, w)
˙̃Ψi = −γσ̃iξ

T
i , 1 ≤ i ≤ 3

˙̃σ = 1

2
E(σ̃) [4Ψ(θ)Gσ̃ − κ(σ̃) + Ψ(θ)χ+ Ψ̃ξ] (13)

where ∆1(σ̃, w) := G [2E(σ̃) − I3]Γ w, ξ = χ +
M(θ)w + 4Gσ̃, and Ψ̃ := diag

(

Ψ̃1, . . . , Ψ̃3

)

. Let P =
diag

(

P1, . . . , P3

)

, where each Pi = PT
i , 1 ≤ i ≤ 3, solves

the Lyapunov equations PiFi + FT
i Pi = −I , and consider

for system (13) the Lyapunov-like function candidate

V (χ, σ̃, Ψ̃) = χTPχ+ 2 ln(1 + σ̃T σ̃) +
1

2γ

3
∑

i=1

Ψ̃iΨ̃
T
i ,

whose Lie derivative along the vector field of system (13)

reads as

V̇ = −χTχ+ 2χTP∆1(σ̃, w) + σ̃T
[

4Ψ(θ)Gσ̃ − σ̃Tκ(σ̃)
]

.

The definition of E(σ̃) and continuity of the entries of Ψ(θ)
with respect to θ imply that there exist positive numbers δi,
i = 1, . . . , 3, which depend only on the set K, such that for

all (w, θ) ∈ K

‖P∆1(σ̃, w)‖2 ≤ δ1‖σ̃‖
2 + δ2‖σ̃‖

4 , ‖Ψ(θ)G‖ ≤ δ3 . (14)

The above bounds motivate the choice of the stabilizing con-

trol κ(σ̃) in (11). Finally, application of Young’s inequality

in the form |ab| ≤ 1

2
a2 + 1

2
b2 yields

V̇ ≤ − 1

2
||χ||2 + (δ1 + 4δ3 − k1)‖σ̃‖

2 + (δ2 − k2)‖σ̃‖
4 .

By choosing k1 > k⋆
1 := δ1 + 4δ3 and k2 > k⋆

2 := δ2,

the derivative of V along the vector field of system (13)

is rendered negative semi-definite for all (w, θ) ∈ K. This

implies that the equilibrium at the origin of system (13) is

uniformly stable in the sense of Lyapunov, and that trajec-

tories of the cascade system (4)-(13) originating from K ×
R

4p+3 are bounded. Keeping in mind that the cascade (4)-

(13) is an autonomous system, application of La Salle’s

invariance principle implies that all trajectories originating

from K × R
4p+3 converge to the largest invariant set M

contained in K × {V̇ = 0}. This yields limt→∞ σ̃(t) =
0, and thus limt→∞ R̃(t) = I3. Furthermore, on the set

M the trajectories Ψ̃i(t), t ≥ 0, are necessarily constant.
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Let (w0, θ) ∈ K denote the initial condition for (4), and

let (w(t, w0), θ), t ≥ 0, be the corresponding trajectory.

Similarly to the proof of La Salle’s principle, it is seen that

invariance of M implies that

Ψ̃◦M(θ)w(t, w0) = 0 ∀ t ≥ 0, ∀ Ψ̃◦ ∈ M (15)

and thus limt→∞ Ψ̃(t)M(θ)w(t, w0) = 0. Recalling that

ω̃ = Ψ̃M(θ)w + Ψ̂ [χ + 4Gσ̃], it is readily seen that

limt→∞ ω̃(t) = 0. To establish that ˙̃ω(t) vanishes asymp-

totically, it suffices to notice that χ̇(t), ˙̃Ψ(t) and ˙̃σ(t) vanish

on M, and that (15) implies Ψ̃◦M(θ)ẇ(t, w0) = 0 for all

t ≥ 0.

Remark 3.1: It is worth noting that the convergence of

the observation error (σ̃(t), ω̃(t)) to the origin does not

require persistence of excitation (PE) of the “regressor” ξ(t)
employed in the update law for Ψ̂i. Since PE of ξ(t) is related

to the richness of the exogenous signal d(t), the result of

Proposition 3.1 implies that knowledge of an upper bound on

the number of distinct harmonics in d is a sufficient condition

for observer design. On the other hand, the estimation error

Ψ̃(t), which is related to the estimation of the unknown

vector θ, in general does not converge to the origin, rather to

a subspace satisfying (15) at each point. In case the signal

w(t) – equivalently, ξ(t) – is persistently exciting, standard

arguments can be invoked to show that equation (15) yields

Ψ̃◦ = 0. 2

IV. TRACKING CONTROLLER

The design of the measurement-feedback controller is

completed by a tracking controller, designed on the basis

of the separation principle. The controller is a certainty-

equivalence version of the standard passivity-based adaptive

attitude regulator of [10], where state-feedback is replaced

by feedback from the estimated angular velocity, and a robust

redesign of the update law is employed. While it is customary

to retain the original coordinates of the plant for stability

analysis, for the problem at issue it is more advantageous

to perform the analysis entirely in the observer coordinate

system, and regard the observation error as a converging

disturbance.

