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Abstract— In this paper a new class of nonlinear feedbacks
that guarantee input-to-state stability (ISS) w.r.t. the mea-
surement error is identified. In particular, it is shown that
(inverse) optimal feedback laws, that are separable into a
globally Lipschitz part and a nonlinearity satisfying a certain
inequality condition, guarantee ISS. As a consequence, those
state feedbacks in conjunction with any globally asymptotically
convergent observer lead to a globally asymptotically stable
closed-loop. The theoretical results are applied to several control
problems, e.g. the nonlinear output feedback design of a single-
link robot arm or an active magnetic bearing system.

I. INTRODUCTION

Nonlinear output feedback design is one of the most

challenging problems in nonlinear control. Various

examples in literature show that the certainty-equivalence

implementation of a globally stabilizing state feedback and

a globally converging observer can lead to an unstable

closed-loop, see e.g. [7]. Mainly two approaches have been

proven to be successful in tackling the nonlinear output

feedback design problem. The first approach is based on

the use of high-gain observers [6, 10], the second one uses

ISS-related concepts [8, 11]. For a more detailed discussion

of the nonlinear output feedback design consult [13] and

the references therein.

This paper continuous the work on an ISS-related separation

principle based on (inverse) optimal feedbacks, introduced

in [1]. The closed-loop is considered as a cascade system in

which the observer error acts as a measurement disturbance.

Thus, the state feedback has to render the system robust

against this disturbance, for example a feedback that renders

the closed-loop input-to-state stable w.r.t. the measurement

error guarantees the necessary robustness. In this paper a

new class of nonlinear state feedbacks that guarantee ISS

w.r.t. the measurement error is presented which includes the

results of [1] as a special case. More precisely, it is shown

that (inverse) optimal feedback laws that are separable into

a globally Lipschitz part and a nonlinear part, satisfying a

certain inequality condition, guarantee the ISS property. A

main advantage of this result is that an explicit condition

for nonlinearities is given that can be contained in the state

feedback. The results are illustrated on various examples,

e.g. a single-link robot arm or an active magnetic bearing.
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The remainder of the paper is organized as follows: In

Section II the ISS property w.r.t. the measurement error is

established for the new class of state feedbacks. In Section

III a nonlinear separation principle is stated for this class of

state feedbacks and in Section IV the theoretical results are

applied to different control problems. Conclusions are given

in Section IV.

II. CLASS OF FEEDBACKS THAT GUARANTEE ISS

In this section the main results of the paper are presented,

namely, a class of state feedbacks u = k(x) is proposed that

render the closed-loop system ẋ = f(x) + G(x)k(x + e)
input-to-state stable w.r.t the measurement error e. This ISS

property is established for a class of nonlinear (inverse)

optimal feedbacks. A novelty in this work is that a rather

easily verifiable condition for the admissible nonlinearities

in the state feedback is established. As discussed at the end

of this section, the new result enlarges the class of state

feedbacks proposed in [1]. To establish this result, two main

assumptions are needed.

Assumption 1: The nonlinear control system is assumed to

be of the form

ẋ = f(x) + G(x)u

y = h(x),
(1)

where x ∈ R
n is the system state, u ∈ R

q the control

input and y ∈ R
p the measurable output. The vector fields

f : R
n → R

n, G : R
n → R

n×q , and h : R
n → R

p are

assumed to be sufficiently smooth with f(0) = 0, h(0) = 0.

Assumption 2: The globally stabilizing state feedback is

assumed to be of the form

u∗ = k(x) = −
1

2
R−1(x)GT (x)V T

x (x), (2)

i.e. V has to satisfy the Hamilton-Jacobi-Bellman (HJB)

equation

Vx(x)f(x) + Vx(x)G(x)k(x)

+ q(x) + kT (x)R(x)k(x) = 0,
(3)

where q(x) ≥ c‖x‖2 and R is a positive definite matrix with

λminI ≤ R(x) ≤ λmaxI, λmax > λmin > 0. V is assumed

to be a positive definite, radially unbounded C1 function

and Vx denotes the gradient (column vector) of V . Hence,

the state feedback (2) minimizes the cost functional

V (x(0)) =

∫

∞

0

(

q(x(t)) + uT (t)R(x(t))u(t)
)

dt. (4)
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Using Assumptions 1 and 2, the first main result is

established in the following theorem.

