0-7803-9098-9/05/$25.00 ©2005 AACC

2005 American Control Conference
June 8-10, 2005. Portland, OR, USA

FrC15.3

SCALING OF THE SAMPLING PERIOD IN
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Abstract—The paper presents a scaling algorithm for
system identification, based on a nonlinear black box
differential equation model. The model is discretized by
an Euler forward numerical integration scheme. A scale
factor is applied to the explicitly appearing sampling
period, when iterating the discrete time state space
model and the corresponding gradient recursion. The
result is an exponential scaling of the state components
of the model, and a scaling of the estimated parameter
vector. The original parameter vector can be explicitly
calculated from the scaled parameter vector using a
diagonal matrix that is a function only of the scale
factor. A new analysis of the effect of scaling on the
Hessian, shows how the same diagonal matrix affects its
eigenvalue distribution. A simulation study illustrates
the beneficial effects on e.g. the condition number that
can be obtained with the algorithm.

I. INTRODUCTION

Scaling of state variables has been a central tool in
optimization for a long period of time, see e.g. [1]. By
scaling it is possible to affect the eigenvalues of the
optimization problem, thereby influencing and improving
convergence speed as well as other properties of nonlinear
algorithms. Despite of this, scaling has not achieved that
much of attention in system identification. One reason for
this is perhaps the wide application of least-squares
optimization, which is made possible by the wide use of
linear models in the system identification field.

Recently, there has been an increasing interest in
techniques for nonlinear system identification, see e.g. [2].
An important reason is of course the vast number of
applications in many engineering fields, see e.g. [3]-[5] for
a few examples. In nonlinear system identification, the use
of least squares techniques is less wide spread and the set of
methods is more scattered. Hence scaling may very well
have much more to offer in nonlinear system identification.
Scaling should be of particular interest in cases where
steepest decent type algorithms are applied. Then the
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convergence speed is directly related to the eigenvalue
spread of the Hessian [1]. It should be noted that steepest
decent algorithm may be beneficial to use in tracking
applications, where their performance is sometimes close to
that of more advanced second order methods [6]. Even in
situations where more advanced second order algorithms
e.g. of Gauss-Newton type are applied, scaling can be
expected to be effective during the initial transient stage,
where the estimate is far from the true minimum point. Then
the criterion function is unlikely to be even close to
quadratic, with the consequence that the self-scaling
property of second order algorithms deteriorates [1].

Among the methods available for identification of
nonlinear systems, the simplest ones are perhaps the block-
oriented models as described e.g. in [7]. More advanced
approaches include grey-box techniques, where a model
may first be constructed from physical principles. The
unknown parameters of the model are then estimated with
an optimization algorithm, often in combination with a
numerical integration scheme, cf. e.g. [8]. Among black box
methods, the NARMAX methods [9] have achieved quite a
lot of attention. There a nonlinear discrete time difference
equation is used as model. As discussed in [2], [10], also
neural networks are common tools.

This paper is based on a MIMO black box nonlinear
state space model, formulated in continuous time. The
model is restricted by the use of only one component of the
ODE to model the unknown right hand side function. The
advantage of this restriction is that overparameterization is
avoided. Further, as discussed in [11] using results in [12]
the model is still capable of modeling systems with more
complicated right hand structure (although the result is
obtained in another co-ordinate system). The right hand side
function of the ODE 1is then parameterized by the
coefficients of a multi-variable polynomial in the states and
inputs. The output measurement equation is assumed to be
linear and known in this paper. A generalization appears in
[13]. Recent applications to a solar heating system and an
anaerobic digestion process are described in [14] and [15],
respectively.

The contributions of the paper include a new analysis of
the effect of the scaling of the sampling period, on the
Hessian. The analysis assumes that a prediction error type
criterion is used. A second contribution consists of a
simulation study that verifies and illustrates the effect on
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scaling on 1) the state variables, ii) the estimated parameters
and iii) the eigenvalues and the condition number of the
Hessian. Among other things the study indicates that large
improvements of the condition number can be obtained by
applying the proposed scaling algorithm. One other
advantage of the proposed scaling algorithm is that prior
knowledge of the range of parameters and/or state signals is
not needed. Note also that the scaling algorithm, as well as
the corresponding analysis of the paper, is applicable to any
identification algorithm that is based on the proposed
nonlinear dynamic model.