Consider the observed attitude tracking error R̂e := RT
d R̂,

with corresponding observed angular velocity error Ω̂e :=
Ω̂ − R̂T

e ωd resolved in the observer frame, satisfying the

equation
˙̂
Re = R̂eS(Ω̂e). Let σ̂e ∈ R

3 denote the MRP of

R̂e, with propagation equation ˙̂σe = 1

2
E(σ̂e) Ω̂e. Define the

augmented reference vector in the observer frame

ẑd := R̂T
e ωd − σ̂e , (16)

and let ẑ := R̃T (Ω̂− ẑd) = ω̂− R̃T ẑd be the corresponding

tracking error expressed in the body-fixed frame, where for

notational convenience we have denoted by ω̂ = R̃T Ω̂ the

estimated angular velocity resolved in the body frame. Then,

the angular velocity of the rigid body can be expressed in

terms of the new coordinates ẑ as

ω = ẑ + R̃T ẑd + ω̃ = ω̂ + ω̃ . (17)

Substituting (17) into the bottom equation in (1), yields

J ˙̂z + J ˙̃RT ẑd + JR̃T ˙̂zd + J ˙̃ω = S(Jẑ + JR̃T ẑd + Jω̃) ×

[ẑ + R̃T ẑd + ω̃] + u ,

where the dependence of J on µ has been suppressed to

simplify the notation. By expanding the left side of the above

equation, one obtains

J ˙̃RT ẑd = −JS(ω̃)R̃T ẑd , (18)

JR̃T ˙̂zd = JR̃T [
˙̂
RT

e ωd + R̂T
e ω̇d − 1

2
E(σ̂e)Ω̂e]

= JR̃T [−S(Ω̂e)R̂
T
e ωd + R̂T

e ω̇d − 1

2
E(σ̂e)Ω̂e]. (19)

While the term in (18) vanishes with the observation error,

the term in (19) must be compensated by means of a

feedforward action. Without loss of generality, assume that

J(µ) depends linearly on µ, and write

J(µ)R̃T ˙̂zd − S(J(µ)ẑ + J(µ)R̃T ẑd)R̃
T ẑd = Y (R̃,ωd, x̂)µ

where the regressor Y (R̃,ωd, x̂) is a known function of the

state x̂ := col(σ̂e, ẑ) and the available exogenous signals

R̃(t) and ωd(t) := col(ωd(t), ω̇d(t)), t ≥ 0. The control

input is chosen as the combination of a feedback and an

adaptive feedforward control

˙̂µ = −ν Proj
(

Y (R̃,ωd, x̂)ẑ
)

u = −R̃T σ̂e − k3ẑ + Y (R̃,ωd, x̂)µ̂ (20)

where ν > 0, k3 > 0 are gain parameters, and Proj(·)
denotes the smooth projection onto a convex set P ⊃ Kµ,

as defined in [14, App. E]. This yields the system

˙̂σe = 1

2
E(σ̂e)[R̃(t)ẑ − σ̂e]

J(µ) ˙̂z = S(J(µ)ω̂)ẑ − R̃T (t)σ̂e − k3ẑ + Y (R̃,ωd, x̂)µ̃

+∆2(x̂, R̃, ω̃, µ)

˙̃µ = −ν Proj
(

Y (R̃,ωd, x̂)ẑ
)

(21)

where µ̃ := µ̂− µ, ω̃ := col(ω̃, ˙̃ω), and

∆2(x̂, R̃, ω̃, µ) := [JS(R̃T ẑd) + S(Jω̂) − S(ω̂)J ]ω̃

+S(Jω̃)ω̃ − J ˙̃ω (22)

is a perturbation which vanishes at ω̃ = 0. The main result

of the section is the following:

Proposition 4.1: Consider the closed-loop system given

by the cascade interconnection of the controlled system (21)

with the observer dynamics (12) and the reference genera-

tor (2). Let the assumptions of Proposition 3.1 be satisfied,

and let a compact set Dd ⊂ R
6 be defined such that

ωd ∈ Dd for all ̟d ∈ K̟. Fix arbitrary initial conditions

(w(0), θ) ∈ K, ξ(0) ∈ R
2p, Ψ̂i(0) ∈ R

2pi , 1 ≤ i ≤ 3,

σ̃(0) ∈ R
3, and ̟d(0) ∈ K̟. Then, for any k3 > 0 and

ν > 0, the solution of (21) originating from any initial

condition (x̂(0), µ̂(0) ∈ R
6 × P , any µ ∈ Kµ, and forced

by the output (R̃, ω̃) and (Rd,ωd) of systems (12) and (2),

respectively, is bounded and satisfies limt→∞ x̂(t) = 0.