Theorem 1: Suppose that Assumptions 1 and 2 hold. Then

the closed-loop system

ẋ = f(x) + G(x)k(x + e) (5)

is input-to-state stable with respect to e ∈ R
n, if the state

feedback (2) is of the form

u∗ = k(x) = m(x) + Q(y)p(xi). (6)

In (6) the function m : R
n → R

q, m(0) = 0, is globally

Lipschitz with Lipschitz constant γ, i.e. ‖m(x+e)−m(x)‖ ≤
γ‖e‖, and the function p : R

n → R
q is of the form

p(xi) =







p1(xi1)
...

pq(xiq
)






, (7)

where the components pj are functions in a single state

xij
, ij ∈ {1 . . . n}, j = 1 . . . q that satisfy the inequality

condition

p2

j (xij
) > a2

(

pj(xij
+ z) − pj(xij

)
)2

(8)

for all nonzero constants a, z ∈ R whenever |xij
| is suffi-

ciently large. Furthermore, the matrix Q(y) in (6) is a q × q

diagonal matrix whose entries are only depending on the

measurable output y, i.e. Q(y) is of the form

Q(y) =













Q11(y) 0 · · · 0

0
. . .

...
...

. . . 0
0 · · · 0 Qqq(y)













. (9)

Proof: One has to show that the state feedback (6) guarantees

ISS w.r.t. the measurement error. The value function V in (3)

can be used as an ISS Lyapunov function candidate. It has

to be shown that there exists a class K function ρ and a class

K∞ function β such that

Vx(x)(f(x) + G(x)k(x + e)) ≤ −β(‖x‖) (10)

holds whenever ‖x‖ ≥ ρ(‖e‖), see e.g. [6]. This is equal to

Vx(x)f(x) + Vx(x)G(x)(m(x + e)

+Q(y)p(xi + ei)) < −β(‖x‖)
(11)

for any given e whenever ‖x‖ is sufficiently large. The proof

is divided into two parts.

Part 1: In the first part an upper bound for the left-hand

side of equation (11) is estimated analogous to [1]. This is

done by successively overestimating the left-hand side. At

first Vx(x)G(x)(m(x)+Q(y)p(xi)) is added and subtracted.

This leads to

Vx(x) (f(x) + G(x)(m(x) + Q(y)p(xi)))

+Vx(x)G(x) (m(x + e) − m(x)

+ Q(y)p(xi + ei) − Q(y)p(xi))

(12)

that can be further transformed, using the HJB equation (3)

and the relation (2), into

−q(x) − (m(x) + Q(y)p(xi))
T

×R(x)(m(x) + Q(y)p(xi))

−2(m(x) + Q(y)p(xi))
T R(x)

×(△m(x, e) + Q(y)△p(xi, ei))

(13)

with △m(x, e) = m(x + e) − m(x) and △p(xi, ei) =
p(xi + ei) − p(xi). As λminI < R(x) < λmaxI and

2ab ≤ α−1

1
‖a‖2+α1‖b‖

2 with a = R(x)(m(x)+Q(y)p(xi))
and b = (△m(x, e) + Q(y)△p(xi, ei)), the expression (13)

is bounded from above by

−q(x) − λmin‖m(x) + Q(y)p(xi)‖
2

+
λ2

max

α1

‖m(x) + Q(y)p(xi)‖
2

+α1‖△m(x, e) + Q(y)△p(xi, ei)‖
2.

(14)

Choosing now α1 such that λmin

2
=

λ2

max

α1

and considering

that q(x) ≥ c‖x‖2, one obtains

−c‖x‖2 −
λmin

2

(

|m(x)‖2

+ 2mT (x)Q(y)p(xi) + ‖Q(y)p(xi)‖
2
)

+
2λ2

max

λmin

‖△m(x, e) + Q(y)△p(xi, ei)‖
2.