The paper is organized as follows. Section II defines
the nonlinear state space model for which the scaling
algorithm is defined. Section III presents an analysis of the
effect of the scaling, while a corresponding simulation study
is presented in section IV. The conclusions appear in
section V.

II. THE NONLINEAR STATE SPACE MODEL

The nonlinear MIMO model to be defined here is used for
estimation of an unknown parameter vector @ from
measured inputs u(¢) and outputs y (¢), given by

T

u”) (¢) W) ()

u, (1)
@)

The superscript ) denotes differentiation k times. The
starting point for the derivation of the model is the
following # :th order state space ODE

¥u(0)= (7,0, (0)
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where X:(xl is the state vector. The
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following polynomial parameterization of the right hand
side function of (2) is used
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In order to obtain a discrete time model that is suitable for
scaling, the Euler integration method is applied to (2). A
main reason for using the Euler method is that the sampling
appears explicitly and linearly in the right hand side of the
resulting difference equation model (5). The result of the
discretization is

xl(t+TS,0)

'xl1*1(t+]:;70) - xn—l(t’e)
xn(t +7,,0 x,(2,0)

)’1(t70) G- Gy
yp(t,B) Cpp or Cpy xn(t,B) . (6)

It can be remarked that the Euler method may require fast
sampling in order not to introduce significant discretization
errors. This is fortunately a less important effect in system
identification applications. The reason is that the
minimization algorithm uses the parameters as instruments
to fit the model output to the measured data, as expressed
by the criterion function. Even if an additional bias would
be introduced in the estimated parameters, the input output
properties of the identified model should still resemble the
behavior of the system. The reader is referred to [11], [13]
for a further discussion of various properties of the model

(5), (6).
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II. SCALING OF THE SAMPLING PERIOD

A. Scaling

The need for scaling arises whenever estimated quantities
differ in size by large amounts. Linear scaling as applied to
nonlinear system identification introduces a nonsingular
linear transformation T of the identified parameters as

~ R
0=T=6=T 0 (7)

The transformation is then exploited in the criterion
function and a minimization of the criterion is performed
with respect to @ instead of with respect to @. In case a
prediction error criterion is used, the following optimization
problem then results

6 = argznin%E[ST(t,T_IGN)s(t,T_IGN)] (¥

[

where g(t,e) denotes the prediction error and where
E[] denotes the expectation operator. In practice scaling
transformations that are diagonal is usually what the prior
knowledge allows, cf. [1].

A successful application of (7) requires knowledge of
the expected range of all parameters, something that may be
difficult to obtain for black box models. Further, the origin
of the scaling problems may very well be the relative size of
the state signals that are generated by the algorithm.
Addressing this would require a corresponding scaling of
the state variables. Also this would require prior knowledge
of the range of these signals. As will be seen below, the
proposed scaling of the sampling period almost completely
avoids the need for prior knowledge of the range of
parameters and state signals.

B. Scaling Algorithm

During development of the RPEM described in [13], [16]
it was noticed that problems with convergence to false local
minimum points of the criterion were often highly related to
the selection of the sampling period. The sampling period
of course needs to be short enough during measurement, in
order to capture the essential dynamics of the identified
system. Hence the sampling period applied for
measurement cannot be arbitrarily selected. However, since
the sampling period appears explicitly in the model (5) and
in the corresponding gradient difference equation, it is
straightforward to apply identification algorithms based on
(5) with another, scaled value of the sampling period. This
idea affects the updating of the states, the gradient, and any
projection algorithm that is used to control the stability of
the model. A scale factorax appears before the
multiplication with the sampling period 7, in those three

quantities. To explain the details, the scale factor ¢ and the
scaled sampling period 7;““’ are first defined as