Proof: We proceed by establishing first that (21) is

forward complete for all forcing signals considered here.
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System (21) is then shown to possess a bounded-input

bounded-state property, without restriction on the initial

state, and nonzero restriction on the disturbance input ω̃.

Boundedness of all trajectories follows from the fact that

restrictions on ω̃ are fulfilled in finite time. The proof is

then completed by using standard arguments. Consider the

positive definite and radially unbounded Lyapunov function

candidate W (x̂, µ̃) = 2 ln(1+ σ̂T
e σ̂e)+ 1

2
ẑTJ(µ)ẑ+ 1

2ν
µ̃T µ̃

yielding, along trajectories of (21),

Ẇ (x̂, µ̃) = −σ̂T
e σ̂e − k3ẑ

T ẑ + ẑT∆2(x̂, R̃, ω̃, µ) .

Once the compact set Dd has been fixed, from the definition

of ∆2 and ẑd in (22) and (16) respectively, it follows that

there exist positive numbers λi, 0 ≤ i ≤ 4, such that
∥

∥

∥
∆2(x̂, R̃, ω̃, µ)

∥

∥

∥
≤ (λ0 + λ1 ‖σ̂e‖ + λ2 ‖ẑ‖) ‖ω̃‖

+λ3 ‖ω̃‖
2

+ λ4‖ ˙̃ω‖ (23)

for all t ≥ 0 and all µ ∈ Kµ. As a result, for any ω̃(·) ∈ L∞,

there exist numbers λ̄i > 0 (depending on ‖ω̃‖
∞

) such that
∥

∥

∥
∆2(x̂, R̃(t), ω̃(t), µ)

∥

∥

∥
≤ λ̄0 + λ̄1 ‖σ̂e‖ + λ̄2 ‖ẑ‖

for all t ≥ 0 and all µ ∈ Kµ. A simple application of

Young’s inequality shows that the derivative of W (·) along

trajectories of (21) satisfies

Ẇ (x̂, µ̃) ≤ − 1

2
‖σ̂e‖

2 + k̄‖ẑ‖2 + 1

2
λ̄2

0 ,

where k̄ := 1

2
+ 1

2
λ̄2

1 + λ̄2 − k3. Since ln(1 + σTσ) ≤ ‖σ‖2

for all σ ∈ R
3, it follows that

Ẇ (x̂, µ̃) ≤ 1

2
ln(1+ σ̂T

e σ̂e)+ k̄‖ẑ‖
2 + 1

2
µ̄2

0 ≤ αW (x̂, µ̃)+β

for some α > 0, β = 1

2
λ̄2

0, and for all (x̂, µ̃) ∈ R
6 × R

p.

Fix an arbitrary initial condition (x̂(0), µ̂(0)) ∈ R
6 × P ,

and let [0, Tmax) denote the maximal interval of exis-

tence and uniqueness of the corresponding (forced) solution

(x̂(·), µ̃(·)) of (21). Recall that, due to the properties of

the projection operator, µ̃(t) is bounded over [0, Tmax).
Furthermore, along the given solution, the estimate

W (x̂(t), µ̃(t)) ≤ eαtW (x̂(0), µ̃(0)) + β
α
(eαt − 1)

holds for all t ∈ [0, Tmax), showing that x̂(t) is bounded as

well over [0, Tmax), and thus Tmax = +∞. Using again the

bound (23), Ẇ (x̂, µ̃) can be estimated as

Ẇ ≤ −‖σ̂e‖
2
− (k3 − λ2 ‖ω̃‖) ‖ẑ‖

2
+ λ1 ‖σ̂e‖ ‖ẑ‖ ‖ω̃‖

+
(

λ0 ‖ω̃‖ + λ3 ‖ω̃‖
2

+ λ4‖ ˙̃ω‖
)

‖ẑ‖ (24)

for all ωd ∈ Dd and all µ ∈ Kµ. An easy computation shows

that for any given k3 > 0 the trajectories of (21) are bounded

if the restriction ‖ω̃‖
∞

< 2(
√

λ2
2 + 2k3λ2

1 − λ2)/λ
2
1 is

satisfied. Since ω̃(t) → 0, the restriction is fulfilled in finite

time, and thus the solution of system (21) is bounded. This

in turn implies that any solution of the autonomous system

given by the cascade interconnection, with initial condition

in the considered set, is bounded, and thus its ω-limit set

is non-empty, compact and invariant. Denote by Ω+ the ω-

limit set of an arbitrary such trajectory, and notice that on Ω+

necessarily ω̃ = 0. From (24), following standard arguments

as in the proof of La Salle’s principle, one concludes that W
is constant on Ω+, and thus x̂ = 0.