(15)

Applying Young’s inequality 2aT b ≤ α−1

2
‖a‖2 + α2‖b‖

2

to the term 2mT (x)Q(y)p(xi), with a = m(x) and b =
Q(y)p(xi), (15) is overestimated by

−c‖x‖2

−
λmin

2

(

(1 − α−1

2
)‖m(x)‖2 + (1 − α2)‖Q(y)p(xi)‖

2
)

+
2λ2

max

λmin

‖△m(x, e) + Q(y)△p(xi, ei)‖.

(16)

It is possible to choose α2 < 1 such that the term

−c‖x‖2 +
λmin

2
(α−1

2
− 1)‖m(x)‖2 (17)

is negative definite, i.e. α2 has to be chosen such that
λmin

2
(α−1

2
− 1)γ2 < c, where γ is the Lipschitz constant

of m(x). With c̃ = c − λmin

2
(α−1

2
− 1)γ2 > 0 and d̃ =

λmin

2
(1 − α2) > 0 one obtains

−c̃‖x‖2 − d̃‖Q(y)p(xi)‖
2

+
2λ2

max

λmin

‖△m(x, e) + Q(y)△p(xi, ei)‖
2.

(18)

Finally the triangular inequality and (‖a‖+‖b‖)2 ≤ 2(‖a‖2+
‖b‖2) can be used to derive

−c̃‖x‖2 − d̃‖Q(y)p(xi)‖
2

+
4λ2

max

λmin

‖△m(x, e)‖2

+
4λ2

max

λmin

‖Q(y)△p(xi, ei)‖
2,

(19)
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where one defines λ̃ =
4λ2

max

λmin
to get, by considering the

Lipschitz property ‖△m(x, e)‖ ≤ γ‖e‖, the upper bound

−c̃‖x‖2 − d̃‖Q(y)p(xi)‖
2

+λ̃γ2‖e‖2 + λ̃‖Q(y)△p(xi, ei)‖
2

(20)

for equation (11). Therefore, one arrives at

Vx(x)(f(x) + G(x)k(x + e))

≤ −c̃‖x‖2 + λ̃γ2‖e‖2

−d̃‖Q(y)p(xi)‖
2 + λ̃‖Q(y)△p(xi, ei)‖

2.

(21)

Part 2: In the second part of the proof it will be shown that

(21) satisfies

−c̃‖x‖2 + λ̃γ2‖e‖2 − d̃‖Q(y)p(xi)‖
2

+λ̃‖Q(y)△p(xi, ei)‖
2 < −β(‖x‖)

(22)

for a sufficiently large ‖x‖ with β(‖x‖) = c̃
2
‖x‖2. Thus, it

has to be shown that

−
c̃

2
‖x‖2 + λ̃γ2‖e‖2 − d̃

q
∑

j=1

Q2

jj(y)p2

j (xij
)

+λ̃

q
∑

j=1

Q2

jj(y)
(

pj(xij
+ eij

) − pj(xij
)
)2

< 0

(23)

holds for sufficiently large ‖x‖. Since pj satisfy (8), i.e.

p2

j (xij
) > a2(pj(xij

+ z) − pj(xij
))2

holds for sufficiently large |xij
| and since Q2

jj(y) ≥ 0 and

d̃ > 0, one can see that the expression

Q2

jj(y)d̃

(

−p2

j (xij
) +

λ̃

d̃
(pj(xij

+ eij
) − pj(xij

))2

)

(24)

in the sum (23) gets negative (nonpositive) whenever |xij
|

becomes large enough. Consequently (23) holds whenever

|xij
| is sufficiently large. In the case that ‖x‖ becomes

sufficiently large, but not any of the states {xi1 . . . xiq
},

then still the term c̃
2
‖x‖2 becomes sufficiently large, such

that for a given (fixed) e the inequality (23) holds. �

The next corollary is an extension of Theorem 1. It

allows that the components of p in (6) depend on linear

combinations of states and not only on a single state.