Scaled __
I

=l 9)

The model (5), (6), as applied in the identification
algorithm is then transformed into

x(1+7,.6°) x!(1,.6°)

xjfl(t + T ,0“) - x;,l(t,m)

<(t+71,6°) x(1,6°)
x(1.6°)
: (10)
+TSS led x;([’QS)
S5 (2.0).c)(.6°) a0 (1)) (0).6°)
yiv(t’gq) Cp e Gy xiv(tagq)
S . P l=ex(r,8)
y;(t,a“') Cpp oo Cpy x;(t,ﬁ") )

where the superscript * denotes scaled quantities. Note that

the original sampling period must be retained in all time

arguments, so as to refer to the correct measurement times.
The gradient follows by differentiation of (10) and (11)

dxs(t+ TS,GS) dxs(t,GX)

de’ T de
dx3(1,6°)

e’

+ TgSmled dxlf (t, 0:)

de’
(or(xs(t,es),u(t))
0
(12)

+ ]-vSSmled 0

er(dw(x‘ (f,e‘g),u(t))J[dx“ (.6 )j

dx’ de’

dx*(1,6*)
de’

(13)

oAy (.8°)
(W (t,0 )) - de’ =C

Note that the above change from @ to @° is not to be
treated as a change of variables in the differentiation
leading to (12) and (13). The originally derived gradient is
applied, but with a scaled sampling period.
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The last affected quantity of the algorithm is the
projection algorithm that becomes (cf. [11])

10 -0
S.g(a.:):1n+7~35ea1ed o 0 0 (i (14)
rde|x’(t,8
(o) 22
DMZ{G“' | ‘eig(S“‘(G“’))‘ <1—5}’5>0 (15)
(16)

In (14), $°(6°) denotes the linearized system matrix of the

model, p . denotes the model set, here defined as the

M
asymptotically stable models with a margin & to the
stability limit. The last equation stops the updating of the
parameter vector in case the update would result in values
outside the model set. Other details of an RPEM where the
scaling algorithm is used can be found in [11] and [13].

When a scaled value of the sampling period is applied,
the algorithm still attempts to minimize the criterion,
thereby obtaining other minimizing parameter values than
when the true sampling period is used. When testing the
scaling algorithm experimentally, significant improvements
were observed in the algorithmic behavior. Convergence
speeds could be improved and initial values that lead to
divergence and instability could be made to work well. This
is illustrated in section IV of this paper.

C. Analysis

In order to analyze the effect of scaling of the sampling
period, the following models are introduced to describe the
original model and the scaled model, respectively

xl(t+TS,0) x,(¢,0)
X, (t + T ,0) - X, (t,@)
x,,(t+ TS,G) xn(t,0)
X, (t, 0)
: (17
T X, (t,0)

f(xl(t, 0), X, (t, 0), ul(t), . ui"*‘ ) (1), 0)

xf(t+TS,0“) xf(t,@s)

X, (t’ 6’ )
x3(t,6°)

x(1.6')

X,il(HTsﬂx) )
xj(t+TS,0X)

(18)

+ Tg&‘a/ed x; ( t; 05 )

f(xf(t,ey),....x,f(t,es),ul(t),...,u(k"*')(t),es)
The following assumptions are then introduced

Cl) The measurement y(¢)corresponds to the states
x,(2,0) and x:(z,8°)of (15)and (16).

C2) The algorithm converges to an exact description of the
input-output properties of the system for (15) and (16), i.e.
y(t)—e(t)=x,(¢,0) = xf(t,e“) #0,Vt, where e(7) denotes a

zero mean additive measurement disturbance.

Note that C1) corresponds to the choice

Note also that in case the system is in the model set, then
C2) can be exactly achieved e.g. by the RPEM of [11].

The following result for the scaling of the state variables
is implied by the above assumptions:

Theorem 1: Consider the two models (17) and (18)
where T is the measurement sampling period and where
T = of, is the scaled sampling period that is applied
when running the identification algorithm. Provided that
C1) and C2) hold it follows that

x'(1,6°) = Alo) x(¢,80)

1 0 0
0 o' 0 :
Ala) =0
(@)=0 . .0
0 .. 0 oV

Proof: See Appendix A.