V. SIMULATION RESULTS

Nonlinear simulations have been performed using a rigid

body model with J(µ) = diag(90, 100, 70) kg m2, and initial

conditions R(0) = I3, ω(0) = 0. The reference ωd(t)
has been generated by a neutrally stable linear system with

eigenvalues λ = {±0.25 i} and initial conditions ̟d(0) =
(0.1 0 0.15 0 0.2 0)T , Rd(0) = I3. The gains of the observer

and the tracking controller has been chosen as k1 = 40, k2 =
30, k3 = 40, and γ = ν = 2500. For the internal model, the

pairs (Fi, Gi), 1 ≤ i ≤ 3, have all been obtained through a

balanced realization of a controller companion form with

eigenvalues λ = {−1,−2,−1.5,−2.5}, where an initial

(incorrect) estimate for the frequencies of the disturbance

corresponding to θi,1 = 0.5 rad/s and θi,2 = 1.5 rad/s, 1 ≤
i ≤ 3, was assumed. The initial estimate for µ has been set

to µ̂(0) = (120 70 100)T . In all simulations, the adaptation

law for the observer is initially disabled, and engaged at t =
50 s.In the first case study, the parameters of the harmonic

disturbance have been selected as in Table I, meaning that the

exosystem is minimally parameterized by the internal model.

The plots in Fig. 1 show the time history of the 2-norm of the

MRP for the observer and the tracking error rotation matrices

R̃(t) and R̂e(t). The top plot and the bottom plot in Fig. 2

show the parameter estimates Ψ̂i(t) and µ̂(t), respectively.

Before the adaptation of the observer is enabled, a sizable

tracking error is present and the estimates µ̂(t) saturate as

a consequence of the disturbance. After the adaptation of

the observer is complete, regulation is recovered as µ̂(t)
converge to constant values. In this case, not only Ψ̃i(t) → 0
as expected, but also µ̃(t) → 0, since the reference trajectory

ωd(t) yields a persistently exciting regressor for µ̂(t). In the

second case study, the PE condition is removed from both

the adaptation of the observer and the tracking controller, by

setting a1i = 0, 1 ≤ i ≤ 3 in the disturbance model, and

by choosing the initial condition of the reference command

generator as ̟d(0) = (0.1 0 0 0 0 0)T . The rest of the

controller parameters have been left unchanged, including

the dimension of the internal model. The results of the

simulations are presented in Fig. 3. In this case, convergence

of Ψ̃i(t) to the origin has been replaced by convergence onto

a lower-dimensional submanifold of the parameter space (see

the analysis in [9]).

Ang. vel. Frequency (rad/s2) Amplitude (rad/s)

ω1 θ11 = 1, θ12 = 2 a11 = 0.1, a12 = 0.15

ω2 θ21 = 1, θ22 = 3 a21 = 0.12, a22 = 0.12

ω3 θ31 = 1, θ32 = 2.5 a31 = 0.1, a32 = 0.1

TABLE I

PARAMETERS OF THE RATE SENSOR DISTURBANCE, CASE STUDY I

VI. CONCLUSIONS

In this note, a design based on the separation principe has

been successfully applied to solve the robust attitude control
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Fig. 1. Norm of σ̃(t) (top) and σ̂e(t) (bottom). Case study I.

0 20 40 60 80 100 120 140 160 180 200

−3

−2

−1

0

1

2

3

Parameter updates Ψ̂i(t)

50 100 150 200 250 3000
50

60

70

80

90

100

110

120

130

Parameter updates µ̂(t)

Time [s]

Fig. 2. Parameter updates Ψ̂i(t) (top) and µ̂(t) (bottom). Case study I.

problem with measurements of the angular rates corrupted

by harmonic noise. An adaptive internal model of the dis-

turbance embedded in the observer provides asymptotically

accurate estimates of the angular rates, which are employed

in a certainty-equivalence passivity-based controller. A very

desirable features of the approach lies in the fact that

persistence of excitation is not required for adaptive state

estimation and error regulation.
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