Corollary 2: Suppose that Assumptions 1 and 2 hold. Then

the closed-loop system

ẋ = f(x) + G(x)k(x + e) (25)

is input-to-state stable with respect to e ∈ R
n, if the state

feedback (2) is of the form

u∗ = k(x) = m(x) + Q(y)p(cT
i x). (26)

In (26) the function m : R
n → R

q, m(0) = 0, is globally

Lipschitz with Lipschitz constant γ, i.e. ‖m(x+e)−m(x)‖ ≤
γ‖e‖, and the function p : R

n → R
q is of the form

p(cT
i x) =







p1(c
T
i1

x)
...

pq(c
T
iq

x)






, (27)

where cij
∈ R

n and the components pj are functions that

satisfy the inequality condition

p2

j (c
T
ij

x) > a2

(

pj(c
T
ij

x + z) − pj(c
T
ij

x)
)2

(28)

for all nonzero constants a, z ∈ R whenever |cT
ij

x| is

sufficiently large. Furthermore, the matrix Q(y) is a q × q

diagonal matrix whose entries are only depending on the

measurable output y, i.e. Q(y) is of the form

Q(y) =













Q11(y) 0 · · · 0

0
. . .

...
...

. . . 0
0 · · · 0 Qqq(y)













. (29)

Proof: The proof of this corollary is based on the proof of

Corollary 1 in [1]. A linear transformation Φξ = x is used

to transform the system into the new coordinates ξ. By

defining a new value function for the transformed system,

Corollary 2 follows from Theorem 1. The only difference

is that Q(y) occurs in the feedback structure. As it can be

rewritten as Q(h(x)), it gets under the state transformation

Q(h(Φξ)) = Q(h̃(ξ)). The system output equation changes

as well to y = h̃(ξ), and consequently Q(y) remains a

function of the output. �

This result allows a variety of nonlinearities in the feedback

structure. All polynomials of arbitrarily high degree in a

single state or in a linear combination of the states, e.g. x5

1

or (x1 +2x2)
3, are allowed to be contained in the feedback,

since all polynomials satisfy (8). Hence the results of [1]

are included in Theorem 1. Furthermore, other nonlinearities

like e.g. |xi|
3 can now be included in the feedback as well.

Notice that |xi|
3 satisfies the inequality condition (8) since

a2(p(xi + z) − p(xi))
2 satisfies

a2((|xi + z|)3 − |xi|
3)2

< a2(3|xi|
2|z| + 3|xi||z|

2 + |z|3)2,
(30)

and the right-hand side of (30) is a polynomial in |xi|
of degree 4, when z is considered to be constant. Thus,

for sufficiently large |xi| the function p2(xi) = |xi|
6 will

always be greater than the right-hand side of (30) as it

is a polynomial of a higher order. Therefore the condition

(8) is satisfied for all nonzero constants a, z ∈ R. Another

important nonlinearity that can be included in the feedback

structure is
√

|xi|, which is not Lipschitz at zero. Notice that

a2(
√

|xi + z| −
√

|xi|)
2 is bounded by a constant for large

|xi| as

a2(
√

|xi + z| −
√

|xi|)
2

≤ a2(2|xi| + |z| − 2
√

|xi|||xi| − |z||)

≤ a2

(

2|xi| + |z| − 2|xi|

√

∣

∣

∣

∣

1 −
|z|

|xi|

∣

∣

∣

∣

)

≤ a2(2|xi| + |z| − 2c|xi|).
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Whereby the last line follows if |xi| is sufficiently large and

thus c can be chosen arbitrarily close to one, e.g. 0.99. Hence,

for any z, a, there exists a c < 1 (2a2(1− c) < 1) such that

2a2(1 − c)|xi| + a2|z| ≤ |xi| (31)

holds for sufficiently large |xi|. Furthermore, the state

feedback may also be of the form u = k(x1, x2, x3) =
−x1 − x2 − x3 + x3

1
x3

3
, for example if x1 is measurable,

i.e. y = x1. Corollary 2 allows to replace the single state

xi in each nonlinearity pj by a linear combination of states

cT
i x, e.g.

√

|x2 + x3| or −x1 − x2 − x3 + y3|x2 + x3|
3 are

allowed as well.

III. NONLINEAR SEPARATION PRINCIPLE

In the previous section a new class of state feedbacks has

been introduced that render input affine systems ISS w.r.t.

the measurement error. In this section their robustness

is used to establish a nonlinear separation principle. The

following assumption on the observer is needed.