When the scale factor ¢ #1 is used other parameters
result than when o =1 is applied. In case a relation to
underlying physical continuous time parameters exist, this
relation hence appears to be lost by the scaling of the
sampling period. Fortunately, it turns out that an explicit
relation between @ and @°can be derived, so that @ can be
computed from @*. This computation can be performed on-
line or after the end of the identification run. In order to
state this result the following assumption is needed
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H+HN-1)T,
C3)0< 511<% S o(x(1,6))p” (x(1,6)) <1<,

t=t,

4,8, >0, some finite N > dim(6), V¢,.

Note that this condition bears a close resemblance with
conditions for persistent excitation in linear system
identification. Further work is needed to clarify the exact
connection. The following result now holds for the scaling
of the parameter vector:

Theorem?2: Consider the two models (17) and (18)
where T is the measurement sampling period and where
T = of, is the scaled sampling period that is applied

when running the identification algorithm. Provided that
Cl1), C2) and C3) hold it follows that the components of the
scaled parameter vector @°are related to @ by

6=T(a) &
T(Ot) :dl'agi”w(anii” =2 —.~(n=1)i,, ) '

Proof: See Appendix B.

The ordering of diagonal elements in the transformation
matrix of Theorem 3 follows the original ordering of
components in @, as defined by (3) and (4). The exponent
of o follows from the exponents of the state variables that
appear in the corresponding component of g(x(z,8), (7)) -

An novel analysis of the impact of scaling on the
Hessian of the identification algorithm can now be
performed, using Theorem 1 and Theorem 2. By
differentiation of the result of Theorem 1, it follows that

dx*(1,6°) _ AQ) dx(1,6) AQ) dx(t,8) de
do de* de de’
— ale) D08) 1. (20)
ae

In order to proceed the following assumption is needed
C4) The identification algorithm is based on minimization

ofﬂm:%ﬂﬁbﬁﬂ

It follows that the Hessian of the criterion function of C4)
can be calculated as follows
dZ
dede’”

10)= Jg Elw(r.0) € (0]

21

By C2), the prediction error is uncorrelated with its
derivatives with respect to the parameter vector in case
either of the following assumptions hold.

C5a) The colored measurement disturbance () is zero
mean, and the regression vector q)(x(t,e),u(t)) is generated

solely from the input signal.

C5b) The measurement disturbance ¢(¢) is zero mean and
white.

The assumption C5a) covers output error and instrumental
variable type algorithms while C5b) is intended to cover
algorithms of the least squares type.

Using C5a) or C5b), the second term of (21) is zero
and the Hessian simplifies to

d2

(22)
dede’

R(6) = v(8) = E[y(t.0)y(1.0)]-

The analysis of the effect of the scaling of the sampling
period on the Hessian can now be finalized. Using (22) in
the scaled case, together with (11) results in

RY(E) - E{[dxs(t, GS)J et oS)]' (23)

de de¢

The relation (20) then gives

(24)

where the second last step follows from the facts that C is
given by (19) and that the (1,1)-element of A(«) equals 1.

This proves

Theorem 3: Consider the two models (17) and (18)
where T is the measurement sampling period and where

T = o, is the scaled sampling period that is applied
when running the identification algorithm. Provided that

C1), C2), C3), C4) and one of C5a) or C5b) hold, it follows
that the Hessians obey
R'(¢")==T"(a) R(8) T(a)

where T(¢) is defined by Theorem 2.
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IV. NUMERICAL RESULTS

A simulation study was performed in order to study the
proposed scaling algorithm numerically. A specific purpose
was the verification of the results of Theorem 1, Theorem 2
and Theorem 3. The RPEM described in [11] and [16] was
used for this purpose, in combination with simulated data
from the system