Assumption 3: Consider an observer for the control sys-

tem (1) with a globally uniform asymptotic observer error

dynamics

ė = a(e, x), (32)

where e ∈ R
n and e = x− x̂. More precisely, it is assumed

that there exists a Lyapunov function W and a positive

definite function α such that

We(e)a(e, x) < −α(W (e)) (33)

holds for all nonzero e, x.

Under the Assumptions 1-3 the question arises, whether

the closed-loop, given by the input affine system (1), the

convergent observer (32), and the stabilizing feedback (2),

in the certainty-equivalence implementation

ẋ = f(x) + G(x)k(x + e)

ė = a(e, x)
(34)

is globally asymptotically stable. Considering the properties

of the closed-loop (34) and the convergence property (33)

of the observer, the following statement can be made.

Theorem 3: Suppose that Assumptions 1-3 hold and that

the state feedback is of the form (6), i.e. it guarantees

input-to-state stability w.r.t. the measurement error. Then

the closed-loop (34) is globally asymptotically stable.

Proof: Since the observer satisfies the convergence property

(33), the error dynamics converges uniformly in x, i.e. the

dynamics becomes ė = a(t, e). Hence, the closed-loop

system (34) has a behavior similar to a cascade system, with

the error dynamics ė = a(t, e) as the driving system and

the controlled system ẋ = f(x) + G(x)k(x + e) as driven

system. It is a well known result of the ISS theory that the

origin of such a cascade system is globally asymptotically

stable if the driven system is ISS [6, Lemma 4.7]. �

IV. EXAMPLES

In this section the theoretical results of the previous sections

are applied to design nonlinear output feedback laws for var-

ious control problems. This demonstrates that the proposed

class of (inverse) optimal state feedback is not too restrictive

and that it can be applied to practical control problems.

A. Single-Link Robot Arm

A model for a single-link robot arm, shown in Figure 1, is

given by [3]

ẋ1 = x2

ẋ2 = x3 −
F2

J2

x2 −
K

J2

x1 −
mgd

J2

(cos x1 − 1)

ẋ3 = x4

ẋ4 =
K2

J1J2N2
x1 −

K

J2N
x3 −

F1

J1

x4 + u,

(35)

where x1 and x3 represent the angular at the side of the

motor respectively the arm and x2 and x4 represent the

appropriate angular velocities. The mass m, positioned on

the arm, is moved by a electrical motor M . The parameter

K is the stiffness of the spring while N , J1, J2, F1, F2 are

constants representing transmission, inertia, and friction. In

the following the systems parameters are chosen as K =
1, J1 = 0.5, J2 = 1,m = 0.1, d = 0.15, g = 9.81, N =
1, F1 = 0.1, F2 = 0.1. The control input u is the torque

delivered from the motor to the elasticity. The problem is

to stabilize the origin of (35) using the measurement of the

position, i.e. y = x1. Since the system (35) is Lipschitz

nonlinear, a linear feedback u = kT x in conjunction with a

nonlinear observer is applied to stabilize the system. For the

feedback design a quadratic positive definite function of the

form

V (x) = xT Px (36)

is considered as a candidate for the solution of the HJB

equation. The matrix P is chosen such that

AT P + PA − PBR−1BT P = −Q

is satisfied with A as the linear part of (35), B = [0 0 0 1]T ,

J1

J2

K

d mg

M

Fig. 1. Single-Link Robot Arm.
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R = 1, and Q = diag([5 2 2 2]). Hence, the solution of the

algebraic Riccati equation is

P =









9.2504 3.6285 −0.8059 0.6797
3.6285 12.328 7.1056 2.606

−0.8059 7.1056 9.1729 3.1486
0.6797 2.606 3.1486 2.6874









and the corresponding feedback law is given by

u∗ = −R−1BT Px

= −0.6797x1 − 2.606x2 − 3.1486x3 − 2.6874x4.
(37)

The feedback (37) is inverse optimal with respect to the

cost functional (4) with R = 1 and q(x) = −Vx(x)f(x) +
1

4
(Vx(x)G(x))2, that is positive definite. Since (37) is a lin-

ear (inverse) optimal state feedback, i.e. it satisfies condition

(8), the controlled system is input-to-state stable with respect

to the measurement error and (37) can be combined with any

convergent observer, e.g. with the observer of [12]. Hence, all

assumptions of Theorem 3 are satisfied, and the origin of the

closed-loop system consisting of (35), (37), and a convergent

observer is globally asymptotically stable.