[x;mJ ) [xzm(z +”(’))_“(”j

x, (1) —x () -x,(0) ) 05)
1) = x,(t) +el1)

This system can be exactly described by the model (2),

since it can be re-written as the second order ODE

(1) + 2, (0) + (2 + ul(t))x, (£) = ulz)

w(t) = x,(1) +elt)

(26)

Data was generated by simulation with the same Euler
method as applied in the discretization of (2), thereby
securing that the system was in the model set. 10000
samples were simulated using a sampling period of
T, =0.10s- The input signal was selected as a PRBS,

multiplied by a uniformly distributed (in amplitude) random
variable, with a mean of 0 and range [-1,1]. The clock

period of the original PRBS was 3.0s. The measurement
disturbance was white, zero mean with a standard deviation
of 0.1. The RPEM was initialized and run to convergence
for a first value of the scale factor ¢ after which all
interesting quantities were recorded. The scale factor was
then shifted slightly and the RPEM restarted. The initial
parameter vector was then selected as the parameter vector
obtained at the end of the run for the previous value of the
scale factor. All parameters that controlled the adaptation
gain were however re-initialized to their original values.
Since a major purpose was to study the effect of the scaling
on the Hessian, care was taken to ensure that the number of
samples was high enough to secure convergence of the
eigenvalues of the Hessian.

The algorithm was first run with a scale factor ¢ =2.
The RPEM was initialized with the values

6(0)=(0 1 -1 0 —025 0 0 0). @7

The convergence of the parameters from their initial values
is depicted in Fig. 1. Convergence to the true parameter
vector takes place. Fig. 2 displays the convergence of the
eigenvalues of the Hessian and it can be seen that also the
Hessian has converged at the end of the run.

parameters

<3

time [s]

=
o

=
o:

c
.8
[’
i
(]
T
(]
=
=
ey
o
%4
[
E
[
>
=
(7]
o

o .

time [5]

Fig. 2: Convergence of the eigenvalues of the Hessian for ¢ = 2.

Example 1: In order to study the result of Theorem 1,
the estimated model was simulated using the parameters
obtained at the end of the run. The root mean-square levels
of the first and second state signals were computed as

©

— 1 10000 R
X = \/10000 ;xf(t,e(IOOOO))

- 1t R (28)
X = \/10000 ;x;(t,o(loooo))-

The values obtained for =1 were used to define a

nominal relation between x; and x5 - The measured values

were x; = 6.3122 and x5 = (3.2545. The expected change of

root mean-square signal levels, for varying values of « ,
can then both be predicted by Theorem 1 and measured by
renewed computations similar to (28). In particular an

experimentally obtained value o can be computed and
compared to the one that was applied, using
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-1

X5 (29)

a=1

The result appears in Table 1. The agreement between
Theorem 1 and the measured results is excellent.

o - a -

o o
0.3000 0.3013 1.7500 1.7465
0.4000 0.4018 2.0000 1.9940
0.5000 0.5005 2.5000 2.5485
0.6000 0.6005 3.0000 3.0567
0.7500 0.7503 3.5000 3.5638
1.2500 1.2496 4.0000 4.0720
1.5000 1.4981 4.5000 4.5838

Table 1: Comparison between the applied and the experimentally
measured scale factor.

Example 2: This example aims at verifying the result of
Theorem 2. This time the expected scaled parameter vectors
were computed by inversion of the result of Theorem2 as
0'=T"'(a) 8°, for the values of the scale factor used in

Example 1 and for the true parameter vector (o =1).

=01 -10 -2 -10 0" (30)

The absolute values of the parameters as obtained from
Theorem 2 are plotted in Fig. 3 (as lines), together with the
absolute values of the parameters obtained at the end of
each identification run (circles). Absolute values were used
in order to be able to use a logarithmic plot. All signs were
observed to be correct. The agreement between Theorem 2
and the experimental results appears to be excellent.

absolute values of parameters

alpha

Fig. 3. Experimentally observed scaled parameter values (circles) plotted
with calculated scaled parameter values according to Theorem 2 (lines).
Note that only 3 lines are visible. This is because the absolute value of two
of the parameters, as well as their scaling, coincide. The circles at the
bottom of the plot represent true parameters that equal 0.