B. Active Magnetic Bearing

Active magnetic bearings (AMB) are envisioned to replace

conventional ball bearings in numerous future applications.

For example, it is assumed that they will play an important

role for high-speed flywheel batteries, that will be used for

the energy storage in future spaceships. In the following, a

simplified one-dimensional AMB system, depicted in Figure

2, is considered. A model for the system is given by [2]

ẋ1 = x2

ẋ2 = ǫx3 + x3|x3|

ẋ3 = u,

(38)

where x1 represents the position q and x2 the velocity of the

mass. The third state x3 is proportional to the magnetic flux.

The system parameter ǫ ≥ 0 is in general smaller than one,

and in the following it is ǫ = 0.5. The voltage V1 = V and

V2 = −V is used as the control input u.

The control objective is to stabilize the origin of the system

(38) using the measurements of the rotor position x1 and the

velocity x2, while the magnetic flux x3 is not available for

feedback. In the first step an (inverse) optimal feedback is

designed. Motivated by the fact, that the system (38) consists

of a linear system and a nonlinearity that belongs to the

sector [0,∞], i.e. the structure of the system (38) is similar

to the structure of a Lure’ system [6], the candidate function

V (x) = xT Px + γ

∫ x3

0

s|s|ds (39)

for the solution of the HJB equation is considered. V is

positive definite since P is a positive definite matrix and the

nonlinearity η(s) = s|s| belongs to the sector [0,∞].

F2F1 V2V1

+q −q

Fig. 2. Active Magnetic Bearing.

The matrix P is chosen as the solution of a Riccati matrix

equation

AT P + PA − PBR−1BT P = −Q,

where A is the linear part of (38), B = [0 0 1]T and the

weightings are Q = diag([1 9 1]) and R = 1. Then, the

matrix P is given by

P =





4.2634 4.5884 1
4.5884 17.5625 4.2634

1 4.2634 2.2942



 . (40)

The parameter γ is chosen such that V satisfies the HJB

equation, e.g. γ = 9.1769. A feedback law that minimizes

a cost functional of the form (4) with q(x) > x2

1
+ x2

2
+

x2

3
+ 12.53x2

3
|x3| + 29.55x4

3
and R = 1 is given by u∗ =

− 1

2
R−1(Vx(x)G(x))T = −x1 − 4.2634x2 − 2.2942x3 −

4.5884x3|x3|. Notice that this feedback law is separable into

a globally Lipschitz part and the nonlinearity η(x3) = x3|x3|
that satisfies (8), i.e.

η2(x3) = |x3|
4 > a2((x3 + z)|x3 + z| − x3|x3|)

2

= a2(z|x3| + x3|z| + z|z|)2 = a2(η(x3 + z) − η(x3))
2

holds for all nonzero constants a, z ∈ R whenever |x3|
becomes sufficiently large. Hence all the assumptions of

Theorem 1 are satisfied and u∗ guarantees ISS w.r.t. the

measurement error. A reduced-order observer [2] can be

implemented to reconstruct the unmeasurable state x3. Then,

due to Theorem 3, the certainty-equivalence feedback

u = −x1 − 4.2634x2 − 2.2942x̂3 − 4.5884x̂3|x̂3|, (41)

where x̂3 is the estimate of the observer [2], globally

asymptotically stabilizes the origin of (38).

C. Nonlinear Control of Linear Systems

A nonlinear state feedback for a linear system, that satisfies

for example a nonquadratic cost functionals, can be used

to reduce overshoots or to get a better performance for

large deviations form the operating point. One approach

to control linear systems by nonlinear state feedbacks has

been proposed in [4]. In the following, it is shown that for

the approach in [4] a certainty-equivalence output feedback

design is possible. Consider a linear time-invariant system

of the form

ẋ = Ax + Bu, y = Cx (42)
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with x ∈ R
n and u, y ∈ R. Following [4], the first step is

to design a Linear Quadratic Regulator u∗

lin = −BT Px =
−kT x for the system (42) that satisfies a quadratic cost

functional with R = 1 and Q > 0. Applying this feed-

back to the system (42) leads to the new system matrix

Ã = A − BBT P with the right and left eigenvectors uk

and vk, i.e. Ãuk = λkuk, ÃT vT
k = λkvT

k , where λk

are the corresponding eigenvalues. It is assumed that the

eigenvalues λk are distinct, whereon {uk}, {vk} are linearly

independent, and that {uk}, {vk} are normalized such that

ukvj = δkj , (k, j = 1, . . . , n). In order to find a function V

that satisfies the HJB equation one defines ζl(x) = (vlx)4,

where vl is a left eigenvector of Ã, i.e. ζl(x) satisfies

xT ÃT ∂

∂x
ζl(x) = µlζl(x). (43)

Introducing φ(x) = 1

4µl
ζl(x), the positive definite function

V (x) = xT Px + φ(x) = xT Px +
1

4µl

(vlx)4 (44)

defines a nonlinear feedback law for (42) by setting

u = −BT ∂V

∂x
= −BT Px −

1

µl

BT vT
l (vlx)3. (45)

This feedback is of the desired form u = m(x)+p(cT
i x). In

order to show the optimality of this feedback law, one can

use V as a solution candidate for the HJB equation, i.e.

Vx(x)f(x) −
1

4
Vx(x)G(x)(Vx(x)G(x))T

= xT (AT P + PA − PBBT P )x

+
∂φ

∂x
(Ax − BBT Px) −

1

4

(

∂φ

∂x

)T (
∂φ

∂x

)

.

(46)

Using A − BBT P = Ã and φ(x) = 1

4µ
ζ(x), with ζ(x)

satisfying (43), equation (46) turns into

−xT Qx −
1

4
(vlx)4 −

1

4

(

∂φ

∂x

)T (
∂φ

∂x

)

< 0. (47)

Thus, V solves the HJB equation and the feedback (45) is

(inverse) optimal. All assumptions of Corollary 2 are satisfied

and the feedback guarantees ISS w.r.t. the measurement error.

Hence, a certainty-equivalence implementation of (45) with

a convergent observer, e.g. a Luenberger observer, globally

asymptotically stabilizes the origin of (42). The design of

such a control feedback is illustrated via the system

ẋ1 = x2, ẋ2 = −2x1 − 3x2 + u, (48)

where the first part of the design is already done and

A = Ã. In the following, the polynomial feedback unl

is designed. The feedback design is done, using the left-

eigenvector vl = [2 1]T , whereon the function ζ(x) =
(2x1 + x2)

4 is defined. The method proposed above leads

to the HJB solution candidate V (x) = 1

16
(2x1 +x2)

4 which

defines the nonlinear part of the optimal feedback law as

u∗

nl = p(vT x) = − 1

4
(2x1 + x2)

3. Simulations show that

the nonlinear term in (45) makes the system converge faster

to the origin for large initial conditions or it avoids a large

overshoot of the state x1.

V. CONCLUSIONS

The contribution of this paper is twofold. The main result of

the first part is a generalization of the results in [1]. It has

been shown that (inverse) optimal state feedback laws, that

are separable into a global Lipschitz part and a nonlinearity

which satisfies a certain inequality condition, guarantee ISS

w.r.t. the measurement error. This result allows that these

feedback laws include polynomial functions as well as other

strongly nonlinear (non-Lipschitz) functions like for example

|xi|
9 or yx4

i . Furthermore it is shown that the non-Lipschitz

term can be scaled with an output-depending nonlinear

function. An important consequence of the established results

is that the closed-loop consisting of this class of state

feedbacks and any uniformly convergent observer is globally

asymptotically stable. Hence, new conditions for a globally

stabilizing nonlinear output feedback design are presented in

this paper.

In the second part, the practical applicability of the estab-

lished nonlinear separation principle has been illustrated on

several examples. In particular, nonlinear output feedback

controllers have been designed for a single-link robot arm

and an active magnetic bearing.
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