Example 3: This example aims at verifying the results
of Theorem 3, by an evaluation of the condition number
(the ratio of the largest and smallest singular values) of the
Hessian. The condition number of the Hessian obtained for
a =1 was recorded and used for prediction for other values
of o according to Theorem 3. The experimentally obtained
condition numbers obtained at the end of each identification
run are plotted in Fig. 4 to compare to the theory.

10

Condition nurnber of the Hessian

1w 10 1
alpha
Fig. 4. The condition number of the Hessian as a function of ¢ , obtained

from Theorem 3 (lines) and from identification experiments (circles).

The agreement between Theorem 3 and the experiments
is excellent. It can be observed that the scaling affects the
condition number by several orders of magnitude. Further,
an optimal condition number seems to exist. One practical
application of Theorem 3 would be to tune the scaling for
optimal condition number, given a successful initial
identification run. The algorithm could then be used with
the optimal scaling for tracking, or for renewed
identifications under slightly different conditions. The
benefit is expected to be a more well behaved algorithm.

V. CONCLUSIONS

New results on scaling for a class of nonlinear state space
models have been presented. The main idea is to apply a
scaled value of the sampling period in the identification
algorithm. The effect of scaling was analyzed and relations
between original and scaled values were obtained for the
state signals, the estimated parameters and the most
importantly, the Hessian. A simulation study verified all
results and provided experimental support for observed
improvements of algorithmic behavior that were observed
during the development of the method. The software
package [16], containing the algorithm and the support
functions used in this paper, is available for free download
from http://www.it.uu.se/research/reports/.

Interesting topics for future research include
applications as well as development of more advanced
methods, possible self-scaling ones.

APPENDIX A
Note that this is a short version of the proof of [11].
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It follows from C1) and C2) that

_ x(1,0) x,(¢=T) + Tyx, (¢ - 7, 6)
Cx)(6,6°) X (- T)+ TS (¢ - Ty, 6°)
&
xf(t—TS)+TSS”‘”“’x2(t—TS,03)
= x(t = T) + T, (1 - T;.6). Vi
&

Scaled

xz(t—TS,0)=( ST

S

,Vt

jx;(t—TS,GS),Vt

€1))

after a renewed application of C2) in the last step.
Repeating the argumentation for the next state component,

utilizing (31) gives the result for the third

state

component. After repeating the argumentation 7 times
and noting that the result is valid for all values of

proves the theorem.

APPENDIX B
Note that this is a short version of the proof of [11].

Applying Theorem 1 to the last component of (18) and

rearranging results in

x, (1 +7,,6) = x,(¢,0)
0 Ty f (5 (16°)se (1,60 o). 6°) V1

(32)

Comparing (32) to the last component of (17) and utilizing

(3), then shows that

o’ (x(1,0),u(1))6 =" ¢ (x*(1,6°),u(r))6° » V.

(33)

To proceed, one arbitrary component of the LHS and RHS
versions of (33) is studied, i.e. the following quantities

g, (x(.6).u(r)
= ()" o, ) ) )4

,,,,,,

= (xi“)[’“ (x,;)l (ul)i"' ...(u,(c"k))iu‘k"”

(34)

By application of Theorem 1, ¢’ (XS(t,QS),u(t)) can be

transformed to depend only on x, ..., xn,ul,,,,,u,(c"‘). The

result is

90:11 - (XS (tses ),u(t)) (35)

i, =2

= g o Ml

", (x(t,e),u(t)) Vit .

Xy 5

Inserting (35) in (33) gives

0" (x(2,6),u(r))0
= ¢'(x(¢,6),u(1)) diag, (05””"2 2y mlntl, ) 6, V.

(36)

A multiplication of (36) with (o(x(t,e),u(t)) from the left,

followed by a summation over time according to C3) then
results in an equation that has the result of Theorem 2 as the
unique solution.
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